
The Asphericity of Injective Labeled Oriented Trees

Stephan Rosebrock

Pädagogische Hochschule Karlsruhe
Germany

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 1 / 32



Introduction

Introduction

Joint work with Jens Harlander (Boise, Idaho, USA)

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 2 / 32



Introduction

The Whitehead-Conjecture

Whitehead-Conjecture [1941]:

(WH): Let L be an aspherical 2-complex.
Then K ⊂ L is also aspherical.

Whitehead posed this 1941 as a question.
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Introduction

Labeled Oriented Trees

A LOG (labeled oriented graph) is a finite oriented graph, where the
edges are labeled with vertex labels.

For example

A LOG gives a finite presentation:
Vertices←→ Generators, Edges←→ Relators
A LOG-presentation. (There is also a LOG-complex)

In our example:
〈a,b, c,d ,e | ac = cb,bd = dc,db = bc,da = ae〉

A LOT (labeled oriented tree) is a LOG which is a tree.
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Introduction

Labeled Oriented Trees

Theorem (Howie 1983): Let L be a finite 2-complex and e ⊂ L a 2-cell.

If L
3

�↘ ∗ ⇒ L− e
3

�↘ K and K is a LOT complex.

Andrews-Curtis Conjecture (AC): Let L be a finite, contractible

2-complex. Then L
3

�↘ ∗.

Corollary: (AC), LOT complexes are aspherical⇒ There is no finite
counterexample K ⊂ L, L contractible, to (WH).
(The finite case)
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Introduction

Labeled Oriented Trees

A nonaspherical LOT complex is a counterexample to (WH):

Any LOT complex is a subcomplex of an aspherical 2-complex (add
x1 = 1 as a relator. Can then be 3-deformed to a point).

Hence: The asphericity of LOTs is interesting for (WH)!

Wirtinger presentations of knots are aspherical LOTs.
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Introduction

Spherical diagrams

f : C → K 2 is a spherical diagram, if C is a cell decomposition of the
2-sphere and open cells are mapped homeomorphically.

If K is non-aspherical then there exists a spherical diagram which
realizes a nontrivial element of π2(K ).

A spherical diagram f : C → K 2 is reducible, if there is a pair of 2-cells
in C with a common edge t , such that both 2-cells are mapped to K by
folding over t .

A 2-complex K is said to be diagrammatically reducible (DR), if each
spherical diagram over K is reducible.
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Introduction

Spherical diagrams

A spherical diagram f : C → K 2 is vertex reducible, if there is a pair of
2-cells in C with a common vertex P, such that both 2-cells are
mapped to K by folding over P.

A 2-complex K is said to be vertex aspherical (VA), if each spherical
diagram over K is vertex reducible.

K is DR⇒ K is VA⇒ K is aspherical.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 8 / 32



Introduction

Spherical diagrams

A spherical diagram f : C → K 2 is vertex reducible, if there is a pair of
2-cells in C with a common vertex P, such that both 2-cells are
mapped to K by folding over P.

A 2-complex K is said to be vertex aspherical (VA), if each spherical
diagram over K is vertex reducible.

K is DR⇒ K is VA⇒ K is aspherical.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 8 / 32



Introduction

Spherical diagrams

A spherical diagram f : C → K 2 is vertex reducible, if there is a pair of
2-cells in C with a common vertex P, such that both 2-cells are
mapped to K by folding over P.

A 2-complex K is said to be vertex aspherical (VA), if each spherical
diagram over K is vertex reducible.

K is DR⇒ K is VA⇒ K is aspherical.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 8 / 32



Introduction

Labeled Oriented Trees

A LOT is called injective if each generator occurs at most once as an
edge label (corresponds to alternating knots).

A LOT is called compressed if every relator contains 3 different
generators.

A LOT is called boundary-reducible if there is a boundary vertex which
does not appear as edge label.

Any LOT complex is homotopy equivalent to one that comes from a
compressed boundary-reduced LOT.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 9 / 32
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Introduction

A result

Let P be a LOT. A Sub-LOT Q of P is a subtree of P with at least one
edge such that it is a LOT itself (each edge label of Q is also a vertex
label of Q).

Theorem (Huck/Rosebrock 2001): If a compressed injective LOT P
does not contain a boundary-reducible Sub-LOT then the LOT-complex
K (P) is DR.
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Introduction

Idea of Proof

Idea of Proof:

The Whitehead-Graph W (P) is the boundary of a regular
neighborhood of the only vertex of K (P).

