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Algebraic groups

Let k be an algebraically closed field of characteristic p > 0.

An algebraic group G is an affine algebraic variety, defined over k ,
with a group structure such that

µ : G × G → G ι : G → G
(x , y) 7→ xy x 7→ x−1

are morphisms of varieties.

Example

The prototype is the special linear group

SLn(k) = {A ∈Mn(k) | det(A) = 1}
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Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of
G on Ω is a morphism of varieties (with the usual properties)

G × Ω → Ω
(x , ω) 7→ x .ω

We can define orbits and stabilisers as usual:

orbits are locally closed subsets of Ω, and we can define

dim G .x = dim G .x

for ω ∈ Ω, Gω 6 G is closed

Lemma

Let H 6 G be a closed subgroup. Then

(i) G/H is a (quasi-projective) variety

(ii) there is a natural (transitive) action G × G/H → G/H
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Fixed point spaces

Let G be an algebraic group acting on a variety Ω. For any x ∈ G ,
the fixed point space

CΩ(x) = {ω ∈ Ω : x .ω = ω} ⊆ Ω

is closed.

Proposition

Let Ω = G/H. Then, for x ∈ G ,

dim CΩ(x) =

{
0 if xG ∩ H = ∅

dim Ω− dim xG + dim(xG ∩ H) otherwise

General aim: given x ∈ G of prime order, derive bounds on

fΩ(x) =
dim CΩ(x)

dim Ω
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Classical groups

Let V be an n-dimensional k-vector space.

GL(V ) = invertible linear maps V → V

Sp(V ) = {x ∈ GL(V ) : β(x .u, x .v) = β(u, v)}
O(V ) = {x ∈ GL(V ) : Q(x .u) = Q(u)}

where: β is a symplectic form on V
Q is a non-degenerate quadratic form on V .

We write Cl(V ) for GL(V ), Sp(V ),O(V )
Similarly Cln for GLn,Spn,On
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Subgroup structure: geometric subgroups

Let G = Cl(V ) be a classical group.

We define 5 families of positive-dimension subgroups that arise
naturally from the underlying geometry of V

C1 stabilisers of subspaces U ⊂ V

C2 stabilisers of direct sum decompositions

V = V1 ⊕ . . .⊕ Vt

C3 stabilisers of totally singular decompositions
V = U ⊕W , when G = Sp(V ) or O(V )

C4 stabilisers of tensor product decompositions

V = V1 ⊗ . . .⊗ Vt

C5 stabiliser of non-degenerate forms on V

Set C (G ) =
⋃

Ci .

Raffaele Rainone Geometric actions of classical groups



Subgroup structure

Example

C2 Let G = GLn. Assume V = V1 ⊕ . . .⊕ Vt where dim Vi = n/t.
Then H = GLn/t o St , and

H◦ = GLn/t × . . .× GLn/t

C3 Let G = Spn. Assume V = U ⊕W where U,W are maximal
totally singular subspaces. Then H = GLn/2.2 and

H◦ =
{(

A
A−t

)
: A ∈ GLn/2

} ∼= GLn/2

Theorem (Liebeck - Seitz, 1998)

Let G = SL(V ),Sp(V ) or SO(V ) and H 6 G closed and positive
dimensional. Then either H is contained in a member of C (G ), or
H◦ is simple and acts irreducibly on V .
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Aim

G = Cl(V ) classical algebraic group
H 6 G closed geometric subgroup
Ω = G/H

Main aim

Derive bounds on

fΩ(x) =
dim CΩ(x)

dim Ω

for all x ∈ G of prime order.

Further aims

sharpness, characterisazions?

“Local bounds”: how does the action of x on V influence
fΩ(x)?
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Background

Let G be a simple algebraic group, H 6 G closed. Set Ω = G/H.

Theorem (Lawther, Liebeck, Seitz (2002))

If G exceptional then, for x ∈ G of prime order,

fΩ(x) 6 δ(G ,H, x)

Theorem (Burness, 2003)

Either there exists an involution x ∈ G

fΩ(x) =
dim CΩ(x)

dim Ω
>

1

2
− ε

for a small ε > 0, or (G ,Ω) is in a short list of known exceptions.

Raffaele Rainone Geometric actions of classical groups



Background

Further motivation arises from finite permutation group.

Let Ω be a finite set and G 6 Sym(Ω). For x ∈ G , the fixed point
ratio is defined

fprΩ(x) =
|CΩ(x)|
|Ω|

If G is transitive with point stabiliser H then

fprΩ(x) =
|xG ∩ H|
|xG |

Bounds on fpr have been studied and applied to a variety of
problems, e.g.

base sizes

monodromy groups of covering of Riemann surfaces

(random) generation of simple groups
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Fixed point spaces

Let G = Cl(V ), H 6 G closed and Ω = G/H.

