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Baumslag-Solitar groups

(i) A Baumslag-Solitar group is a group with a
presentation

BS(m,n) =< t,x | (x")" = x" >,
where m, n € Z* = 7Z\{0}.
(ii) A similar type of 1-relator group is
K(m,n) =<x,y | x" =y" >,

where m, n € Z.*.

These are the fundamental groups of certain graphs of
groups.
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GBS-graphs

Let [ be a finite connected graph. For each edge e label
the endpoints e™ and e~. Infinite cyclic groups (gx) and
(ue) are assigned to each vertex x and edge e.

Injective homomorphisms (ue) — (ge+) and
(ue) — (ge-) are defined by

(e)

Ue —> g:+ (¢)

and U, — g::_

where wt(e), w(e) € Z*.
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GBS-graphs

So we have a weight function
w:EN) 272" x7"

where w(e) = (w (e),w™(e)) is defined up to +. The
weighted graph
(' w)

is a generalized Baumslag-Solitar graph or GBS-graph.
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GBS-groups

The generalized Baumslag-Solitar group (GBS-group)
determined by the GBS-graph (I',w) is the fundamental
group G = my(I,w). If T is a maximal subtree of I, then
G has generators g, and t,, with relations

g(::(e) - g;"__(e), for e € E(T),
(g w*(ff))t‘e — g::(e), for e € E(M)\E(T).

If [ is an edge e, G = K(m, n): if T is a single loop e,
G = BS(m, n), where m = w™(e),n = w(e).

Derek J.S. Robinson (UIUC) Gen

eralized Baumslag-Solitar Groups

August 8, 2013 5/ 40



An example

[
/\ t
r2 2/\0X e,
4 -1 \ 5
s 4 4 °

The maximal subtree T is the path x,y,z, u. The
GBS-group has a presentation in r, s, t, g«, 8y, 87, 8 With
relations

g =8, 8 =6, 8 =8,
(&) =g () =g, (&) =g"
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Some properties of GBS-groups

Let G = m1(I",w) be a GBS-group.
(i) G is independent of the choice of maximal subtree.
(ii) G is finitely presented and torsion-free.

(iii) IfT is a tree, then G is residually finite and hence is
hopfian.

The next result is due to P. Kropholler.

(iv) The non-cyclic GBS-groups are exactly the finitely
generated groups of cohomological dimension 2 which
have a commensurable infinite cyclic subgroup.
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Some properties of GBS-groups

(v) If H is a finitely generated subgroup of a GBS-group
G, either H is a GBS-group or it is free. Hence G is
coherent.

Proof. We have cd(H) < cd(G) = 2. If cd(H) = 1, then
H is free by the Stallings-Swan Theorem. Otherwise
cd(H) = 2. If H contains a commensurable element, it is
a GBS-group by (iv). If H has no commensurable
elements, it is free.

(vi) The second derived subgroup of a GBS-group is free.
(Kropholler.)

Derek J.S. Robinson (UIUC) Generalized Baumslag-Solitar Groups August 8, 2013 8 /40



The weight of a path

Let (I,w) be a GBS-graph with a maximal subtree T.
Let e = (x,y) be a non-tree edge where x # y. There is
a unique path in T from x to y, say

X = X0y X1y Xn = Y-
Then there is a relation in G = m (I, w)

g)lfl(e) — g}lfz(e)

where p;(e) and py(e) are the products of the left and
right weight values of the edges in the tree path [x, y].
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The weight of a path

Lemma 1. Let (I',w) be a GBS-graph with a maximal
subtree T. Let o = [x,y]| be a path in T. Then there
exist a, b € Z* such that g2 = g in m(I',w). Also, if
g =g, then (m,n) = (a, b)q for some q € Z~.

Definition. Call (a, b) the weight of the path o in T and
denote it by wr(«) or

wr(xy) = (@P(x,y), P (x,))-

This is unique up to =+.
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How to compute the weight of a path

Let o be the path x = xp, x1,...,x, = y and write
w((xi, xi41)) = (b, u®), i=0,1,... n— 1. Define

1

(¢;,m;), 0 <i < n, recursively by o =1 = mqg and

/ Z,’Ufl) m m,-u,(z)
i+1 — ’ i+1 — .
" ng(mi7 u,(l)) " ng(mi7 ufl))

Then

Lemma 2. wr(x,y) = (£,, m,).
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Tree and skew tree dependence

Let (I',w) be a GBS-graph with a maximal subtree T.
The non-tree edge e =< x,y > is called T-dependent or
skew T-dependent if and only if
_ 1 1
w(e) _ wie) W' (e)

o@D T e

respectively. If e is a loop, then e is T-dependent (skew
T-dependent) if and only if w(e) = w™(e) or
w(e) = —w™(e) respectively.
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Tree and skew tree dependence

If every non-tree edge of a GBS-graph is T-dependent,
the GBS-graph is called tree dependent.

