Recent Results on Generalized Baumslag-Solitar Groups

Derek J.S. Robinson

University of Illinois at Urbana-Champaign

Groups-St. Andrews 2013

Baumslag-Solitar groups

(i) A Baumslag-Solitar group is a group with a presentation

$$BS(m, n) = \langle t, x \mid (x^m)^t = x^n \rangle,$$

where $m, n \in \mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

(ii) A similar type of 1-relator group is

$$K(m,n) = \langle x,y \mid x^m = y^n \rangle,$$

where $m, n \in \mathbb{Z}^*$.

These are the fundamental groups of certain graphs of groups.

GBS-graphs

Let Γ be a finite connected graph. For each edge e label the endpoints e^+ and e^- . Infinite cyclic groups $\langle g_x \rangle$ and $\langle u_e \rangle$ are assigned to each vertex x and edge e.

Injective homomorphisms $\langle u_e \rangle o \langle g_{e^+} \rangle$ and $\langle u_e \rangle o \langle g_{e^-} \rangle$ are defined by

$$u_e \mapsto g_{e^+}^{\omega^+(e)} \text{ and } u_e \mapsto g_{e^-}^{\omega^-(e)}$$

where $\omega^+(e), \ \omega^-(e) \in \mathbb{Z}^*$.

GBS-graphs

So we have a weight function

$$\omega: E(\Gamma) \to \mathbb{Z}^* \times \mathbb{Z}^*$$

where $\omega(e)=(\omega^-(e),\omega^+(e))$ is defined up to \pm . The weighted graph

$$(\Gamma, \omega)$$

is a generalized Baumslag-Solitar graph or GBS-graph.

GBS-groups

The generalized Baumslag-Solitar group (GBS-group) determined by the GBS-graph (Γ, ω) is the fundamental group $G = \pi_1(\Gamma, \omega)$. If T is a maximal subtree of Γ , then G has generators g_x and t_e , with relations

$$\begin{cases} g_{e^+}^{\omega^+(e)} &= g_{e^-}^{\omega^-(e)}, \text{ for } e \in E(T), \\ (g_{e^+}^{\omega^+(e)})^{t_e} &= g_{e^-}^{\omega^-(e)}, \text{ for } e \in E(\Gamma) \backslash E(T). \end{cases}$$

If Γ is an edge e, G=K(m,n): if Γ is a single loop e, G=BS(m,n), where $m=\omega^+(e), n=\omega^-(e)$.

An example

The maximal subtree T is the path x, y, z, u. The GBS-group has a presentation in $r, s, t, g_x, g_y, g_z, g_u$ with relations

$$g_x^2 = g_y^{-3}, \ g_y^4 = g_z^4, \ g_z^5 = g_u^3$$

 $(g_x^2)^r = g_x^2, \ (g_x^4)^s = g_y^{-1}, \ (g_u^{12})^t = g_y^{20}.$

Some properties of GBS-groups

Let $G = \pi_1(\Gamma, \omega)$ be a GBS-group.

- (i) G is independent of the choice of maximal subtree.
- (ii) G is finitely presented and torsion-free.
- (iii) If Γ is a tree, then G is residually finite and hence is hopfian.

The next result is due to P. Kropholler.

(iv) The non-cyclic GBS-groups are exactly the finitely generated groups of cohomological dimension 2 which have a commensurable infinite cyclic subgroup.

Some properties of GBS-groups

(v) If H is a finitely generated subgroup of a GBS-group G, either H is a GBS-group or it is free. Hence G is coherent.

Proof. We have $cd(H) \le cd(G) = 2$. If cd(H) = 1, then H is free by the Stallings-Swan Theorem. Otherwise cd(H) = 2. If H contains a commensurable element, it is a GBS-group by (iv). If H has no commensurable elements, it is free.

(vi) The second derived subgroup of a GBS-group is free. (Kropholler.)