Consists of a pair of vertices x+
i (beginning) and x−i (end) for each

generator xi .

The positive graph L ⊂W (P) is the full subgraph on the vertices
x+

1 , . . . , x
+
n , the negative graph R ⊂W (P) is the full subgraph on the

vertices x−1 , . . . , x
−
n .
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Introduction

Idea of Proof

The weight test is satisfied for K (P) if there is a real number assigned
to each edge of the Whiteheadgraph W (P) (a weight), such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (GERSTEN) If the weight test is satisfied then K (P) is DR.
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Introduction

Idea of Proof

A reorientation of a LOT P is a LOT Q that arises from P by changing
the orientation of a subset of the edges of P.
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Introduction

Idea of Proof

Lemma 1: If the positive graph and the negative graph of a
compressed injective LOT P are trees then any reorientation of P is
DR.

Proof: If the positive and the negative graph are trees then the weight
test is satisfied which implies DR. A reorientation leads to the same
corners in a 2-cell:

The weight test depends on the Whiteheadgraph and on the edges
each 2-cell contributes to the Whiteheadgraph only. �
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Introduction

Idea of Proof

Then it is shown:

Lemma 2: A compressed injective LOT P which does not contain a
boundary-reducible Sub-LOT has a reorientation such that the positive
and the negative graph are trees.

Then Lemma 1 implies DR and the Theorem is shown. �
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Introduction

The asphericity of injective LOTs

The condition: ”does not contain a boundary-reducible Sub-LOT” may
be omitted:

Theorem: (Harlander/Rosebrock 2013): Let P be an injective LOT.
Then K (P) is aspherical.

Idea of Proof: We mimic the result of Huck/Rosebrock and use relative
techniques:
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Introduction

Stallings Lemma

Instead of the weight test use a Lemma of Stallings:

Lemma: STALLINGS (1987) Each cell decomposition of the 2-sphere
contains at least two consistent items.

Consistent item is a source, a sink or a consistently oriented region.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 17 / 32



Introduction

Stallings Lemma

Instead of the weight test use a Lemma of Stallings:

Lemma: STALLINGS (1987) Each cell decomposition of the 2-sphere
contains at least two consistent items.

Consistent item is a source, a sink or a consistently oriented region.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 17 / 32



Introduction

Stallings Lemma

Instead of the weight test use a Lemma of Stallings:

Lemma: STALLINGS (1987) Each cell decomposition of the 2-sphere
contains at least two consistent items.

Consistent item is a source, a sink or a consistently oriented region.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 17 / 32



Introduction

P/T

Let P =〈x1, . . . , xk | r1, . . . , rm〉 be a LOT-presentation and
T = {T1, . . . ,Tn} a set of sub-LOT presentations.

Define
P/T = 〈x1, . . . , xk | r1, . . . , rm,U1, . . . ,Un〉

where Ui is the set of words of exponent sum 0 in the generators and
their inverses of Ti .

Words in U1 ∪ . . . ∪ Un are called T ∗-relations.
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Introduction

Admissible Cycles

A cycle α = α1 . . . αq in the Whitehead graph W (P/T ), each αi being
a corner of W (P/T ), is called admissible if

1 At least one corner αi comes from a relation which is not a
T ∗-relation,

2 if αi is a corner of a T ∗-relation then αi−1 and αi+1 (i mod q) come
from relators which are not T ∗-relations.
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Introduction

The relative Stallings-test

The presentation P/T is said to satisfy the relative Stallings-test, if
there is no admissible homology reduced cycle in the positive graph or
in the negative graph of W (P/T ).
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The asphericity of injective LOTs

Idea of Proof of: Injective LOTs are aspherical.

We follow the proof with an example
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The asphericity of injective LOTs
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P is injective and contains a boundary-reducible sub-LOT (red part) T .

P does not satisfy the weight test.
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Introduction

The asphericity of injective LOTs

Let P ′ be the LOT obtained by collapsing sub-LOTs in P.

� � � � � � � � � � � � � � � � � � �

Lemma 2 of Huck/Rosebrock above implies that there is a
reorientation Q′ of P ′, such that the positive and the negative
Whitehead graph of K (Q′) are trees.
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Introduction

The asphericity of injective LOTs

Q is a reorientation of P such that edge orientations coincide with Q′

on Q − T .
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Introduction

The asphericity of injective LOTs

Lemma: Q/T satisfies the relative Stallings-test.