If every non-tree edge is T-dependent or skew
T-dependent with at least of the latter, then the
GBS-graph is called skew tree dependent.

These properties are independent of the choice of T.

Tree dependence is relevant to the computation of
homology in low dimensions.
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Homology in dimensions < 2

Theorem 1. (DR). Let G = 71(I',w) be a GBS-group.
Then the torsion-free rank of Hi(G) = G,y is

rn(G) = [E(N)] = [V(N)| +1+e

where e = 1 if (I, w) is tree dependent and otherwise
e = 0. Hence tree dependence is independent of the
choice of maximal subtree.

Theorem 2. (DR). For any GBS-group G the Schur
multiplier Hy(G) is free abelian of rank ry(G) — 1.
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The A-function

Let G be a group with a commensurable element x of
infinite order. If g € G, then (x) N (x)& # 1 and
(x")& = x™ for m,n € Z*. Define A,(g) = . Then

Ay, G—QF

is a well defined homomorphism.

If y € G is commensurable and (x) N (y) # 1, then
A, = A,. If this holds for all commensurable elements,
then A, depends only on G: denote it by

A°.
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The A-function of a GBS-group

A GBS-graph (I',w) or the group G = m1(I',w), is called
elementary if G ~ BS(1,£1). If G is non-elementary,
then each commensurable element of G is elliptic and

hence is conjugate to a power of some g,. Hence AC is
unique.

Lemma 3. Let (I,w) be a non-elementary GBS-graph,
with T a maximal subtree, and let G = 71(I",w). Then:
(i) A®(g,) =1 for all v € V(T);

(i) If e € E(T)\E(T), w(e) = (a,b), wr(e) = (m,n),
an

AG(te) - %
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Unimodular groups

Corollary. (G. Levitt). Let e be a non-tree edge. Then:

(i) e is T-dependent if and only if A®(t.) = 1. Hence
(T',w) is tree dependent if and only if AC is trivial.
(i) e is skew T-dependent if and only if A®(t.) = —1.

Hence (T',w) is skew tree dependent if and only if
Im(A®) = {£1}.

If Im(AC) C {#£1}, call G = m1(I,w) unimodular.
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The centre of a GBS-group

The following result tells us when the center of a
GBS-group is non-trivial.

Theorem 3. Let (I',w) be a GBS-graph and let G be its
fundamental group. Assume that G is non-elementary.
Then the following are equivalent.

(a) Z(G) is non-trivial.
(b) AC is trivial.
(c) (I',w) is tree-dependent.
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Locating the centre

Let (I',w) be a GBS-graph. In finding Z(G) we may
assume the graph is non-elementary. We can also assume
(I, w) is tree dependent since otherwise Z(G) = 1.

In a GBS-graph the distal weight of a leaf in a maximal
subtree is the weight occurring at the vertex of degree 1.
In finding the centre there is no loss in assuming there are
no leaves with distal weight +1.
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Locating the centre

Lemma 4. Let (I,w) be a non-elementary GBS-graph
with a maximal subtree T. Assume no leaves of T have
distal weight +£1. Then

(1)
For any x, v < V(r)' <gx> M <gv> — (gCUT (V’X)>. Hence
ﬂxev(r)<gx> = (gvhv> where

hy = lem{wP (v, x) | x € V(N)} = wif'(v),

the total weight of v in T,
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Locating the centre

The total weight of v in T is the smallest positive power
of g, belonging to every vertex subgroup.