The weight of a path

Let (Γ, ω) be a *GBS*-graph with a maximal subtree T. Let $e = \langle x, y \rangle$ be a non-tree edge where $x \neq y$. There is a unique path in T from x to y, say

$$x = x_0, x_1, \ldots, x_n = y.$$

Then there is a relation in $G = \pi_1(\Gamma, \omega)$

$$g_x^{p_1(e)} = g_y^{p_2(e)}$$

where $p_1(e)$ and $p_2(e)$ are the products of the left and right weight values of the edges in the tree path [x, y].

The weight of a path

Lemma 1. Let (Γ, ω) be a GBS-graph with a maximal subtree T. Let $\alpha = [x, y]$ be a path in T. Then there exist $a, b \in \mathbb{Z}^*$ such that $g_x^a = g_y^b$ in $\pi_1(\Gamma, \omega)$. Also, if $g_x^m = g_y^n$, then (m, n) = (a, b)q for some $q \in \mathbb{Z}^*$.

Definition. Call (a, b) the weight of the path α in T and denote it by $\omega_T(\alpha)$ or

$$\omega_T(x,y) = (\omega_T^{(1)}(x,y), \omega_T^{(2)}(x,y)).$$

This is unique up to \pm .

How to compute the weight of a path

Let α be the path $x=x_0,x_1,\ldots,x_n=y$ and write $\omega(\langle x_i,x_{i+1}\rangle)=(u_i^{(1)},\ u_i^{(2)}),\ i=0,1,\ldots,n-1.$ Define $(\ell_i,m_i),\ 0\leq i\leq n,$ recursively by $\ell_0=1=m_0$ and

$$\ell_{i+1} = \frac{\ell_i u_i^{(1)}}{\gcd(m_i, u_i^{(1)})}, \quad m_{i+1} = \frac{m_i u_i^{(2)}}{\gcd(m_i, u_i^{(1)})}.$$

Then

Lemma 2. $\omega_T(x, y) = (\ell_n, m_n)$.

Tree and skew tree dependence

Let (Γ, ω) be a GBS-graph with a maximal subtree T. The non-tree edge $e = \langle x, y \rangle$ is called T-dependent or skew T-dependent if and only if

$$\frac{\omega^{-}(e)}{\omega^{+}(e)} = \frac{\omega_{T}^{(1)}(e)}{\omega_{T}^{(2)}(e)} \text{ or } -\frac{\omega_{T}^{(1)}(e)}{\omega_{T}^{(2)}(e)}$$

respectively. If e is a loop, then e is T-dependent (skew T-dependent) if and only if $\omega^-(e) = \omega^+(e)$ or $\omega^-(e) = -\omega^+(e)$ respectively.

Tree and skew tree dependence

If every non-tree edge of a GBS-graph is T-dependent, the GBS-graph is called $tree\ dependent$.

If every non-tree edge is T-dependent or skew T-dependent with at least of the latter, then the GBS-graph is called *skew tree dependent*.

These properties are independent of the choice of T.

Tree dependence is relevant to the computation of homology in low dimensions.

Homology in dimensions ≤ 2

Theorem 1. (DR). Let $G = \pi_1(\Gamma, \omega)$ be a GBS-group. Then the torsion-free rank of $H_1(G) = G_{ab}$ is

$$r_0(G) = |E(\Gamma)| - |V(\Gamma)| + 1 + \epsilon$$

where $\epsilon = 1$ if (Γ, ω) is tree dependent and otherwise $\epsilon = 0$. Hence tree dependence is independent of the choice of maximal subtree.

Theorem 2. (DR). For any GBS-group G the Schur multiplier $H_2(G)$ is free abelian of rank $r_0(G) - 1$.

The Δ -function

Let G be a group with a commensurable element x of infinite order. If $g \in G$, then $\langle x \rangle \cap \langle x \rangle^g \neq 1$ and $(x^n)^g = x^m$ for $m, n \in \mathbb{Z}^*$. Define $\Delta_x(g) = \frac{m}{n}$. Then

$$\Delta_{x}: G \mapsto \mathbb{Q}^{*}$$

is a well defined homomorphism.