Recall, for x ∈ H fixed,

dim CΩ(x) = dim Ω− dim xG + dim(xG ∩ H)

To compute dim CΩ(x) we need:

(i) information on the centraliser CG (x), so

dim xG = dim G − dim CG (x)

(ii) informations on the fusion of H-classes in G , so we can
compute dim(xG ∩ H).
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Conjugacy classes I

For x ∈ GLn we have x = xsxu = xuxs .

Up to conjugation,

xs = [λ1Ia1 , λ2Ia2 , . . . , λnIan ], xu = [Jan
n , . . . , J

a1
1 ]

Fact

Let s, s ′ and u, u′ in G = Cl(V ). Then s ∼G s ′, u ∼G u′ if, and
only if, they are GL(V )-conjugate (unless p = 2 and u, u′ are
unipotent).

It is well known how to compute dim xG for unipotent and
semisimple elements. For example if G = GLn:

dim xG
s = n2 −

n∑
i=1

a2
i

dim xG
u = n2 − 2

∑
1≤i<j≤n

iaiaj −
n∑

i=1

ia2
i
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Conjugacy classes II

Recall: dim CΩ(x) = dim Ω− dim xG + dim(xG ∩ H).

In general it is hard to compute dim(xG ∩ H), but the following
result is useful:

Theorem (Guralnick, 2007)

If H◦ is reductive then

xG ∩ H = xH
1 ∪ . . . ∪ xH

m

for some m. Thus dim(xG ∩ H) = maxi{dim xH
i }.
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Example

Let G = GL18, H = GL6 o S3 and p = 3. Set Ω = G/H, thus
dim Ω = 182 − 3 · 62 = 216. Let

x = [J2
3 , J

3
2 , J

6
1 ], dim xG = 174

Then xG ∩ H = xG ∩ H◦ and xG ∩ H =
⋃4

i=1 xH
i where

x1 = [J2
3 | J2

2 , J
2
1 | J2, J

4
1 ], x2 = [J2

3 | J3
2 | J6

1 ],

x3 = [J3, J2, J1 | J3, J2, J1 | J2, J
4
1 ], x4 = [J3, J2, J1 | J3, J

3
1 | J2

2 , J
2
1 ]

and

dim xH
1 = 46, dim xH

2 = 42, dim xH
3 = 54, dim xH

4 = 52

Thus dim(xG ∩ H) = 54. Therefore fΩ(x) = 4
9 >

1
3 .
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Main result: Global bounds

Recall that H ∈ C2 ∪ C3 is a stabiliser of a decomposition
V = V1 ⊕ . . .⊕ Vt .

Theorem (R., 2013)

Let G = Cln and H ∈ C2 ∪ C3. Set Ω = G/H and fix x ∈ H of
prime order r . Then

1

r
− ε 6 fΩ(x) =

dim CΩ(x)

dim Ω
6 1− 1

n

where

ε =


0 r = p

1
r p 6= r > n

rt2

4n2(t−1)
p 6= r 6 n
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Main result: Global bounds

Let G = Cl(V ) and H ∈ C2 ∪ C3. Set Ω = G/H.

Let M = maxx∈G\Z(G){fΩ(x)}.

Theorem (R., 2013)

Let r be a prime. Then either

(i) there exists x ∈ G of order r such that fΩ(x) = M; or,

(ii) (G ,H) belong to a short list of known exceptions.

For example, if G = GLn and H = GL1 o Sn then

fΩ(x) = M = 1− 2

n
+

1

n(n − 1)

if, and only if, x = [1,−In−1] or [J2, J
n−2
1 ].
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Main result: Local bounds

For x ∈ Cl(V ), we define ν(x) to be the co-dimension of the
largest eigenspace of x . For example, if

x = [Jan
n , . . . , J

a1
1 ]

then ν(x) = n −
∑n

i=1 ai .

Theorem (R., 2013)

Let G = Cl(V ) and H ∈ C2 ∪C3. Let x ∈ G of prime order r , with
ν(x) = s. Then

1− s(2n − s)

n(n − 2)
− 4

n
6 fΩ(x) 6 1− s

n
+

1

n
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Questions & open problems

1. Let G = Cl(V ) and H ∈ C2.

(i) Let x ∈ H◦ be unipotent. Can we find an explicit formula for
dim(xG ∩ H◦)?

(ii) Derive local lower bounds on fΩ(x) for x ∈ G unipotent with
ν(x) = s.

(iii) Can we give an exact formula for fΩ(x) when x ∈ G is an
involution?

2. Same analysis for C4 subgroups (stabilisers of V = V1 ⊗ V2 or
V =

⊗t
i=1 Vi ).

3. Explore applications (e.g. derive bounds on fpr’s for finite
groups of Lie type, etc).
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THANK YOU!
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