There is a more economic expression for the total weight.
Let y1, ¥, ..., yk be the vertices of degree 1 in T. Then

tot

wi(v) = lem{wW(v,y,) | i=1,2,..., m}.
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How to compute the centre of a GBS-group

Lemma 5. Let (I',w) be a non-elementary GBS-graph
with maximal subtree T. Assume that no leaf in T has
distal weight +=1. Then

Z(G) - ﬂ CJ(tE)7

ecE(M\E(T)
where J = (V,cy(r)(8&). IfT =T, then Z(G) =

The centralizers in this formula can be found using:

Lemma 6. Let e = (x,y) € E(I)\E(T) be T-dependent
and let w(e) = (m,n) and wr(x,y) = (a,b). Then

Cly(te) = (gim@m)y.
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A formula for the centre of a GBS-group

Theorem 4. (A. Delgado, DR, M. Timm.) Let (I',w) be
a non-elementary, tree dependent GBS-graph with a
maximal subtree T. Assume no leaf in T has distal
weight £1. Let v be any fixed vertex and let the non-tree
edges be e, = (x;,yi), i =1,2,... k. Put

w(e;) = (mi, ni), wr(x;, i) = (ai, bi), wr(v,x) = (¢, di),
and (; = lcm(a;, m;). Then Z(G) = (g,™) where

il :
¢ _,w?tv)\/:1,2,...,k}.

Call f, = wf*(v), the total weight of v in (I',w).

Derek J.S. Robinson (UIUC) Generalized Baumslag-Solitar Groups August 8, 2013 23 / 40



An example

AN
AN

The two non-tree edges are e1, & and v is the root of the
maximal subtree T, while yy, y», y3 are the vertices of
degree 1 in T. The edges e; and e, are T-dependent, so
(I, w) is tree dependent and Z(G) # 1.
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An example

Read off the required data from the GBS-graph.

W (v) = lem(w (von), 0 (v, y2), Wi (v, 38)) = 210.
Next

(my,m) =w(er) = (35,8), (M, m) =w(e)=(18,27),
(81, bl) = wT(yl,yg) = (35, 8), (32, b2) = wT(x, Z) =

(2, 3), (Cl, dl) = wr(v,yl) = (6, 5), (C2, d2) =

wr(v,x) =(3,2).

Hence ¢; = 35, ¢, = 18 and w{®'(v) = 1890. Therefore
Z(G) = (g,™).
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Cyclic normal subgroups in GBS-groups

In skew tree dependent GBS-graphs the role of the centre
is played by the unique maximum normal cyclic subgroup.

Lemma 7. Let (I',w) be a non-elementary GBS-graph.
Then G = m1(',w) has a unique maximal cyclic normal
subgroup C(G).

Proof. Suppose {C;|i € I} is an infinite ascending chain of
cyclic normal subgroups of G. Each C; is commensurable
and hence lies in a vertex subgroup. Hence infinitely many
of the C; lie in some (g,), a contradiction. Hence G has a
maximal cyclic normal subgroup C.
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Cyclic normal subgroups in GBS-groups

It is straightforward to show C is unique.

Corollary. C(G) < (,cy(r)(gv) = J and hence

C€(G) = m J(te>7

ecE(N\E(T)
where Ji. is the (t.)-core of J.

The subgroup C(G) in a GBS-group can be trivial.

27 / 40
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Cyclic normal subgroups in GBS-groups

Lemma 8. Let G = m1([,w) be a non-elementary
GBS-group. Then:

(i) C(G) # 1 if and only if m1(I',w) is unimodular, i.e.,

(I, w) is either tree dependent or skew-tree dependent.

(i) 1 = Z(G) < C(G) if and only if (T,w) is skew tree
dependent.
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Computing C(G)

The algorithm to compute the centre of a tree dependent
GBS-graph can be applied to a skew tree dependent
GBS-graph (I',w), with cores playing the role of
centralizers. It will then compute C(m1 (I, w)).

Theorem 5. (A.Delgado, DR, M.Timm.) Let (I',w) be a
non-elementary, skew tree dependent GBS-graph with a
maximal subtree T having no distal weights +1. Then if
G = m(l,w) and v is any vertex v,

tot

C(G) = (g M.
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An example

Change the weight of edge e; in the last example from

(35,8) to (35, —8).

tot

Z(G) =1, C(G) = <ngr

)_ < 1890>.
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GBS-groups and 3-manifold groups

What is the relation between GBS-groups and 3-manifold

groups, i.e., the fundamental groups of compact
3-manifolds?

Some examples (W. Heil).

