GEOMETRIC ACTIONS OF CLASSICAL GROUPS

Raffaele Rainone

School of Mathematics University of Southampton

Groups St. Andrews August 2013 Let k be an algebraically closed field of characteristic $p \ge 0$.

An algebraic group G is an affine algebraic variety, defined over k, with a group structure such that

are morphisms of varieties.

Example

The prototype is the special linear group

$$\mathsf{SL}_n(k) = \{A \in \mathcal{M}_n(k) \mid \det(A) = 1\}$$

Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of G on Ω is a morphism of varieties (with the usual properties)

 $egin{array}{ccc} G imes \Omega &
ightarrow & \Omega \ (x,\omega) & \mapsto & x.\omega \end{array}$

We can define orbits and stabilisers as usual:

 \bullet orbits are locally closed subsets of $\Omega,$ and we can define

 $\dim G.x = \dim \overline{G.x}$

• for $\omega \in \Omega$, $G_{\omega} \leqslant G$ is closed

Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of G on Ω is a morphism of varieties (with the usual properties)

 $egin{array}{ccc} G imes \Omega &
ightarrow & \Omega \ (x,\omega) & \mapsto & x.\omega \end{array}$

We can define orbits and stabilisers as usual:

 \bullet orbits are locally closed subsets of $\Omega,$ and we can define

$$\dim G.x = \dim \overline{G.x}$$

• for $\omega \in \Omega$, $G_{\omega} \leqslant G$ is closed

Lemma

Let $H \leq G$ be a closed subgroup. Then

(i) *G*/*H* is a (quasi-projective) variety

(ii) there is a natural (transitive) action $G\times G/H\to G/H$

Fixed point spaces

Let G be an algebraic group acting on a variety Ω . For any $x \in G$, the fixed point space

$$C_{\Omega}(x) = \{\omega \in \Omega : x.\omega = \omega\} \subseteq \Omega$$

is closed.

Proposition

Let
$$\Omega = G/H$$
. Then, for $x \in G$,
dim $C_{\Omega}(x) = \begin{cases} 0 & \text{if } x^{G} \cap H = \emptyset \\ \dim \Omega - \dim x^{G} + \dim(x^{G} \cap H) & \text{otherwise} \end{cases}$

General aim: given $x \in G$ of prime order, derive bounds on

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega}$$

Let V be an n-dimensional k-vector space.

$$\begin{aligned} \mathsf{GL}(V) &= \text{invertible linear maps } V \to V \\ \mathsf{Sp}(V) &= \{x \in \mathsf{GL}(V) : \beta(x.u, x.v) = \beta(u, v)\} \\ \mathsf{O}(V) &= \{x \in \mathsf{GL}(V) : Q(x.u) = Q(u)\} \end{aligned}$$

where: β is a symplectic form on V Q is a non-degenerate quadratic form on V.

We write Cl(V) for GL(V), Sp(V), O(V)Similarly Cl_n for GL_n , Sp_n , O_n Let G = Cl(V) be a classical group.

We define 5 families of positive-dimension subgroups that arise naturally from the underlying geometry of ${\it V}$

 \mathscr{C}_1 stabilisers of subspaces $U \subset V$ \mathscr{C}_2 stabilisers of direct sum decompositions $V = V_1 \oplus \ldots \oplus V_t$

 \mathscr{C}_3 stabilisers of totally singular decompositions $V = U \oplus W$, when G = Sp(V) or O(V)

 \mathscr{C}_4 stabilisers of tensor product decompositions $V=V_1\otimes\ldots\otimes V_t$

 \mathscr{C}_5 stabiliser of non-degenerate forms on V

Set $\mathscr{C}(G) = \bigcup \mathscr{C}_i$.

Subgroup structure

Example

 \mathscr{C}_2 Let $G = GL_n$. Assume $V = V_1 \oplus \ldots \oplus V_t$ where dim $V_i = n/t$. Then $H = GL_{n/t} \wr S_t$, and

$$H^{\circ} = \operatorname{GL}_{n/t} \times \ldots \times \operatorname{GL}_{n/t}$$

 \mathscr{C}_3 Let $G = \text{Sp}_n$. Assume $V = U \oplus W$ where U, W are maximal totally singular subspaces. Then $H = \text{GL}_{n/2}.2$ and

$$H^{\circ} = \left\{ \left(\begin{smallmatrix} A \\ & A^{-t} \end{smallmatrix}\right) : A \in \mathrm{GL}_{n/2} \right\} \cong \mathrm{GL}_{n/2}$$

Subgroup structure

Example

 \mathscr{C}_2 Let $G = GL_n$. Assume $V = V_1 \oplus \ldots \oplus V_t$ where dim $V_i = n/t$. Then $H = GL_{n/t} \wr S_t$, and

$$H^{\circ} = \operatorname{GL}_{n/t} \times \ldots \times \operatorname{GL}_{n/t}$$

 \mathscr{C}_3 Let $G = \text{Sp}_n$. Assume $V = U \oplus W$ where U, W are maximal totally singular subspaces. Then $H = \text{GL}_{n/2}.2$ and

$$H^{\circ} = \left\{ \left(\begin{smallmatrix} A \\ & A^{-t} \end{smallmatrix}\right) : A \in \mathrm{GL}_{n/2} \right\} \cong \mathrm{GL}_{n/2}$$

Theorem (Liebeck - Seitz, 1998)

Let G = SL(V), Sp(V) or SO(V) and $H \leq G$ closed and positive dimensional. Then either H is contained in a member of $\mathscr{C}(G)$, or H° is simple and acts irreducibly on V.