Proof: Relators in Q have exponent sum zero and therefore relators in
Q/T also. It remains to show that there are no admissible homology
reduced cycles in W+(Q/T ) or W−(Q/T ). This follows from W+(Q′)
or W−(Q′) being trees. �
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Introduction

The asphericity of injective LOTs

Let S be the set of edge labels on those edges that change orientation
by passing from P to Q. In the example S = {g}.

Let (P/T )S be the presentation P/T where each xi is replaced by x−1
i

if xi ∈ S.
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Introduction

The asphericity of injective LOTs

��
�

�

1. The Whitehead graphs W ((P/T )S) and W (Q/T ) are equal. Also,
the Whitehead graphs W (P ′S) and W (Q′) are equal.

2. Let PS be the presentation P where each xi is replaced by x−1
i if

xi ∈ S. The 2-complexes K (P) and K (PS) are homeomorphic.
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Introduction

The asphericity of injective LOTs

Lemma: If f : C → K ((P/T )S) is a vertex reduced spherical diagram
then f (C) is contained in K ((T/T )S).

Idea of proof: Assume f : C → K ((P/T )S) is vertex reduced and f (C)
is not contained in K ((T/T )S). Let E ⊂ C be a maximal region which
maps to P − T . Glue a disc in each boundary component of E to get a
vertex reduced spherical diagram f ′ : C′ → K ((P/T )S) with admissible
vertex cycles. C′ has no sink and source vertices, but consistently
oriented regions may appear.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 28 / 32



Introduction

The asphericity of injective LOTs

Lemma: If f : C → K ((P/T )S) is a vertex reduced spherical diagram
then f (C) is contained in K ((T/T )S).

Idea of proof: Assume f : C → K ((P/T )S) is vertex reduced and f (C)
is not contained in K ((T/T )S). Let E ⊂ C be a maximal region which
maps to P − T . Glue a disc in each boundary component of E to get a
vertex reduced spherical diagram f ′ : C′ → K ((P/T )S) with admissible
vertex cycles. C′ has no sink and source vertices, but consistently
oriented regions may appear.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 28 / 32



Introduction

The asphericity of injective LOTs

Lemma: If f : C → K ((P/T )S) is a vertex reduced spherical diagram
then f (C) is contained in K ((T/T )S).

Idea of proof: Assume f : C → K ((P/T )S) is vertex reduced and f (C)
is not contained in K ((T/T )S). Let E ⊂ C be a maximal region which
maps to P − T . Glue a disc in each boundary component of E to get a
vertex reduced spherical diagram f ′ : C′ → K ((P/T )S) with admissible
vertex cycles. C′ has no sink and source vertices, but consistently
oriented regions may appear.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 28 / 32



Introduction

The asphericity of injective LOTs

Lemma: If f : C → K ((P/T )S) is a vertex reduced spherical diagram
then f (C) is contained in K ((T/T )S).

Idea of proof: Assume f : C → K ((P/T )S) is vertex reduced and f (C)
is not contained in K ((T/T )S). Let E ⊂ C be a maximal region which
maps to P − T . Glue a disc in each boundary component of E to get a
vertex reduced spherical diagram f ′ : C′ → K ((P/T )S) with admissible
vertex cycles. C′ has no sink and source vertices, but consistently
oriented regions may appear.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs 28 / 32



Introduction

Labeled Oriented Trees

� ��

�

�
�

Erase an edge.
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Introduction

Labeled Oriented Trees

�

�

�
�

No consistently oriented region, so we have a contradiction to Stallings
Lemma. �
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Introduction

The asphericity of injective LOTs

It now follows that K (P) is aspherical:
Suppose f : C → K (P) is a vertex reduced spherical diagram.

K (T ) is aspherical by induction hypothesis so f (C) is not contained in
K (T ).

K (P) and K (PS) are homeomorphic, so we have a vertex reduced
spherical diagram f ′ : C′ → K (PS) where f ′(C′) is not contained in
K (TS).

K (PS) is a sub-complex of K ((P/T )S), so we have a vertex reduced
spherical diagram f ′ : C′ → K ((P/T )S), where f ′(C′) is not contained
in K ((T/T )S).

Contradiction to last Lemma. �
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