1. K(m,n) = (x,y | xX™ = y") is a 3-manifold group.

m n ®

.Xi y

2. The group (x1,x2,x3 | X1 = x3, x2™ = x§) is a
3-manifold group iff [m| =1 or |n| =1 or |m| = |n|.

m n m n
o, o, °

X3
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GBS-groups and 3-manifold groups

3. B(m,n) = (t,x | x" = (x")" is a 3-manifold group iff
|m| = [n].

Problem. Find necessary and sufficient conditions on a
GBS-graph (I',w) for m1(I',w) to be the fundamental
group of a compact 3-manifold.

A GBS-graph (I',w) is called locally weight constant if at
every vertex v all weights equal ¢, and locally + weight

constant if all weights at v equal 4-¢, for some constant

Cy.
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Locally 4+ weight constant GBS-graphs

Remarks

Let (I, w) be a GBS-graph. If (I',w) is locally weight
constant GBS-graph, it is tree dependent. If it is locally +
weight constant, it is tree or skew tree dependent, i.e., it
Is unimodular.

Example The GBS-graph shown is locally + weight
constant, but not locally weight constant.

[ )
2 -5 5 3 L;)
/\ t
r2 2 .x .y
C 2 5 ~ 3
S -5 3 °
z
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The GBS-groups which are 3-manifold groups

Theorem 6. (A. Delgado, DR, M. Timm.) Let (I',w) be

a non-elementary GBS-graph. Then the following are
equivalent.

(i) m ([, w) is a 3-manifold group.
(if) w1 ([,w) is an orientable 3-manifold group.
(iii) (T',w) is locally + weight constant.

This explains Heil's examples: B(m, n) is a 3-manifold
group if and only if |m| = |n|.
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3-manifold GBS-group covers

Let (I',w) be a non-elementary GBS-graph. If m1(I",w) is
not a 3-manifold group, it may be a quotient of a
GBS-group which is a 3-manifold group.

A 3-manifold GBS-group cover of m1(I',w) is a surjective
homomorphism

o :m(l,7) = m([w)

where (I, 7) is a GBS-graph such that m1(, 7) is a
3-manifold group, and ¢ is a pinch map, which arises by
dividing the weights on certain edges of [ by common
factors.
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The GBS-groups with 3-manifold GBS-group covers

Theorem 7. (A. Delgado, DR, M. Timm.) Let (I',w) be
a non-elementary GBS-graph. Then the following are
equivalent.

(i) m(F,w) has a 3-manifold GBS-group cover.

(if) m([,w) has an orientable 3-manifold GBS-group
cover.

(iii) m1 (I, w) is unimodular, i.e., (I',w) is tree dependent
or skew tree dependent.
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The total weight cover of a GBS-group

Suppose that (I',w) is a non-elementary GBS-graph such
that 71 (", w) unimodular. We show how to construct a
3-manifold GBS-group cover of m1(I", w).

Case: (I',w) is tree dependent.
Define a new weight function 7 on I as follows:
7(e) = (wr(e") wi”(e"), e€ E(I).

Call the GBS-graph (I, 7) the total weight cover of (I',w).
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Constructing 3-manifold GBS-group covers

Clearly the total weight cover is locally weight constant,
so m1(I, 7) is a compact (orientable) 3-manifold group.

The identity map on I and a suitable sequence of pinches
yields a surjective homomorphism

o :m(l,7) = m([w)

which is a 3-manifold GBS-group cover of m(I', w).
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The total + weight cover

Case: (I,w) is skew tree dependent

Let 7 be a maximal subtree in . We can assume that all
weights in T are positive. Write E(IN)\E(T) =PUN
where P is the set of edges with positive weights and N is
the set of remaining edges. Define a new weight function
Ton [ by

7(e) = (wr(e),wr™(e)), e€ E(T)UP

and

7(e) = (wr(e7), —wr™(e7)), e€N.
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Constructing 3-manifold GBS-group covers

Then (I, 7) is a locally 4+ weight constant GBS-graph, the
total + weight cover of (I',w). Thus m1(I',7) is a

3-manifold group and we have a 3-manifold GBS-group
cover

o :m (M, 7) = m ([ w)
defined by the identity map on ' and suitable pinches.
Final comments

(i) The 3-manifold GBS-group covers constructed are
minimal in the sense that all others factor through them.

(ii) The kernels of the covering maps can be computed.
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