Aim

G = CI(V) classical algebraic group $H \leq G$ closed geometric subgroup $\Omega = G/H$

Main aim

Derive bounds on

$$f_{\Omega}(x) = rac{\dim C_{\Omega}(x)}{\dim \Omega}$$

for all $x \in G$ of prime order.

Further aims

- sharpness, characterisazions?
- "Local bounds": how does the action of x on V influence f_Ω(x)?

Let G be a simple algebraic group, $H \leq G$ closed. Set $\Omega = G/H$.

Theorem (Lawther, Liebeck, Seitz (2002))

If G exceptional then, for $x \in G$ of prime order,

 $f_{\Omega}(x) \leq \delta(G, H, x)$

Theorem (Burness, 2003)

Either there exists an involution $x \in G$

$$f_{\Omega}(x) = rac{\dim C_{\Omega}(x)}{\dim \Omega} \geqslant rac{1}{2} - \epsilon$$

for a small $\epsilon \ge 0$, or (G, Ω) is in a short list of known exceptions.

Background

Further motivation arises from finite permutation group.

Let Ω be a finite set and $G \leq \text{Sym}(\Omega)$. For $x \in G$, the fixed point ratio is defined

$$\mathsf{fpr}_{\Omega}(x) = rac{|\mathcal{C}_{\Omega}(x)|}{|\Omega|}$$

If G is transitive with point stabiliser H then

$$\operatorname{fpr}_{\Omega}(x) = rac{|x^{\mathcal{G}} \cap H|}{|x^{\mathcal{G}}|}$$

Background

Further motivation arises from finite permutation group.

Let Ω be a finite set and $G \leq \text{Sym}(\Omega)$. For $x \in G$, the fixed point ratio is defined

$$\operatorname{fpr}_{\Omega}(x) = rac{|\mathcal{C}_{\Omega}(x)|}{|\Omega|}$$

If G is transitive with point stabiliser H then

$$\mathsf{fpr}_{\Omega}(x) = rac{|x^{\mathcal{G}} \cap H|}{|x^{\mathcal{G}}|}$$

Bounds on fpr have been studied and applied to a variety of problems, e.g.

- base sizes
- monodromy groups of covering of Riemann surfaces
- (random) generation of simple groups

Let G = CI(V), $H \leq G$ closed and $\Omega = G/H$.

Recall, for $x \in H$ fixed,

$$\dim C_{\Omega}(x) = \dim \Omega - \dim x^{G} + \dim(x^{G} \cap H)$$

To compute dim $C_{\Omega}(x)$ we need:

(i) information on the centraliser $C_G(x)$, so

$$\dim x^{G} = \dim G - \dim C_{G}(x)$$

(ii) informations on the fusion of *H*-classes in *G*, so we can compute dim(x^G ∩ H).

For $x \in GL_n$ we have $x = x_s x_u = x_u x_s$.

- ∢ ≣ ▶

∃ >

æ

For $x \in GL_n$ we have $x = x_s x_u = x_u x_s$. Up to conjugation,

$$x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$$

э

For $x \in GL_n$ we have $x = x_s x_u = x_u x_s$. Up to conjugation, $x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$

Fact

Let s, s' and u, u' in G = CI(V). Then $s \sim_G s'$, $u \sim_G u'$ if, and only if, they are GL(V)-conjugate (unless p = 2 and u, u' are unipotent).

For $x \in GL_n$ we have $x = x_s x_u = x_u x_s$. Up to conjugation, $x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$

Fact

Let s, s' and u, u' in G = CI(V). Then $s \sim_G s'$, $u \sim_G u'$ if, and only if, they are GL(V)-conjugate (unless p = 2 and u, u' are unipotent).

It is well known how to compute dim x^G for unipotent and semisimple elements. For example if $G = GL_n$:

$$\dim x_s^G = n^2 - \sum_{i=1}^n a_i^2$$
$$\dim x_u^G = n^2 - 2 \sum_{1 \le i < j \le n} ia_i a_j - \sum_{i=1}^n ia_i^2$$

Recall: dim $C_{\Omega}(x) = \dim \Omega - \dim x^{\mathcal{G}} + \dim(x^{\mathcal{G}} \cap H)$.

- ∢ ≣ ▶

< ∃ >

э

Recall: dim $C_{\Omega}(x) = \dim \Omega - \dim x^{\mathcal{G}} + \dim(x^{\mathcal{G}} \cap H)$.