If $y \in G$ is commensurable and $\langle x \rangle \cap \langle y \rangle \neq 1$, then $\Delta_x = \Delta_y$. If this holds for all commensurable elements, then Δ_x depends only on G: denote it by

$$\Delta^G$$
.

The Δ -function of a GBS-group

A GBS-graph (Γ, ω) or the group $G = \pi_1(\Gamma, \omega)$, is called elementary if $G \simeq BS(1, \pm 1)$. If G is non-elementary, then each commensurable element of G is elliptic and hence is conjugate to a power of some g_v . Hence Δ^G is unique.

Lemma 3. Let (Γ, ω) be a non-elementary GBS-graph, with T a maximal subtree, and let $G = \pi_1(\Gamma, \omega)$. Then:

(i)
$$\Delta^{G}(g_{v}) = 1$$
 for all $v \in V(\Gamma)$;

(ii) If
$$e \in E(\Gamma) \backslash E(T)$$
, $\omega(e) = (a, b)$, $\omega_T(e) = (m, n)$,
$$\Delta^G(t_e) = \frac{an}{bm}.$$

Unimodular groups

Corollary. (G. Levitt). Let e be a non-tree edge. Then:

- (i) e is T-dependent if and only if $\Delta^G(t_e) = 1$. Hence (Γ, ω) is tree dependent if and only if Δ^G is trivial.
- (ii) e is skew T-dependent if and only if $\Delta^G(t_e) = -1$. Hence (Γ, ω) is skew tree dependent if and only if $\operatorname{Im}(\Delta^G) = \{\pm 1\}$.

If $\operatorname{Im}(\Delta^G) \subseteq \{\pm 1\}$, call $G = \pi_1(\Gamma, \omega)$ unimodular.

The centre of a GBS-group

The following result tells us when the center of a GBS-group is non-trivial.

Theorem 3. Let (Γ, ω) be a GBS-graph and let G be its fundamental group. Assume that G is non-elementary. Then the following are equivalent.

- (a) Z(G) is non-trivial.
- (b) Δ^G is trivial.
- (c) (Γ, ω) is tree-dependent.

Locating the centre

Let (Γ, ω) be a GBS-graph. In finding Z(G) we may assume the graph is non-elementary. We can also assume (Γ, ω) is tree dependent since otherwise Z(G) = 1.

In a GBS-graph the distal weight of a leaf in a maximal subtree is the weight occurring at the vertex of degree 1. In finding the centre there is no loss in assuming there are no leaves with distal weight ± 1 .

Locating the centre

Lemma 4. Let (Γ, ω) be a non-elementary GBS-graph with a maximal subtree T. Assume no leaves of T have distal weight ± 1 . Then

$$Z(G) \leq \bigcap_{x \in V(\Gamma)} \langle g_x \rangle.$$

For any $x, v \in V(\Gamma)$, $\langle g_x \rangle \cap \langle g_v \rangle = \langle g_v^{\omega_T^{(1)}(v,x)} \rangle$. Hence $\bigcap_{x \in V(\Gamma)} \langle g_x \rangle = \langle g_v^{h_v} \rangle$ where

$$h_{\mathbf{v}} = \operatorname{lcm}\{\omega_{T}^{(1)}(\mathbf{v}, \mathbf{x}) \mid \mathbf{x} \in V(\Gamma)\} = \omega_{T}^{tot}(\mathbf{v}),$$

the total weight of v in T.

Locating the centre

The total weight of v in T is the smallest positive power of g_v belonging to every vertex subgroup.

There is a more economic expression for the total weight. Let y_1, y_2, \ldots, y_k be the vertices of degree 1 in T. Then

$$\omega_T^{tot}(\mathbf{v}) = \operatorname{lcm}\{\omega_T^{(1)}(\mathbf{v}, \mathbf{y}_i) \mid i = 1, 2, \dots, m\}.$$

How to compute the centre of a GBS-group

Lemma 5. Let (Γ, ω) be a non-elementary GBS-graph with maximal subtree T. Assume that no leaf in T has distal weight ± 1 . Then

$$Z(G) = \bigcap_{e \in E(\Gamma) \setminus E(T)} C_J(t_e),$$

where $J = \bigcap_{x \in V(\Gamma)} \langle g_x \rangle$. If $\Gamma = T$, then Z(G) = J.

The centralizers in this formula can be found using:

Lemma 6. Let $e = \langle x, y \rangle \in E(\Gamma) \backslash E(T)$ be T-dependent and let $\omega(e) = (m, n)$ and $\omega_T(x, y) = (a, b)$. Then $C_{\langle g_x \rangle}(t_e) = \langle g_x^{\operatorname{lcm}(a, m)} \rangle$.

A formula for the centre of a GBS-group

Theorem 4. (A. Delgado, DR, M. Timm.) Let (Γ, ω) be a non-elementary, tree dependent GBS-graph with a maximal subtree T. Assume no leaf in T has distal weight ± 1 . Let v be any fixed vertex and let the non-tree edges be $e_i = \langle x_i, y_i \rangle$, $i = 1, 2, \ldots, k$. Put $\omega(e_i) = (m_i, n_i)$, $\omega_T(x_i, y_i) = (a_i, b_i)$, $\omega_T(v, x_i) = (c_i, d_i)$, and $\ell_i = \operatorname{lcm}(a_i, m_i)$. Then $Z(G) = \langle g_v^{f_v} \rangle$ where

$$f_{v} = \operatorname{lcm}\left\{\frac{c_{i}\ell_{i}}{\gcd(\ell_{i},d_{i})}, \ \omega_{T}^{tot}(v) \mid i=1,2,\ldots,k\right\}.$$

Call $f_v = \omega_{\Gamma}^{tot}(v)$, the total weight of v in (Γ, ω) .

An example

The two non-tree edges are e_1, e_2 and v is the root of the maximal subtree T, while y_1, y_2, y_3 are the vertices of degree 1 in T. The edges e_1 and e_2 are T-dependent, so (Γ, ω) is tree dependent and $Z(G) \neq 1$.

An example

Read off the required data from the GBS-graph.

$$\omega_T^{tot}(v) = \text{lcm}(\omega_T^{(1)}(v, y_1), \omega_T^{(1)}(v, y_2), \ \omega_T^{(1)}(v, y_3)) = 210.$$

Next

$$(m_1, n_1) = \omega(e_1) = (35, 8), \ (m_2, n_2) = \omega(e_2) = (18, 27), \ (a_1, b_1) = \omega_T(y_1, y_2) = (35, 8), \ (a_2, b_2) = \omega_T(x, z) = \ (2, 3), \ (c_1, d_1) = \omega_T(v, y_1) = (6, 5), \ (c_2, d_2) = \ \omega_T(v, x) = (3, 2).$$

Hence $\ell_1=35, \ell_2=18$ and $\omega_{\Gamma}^{tot}(v)=1890$. Therefore $Z(G)=\langle g_v^{1890}\rangle$.

Cyclic normal subgroups in GBS-groups

In skew tree dependent GBS-graphs the role of the centre is played by the unique maximum normal cyclic subgroup.

Lemma 7. Let (Γ, ω) be a non-elementary GBS-graph. Then $G = \pi_1(\Gamma, \omega)$ has a unique maximal cyclic normal subgroup C(G).

Proof. Suppose $\{C_i|i\in I\}$ is an infinite ascending chain of cyclic normal subgroups of G. Each C_i is commensurable and hence lies in a vertex subgroup. Hence infinitely many of the C_i lie in some $\langle g_v \rangle$, a contradiction. Hence G has a maximal cyclic normal subgroup C.