In general it is hard to compute $\dim(x^G \cap H)$, but the following result is useful:

Theorem (Guralnick, 2007)

If H° is reductive then

$$x^{G} \cap H = x_{1}^{H} \cup \ldots \cup x_{m}^{H}$$

for some *m*. Thus dim $(x^{G} \cap H) = \max_{i} \{\dim x_{i}^{H}\}.$

Example

Let $G = GL_{18}$, $H = GL_6 \wr S_3$ and p = 3. Set $\Omega = G/H$, thus dim $\Omega = 18^2 - 3 \cdot 6^2 = 216$. Let

$$\begin{aligned} x &= [J_3^2, J_2^3, J_1^6], \text{ dim } x^G = 174 \end{aligned}$$

Then $x^G \cap H = x^G \cap H^\circ$ and $x^G \cap H = \bigcup_{i=1}^4 x_i^H$ where
 $x_1 &= [J_3^2 \mid J_2^2, J_1^2 \mid J_2, J_1^4], x_2 = [J_3^2 \mid J_2^3 \mid J_2^6], \end{aligned}$
 $x_3 &= [J_3, J_2, J_1 \mid J_3, J_2, J_1 \mid J_2, J_1^4], x_4 = [J_3, J_2, J_1 \mid J_3, J_1^3 \mid J_2^2, J_1^2]$
and

dim
$$x_1^H = 46$$
, dim $x_2^H = 42$, dim $x_3^H = 54$, dim $x_4^H = 52$
Thus dim $(x^G \cap H) = 54$. Therefore $f_{\Omega}(x) = \frac{4}{9} > \frac{1}{3}$.

э

-

Recall that $H \in \mathscr{C}_2 \cup \mathscr{C}_3$ is a stabiliser of a decomposition $V = V_1 \oplus \ldots \oplus V_t$.

Theorem (R., 2013)

Let $G = Cl_n$ and $H \in C_2 \cup C_3$. Set $\Omega = G/H$ and fix $x \in H$ of prime order r. Then

$$\frac{1}{r} - \epsilon \leqslant f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega} \leqslant 1 - \frac{1}{n}$$

where

$$\epsilon = \begin{cases} 0 & r = p \\ \frac{1}{r} & p \neq r > n \\ \frac{rt^2}{4n^2(t-1)} & p \neq r \leqslant n \end{cases}$$

Main result: Global bounds

Let
$$G = CI(V)$$
 and $H \in \mathscr{C}_2 \cup \mathscr{C}_3$. Set $\Omega = G/H$.

Let $M = \max_{x \in G \setminus Z(G)} \{ f_{\Omega}(x) \}.$

Theorem (R., 2013)

Let r be a prime. Then either

(i) there exists $x \in G$ of order r such that $f_{\Omega}(x) = M$; or,

(ii) (G, H) belong to a short list of known exceptions.

For example, if $G = GL_n$ and $H = GL_1 \wr S_n$ then

$$f_{\Omega}(x) = M = 1 - \frac{2}{n} + \frac{1}{n(n-1)}$$

if, and only if, $x = [1, -I_{n-1}]$ or $[J_2, J_1^{n-2}]$.

For $x \in Cl(V)$, we define $\nu(x)$ to be the co-dimension of the largest eigenspace of x. For example, if

$$x = [J_n^{a_n}, \ldots, J_1^{a_1}]$$

then $\nu(x) = n - \sum_{i=1}^{n} a_i$.

For $x \in Cl(V)$, we define $\nu(x)$ to be the co-dimension of the largest eigenspace of x. For example, if

$$x = [J_n^{a_n}, \ldots, J_1^{a_1}]$$

then $\nu(x) = n - \sum_{i=1}^{n} a_i$.

Theorem (R., 2013)

Let G = Cl(V) and $H \in C_2 \cup C_3$. Let $x \in G$ of prime order r, with $\nu(x) = s$. Then

$$1 - \frac{s(2n-s)}{n(n-2)} - \frac{4}{n} \leqslant f_{\Omega}(x) \leqslant 1 - \frac{s}{n} + \frac{1}{n}$$

1. Let G = Cl(V) and $H \in \mathscr{C}_2$.

(i) Let $x \in H^{\circ}$ be unipotent. Can we find an explicit formula for $\dim(x^{G} \cap H^{\circ})$?

(ii) Derive local lower bounds on $f_{\Omega}(x)$ for $x \in G$ unipotent with $\nu(x) = s$.

(iii) Can we give an exact formula for $f_{\Omega}(x)$ when $x \in G$ is an involution?

2. Same analysis for \mathscr{C}_4 subgroups (stabilisers of $V = V_1 \otimes V_2$ or $V = \bigotimes_{i=1}^t V_i$).

3. Explore applications (e.g. derive bounds on fpr's for finite groups of Lie type, etc).

THANK YOU!

< ∃ →

3