Cyclic normal subgroups in GBS-groups

It is straightforward to show *C* is unique.

Corollary. $C(G) \leq \bigcap_{v \in V(\Gamma)} \langle g_v \rangle = J$ and hence

$$C(G) = \bigcap_{e \in E(\Gamma) \setminus E(T)} J_{\langle t_e \rangle},$$

where $J_{\langle t_e \rangle}$ is the $\langle t_e \rangle$ -core of J.

The subgroup C(G) in a GBS-group can be trivial.

Cyclic normal subgroups in GBS-groups

Lemma 8. Let $G = \pi_1(\Gamma, \omega)$ be a non-elementary GBS-group. Then:

(i) $C(G) \neq 1$ if and only if $\pi_1(\Gamma, \omega)$ is unimodular, i.e., (Γ, ω) is either tree dependent or skew-tree dependent.

(ii) 1 = Z(G) < C(G) if and only if (Γ, ω) is skew tree dependent.

Computing C(G)

The algorithm to compute the centre of a tree dependent GBS-graph can be applied to a skew tree dependent GBS-graph (Γ, ω) , with cores playing the role of centralizers. It will then compute $C(\pi_1(\Gamma, \omega))$.

Theorem 5. (A.Delgado, DR, M.Timm.) Let (Γ, ω) be a non-elementary, skew tree dependent GBS-graph with a maximal subtree T having no distal weights ± 1 . Then if $G = \pi_1(\Gamma, \omega)$ and v is any vertex v,

$$C(G) = \langle g_v^{\omega_\Gamma^{tot}(v)} \rangle.$$

An example

Change the weight of edge e_1 in the last example from (35, 8) to (35, -8).

$$Z(G) = 1, \quad C(G) = \langle g_{\nu}^{\omega_{\Gamma}^{tot}(\nu)} \rangle = \langle g_{\nu}^{1890} \rangle.$$

GBS-groups and 3-manifold groups

What is the relation between GBS-groups and 3-manifold groups, i.e., the fundamental groups of compact 3-manifolds?

Some examples (W. Heil).

- **1.** $K(m, n) = \langle x, y \mid x^m = y^n \rangle$ is a 3-manifold group.
- $\bullet_X \xrightarrow{m} {n } \bullet_y$
- **2.** The group $\langle x_1, x_2, x_3 \mid x_1^m = x_2^n, x_2^m = x_3^n \rangle$ is a 3-manifold group iff |m| = 1 or |n| = 1 or |m| = |n|.
- $\bullet_{x_1} \, \underline{\hskip 1cm m \hskip 1cm \hskip 1cm n} \, \bullet_{x_2} \, \underline{\hskip 1cm m \hskip 1cm \hskip 1cm n} \, \bullet_{x_3}$

GBS-groups and 3-manifold groups

3. $B(m, n) = \langle t, x \mid x^n = (x^m)^t \text{ is a 3-manifold group iff } | m | = |n|.$

Problem. Find necessary and sufficient conditions on a GBS-graph (Γ, ω) for $\pi_1(\Gamma, \omega)$ to be the fundamental group of a compact 3-manifold.

A GBS-graph (Γ, ω) is called *locally weight constant* if at every vertex v all weights equal c_v and *locally* \pm *weight constant* if all weights at v equal $\pm c_v$ for some constant c_v .

Locally \pm weight constant GBS-graphs

Remarks

Let (Γ, ω) be a GBS-graph. If (Γ, ω) is locally weight constant GBS-graph, it is tree dependent. If it is locally \pm weight constant, it is tree or skew tree dependent, i.e., it is unimodular.

Example The GBS-graph shown is locally \pm weight constant, but not locally weight constant.

The GBS-groups which are 3-manifold groups

Theorem 6. (A. Delgado, DR, M.Timm.) Let (Γ, ω) be a non-elementary GBS-graph. Then the following are equivalent.

- (i) $\pi_1(\Gamma, \omega)$ is a 3-manifold group.
- (ii) $\pi_1(\Gamma, \omega)$ is an orientable 3-manifold group.
- (iii) (Γ, ω) is locally \pm weight constant.

This explains Heil's examples: B(m, n) is a 3-manifold group if and only if |m| = |n|.

3-manifold GBS-group covers

Let (Γ, ω) be a non-elementary GBS-graph. If $\pi_1(\Gamma, \omega)$ is not a 3-manifold group, it may be a quotient of a GBS-group which is a 3-manifold group.

A 3-manifold GBS-group cover of $\pi_1(\Gamma, \omega)$ is a surjective homomorphism

$$\varphi: \pi_1(\Gamma, \tau) \to \pi_1(\Gamma, \omega)$$

where (Γ, τ) is a GBS-graph such that $\pi_1(\Gamma, \tau)$ is a 3-manifold group, and φ is a *pinch map*, which arises by dividing the weights on certain edges of Γ by common factors.

The GBS-groups with 3-manifold GBS-group covers

Theorem 7. (A. Delgado, DR, M.Timm.) Let (Γ, ω) be a non-elementary GBS-graph. Then the following are equivalent.

- (i) $\pi_1(\Gamma, \omega)$ has a 3-manifold GBS-group cover.
- (ii) $\pi_1(\Gamma, \omega)$ has an orientable 3-manifold GBS-group cover.
- (iii) $\pi_1(\Gamma, \omega)$ is unimodular, i.e., (Γ, ω) is tree dependent or skew tree dependent.

The total weight cover of a GBS-group

Suppose that (Γ, ω) is a non-elementary GBS-graph such that $\pi_1(\Gamma, \omega)$ unimodular. We show how to construct a 3-manifold GBS-group cover of $\pi_1(\Gamma, \omega)$.

Case: (Γ, ω) is tree dependent.

Define a new weight function τ on Γ as follows:

$$\tau(e) = (\omega_{\Gamma}^{tot}(e^{-}), \omega_{\Gamma}^{tot}(e^{+}), e \in E(\Gamma).$$

Call the GBS-graph (Γ, τ) the *total weight cover* of (Γ, ω) .

Constructing 3-manifold GBS-group covers

Clearly the total weight cover is locally weight constant, so $\pi_1(\Gamma, \tau)$ is a compact (orientable) 3-manifold group.

The identity map on Γ and a suitable sequence of pinches yields a surjective homomorphism

$$\varphi: \pi_1(\Gamma, \tau) \to \pi_1(\Gamma, \omega)$$

which is a 3-manifold GBS-group cover of $\pi_1(\Gamma, \omega)$.

The total \pm weight cover

Case: (Γ, ω) is skew tree dependent

Let T be a maximal subtree in Γ . We can assume that all weights in T are positive. Write $E(\Gamma)\backslash E(T)=P\cup N$ where P is the set of edges with positive weights and N is the set of remaining edges. Define a new weight function τ on Γ by

$$au(e) = (\omega_{\Gamma}^{tot}(e^{-}), \omega_{\Gamma}^{tot}(e^{+})), \quad e \in E(T) \cup P,$$

and

$$au(e) = (\omega_\Gamma^{tot}(e^-), -\omega_\Gamma^{tot}(e^+)), \quad e \in N.$$

Constructing 3-manifold GBS-group covers

Then (Γ, τ) is a locally \pm weight constant GBS-graph, the total \pm weight cover of (Γ, ω) . Thus $\pi_1(\Gamma, \tau)$ is a 3-manifold group and we have a 3-manifold GBS-group cover

$$\varphi:\pi_1(\Gamma,\tau)\to\pi_1(\Gamma,\omega)$$

defined by the identity map on Γ and suitable pinches.

Final comments

- (i) The 3-manifold GBS-group covers constructed are *minimal* in the sense that all others factor through them.
- (ii) The kernels of the covering maps can be computed.