FA-presentable groups and semigroups

Rick Thomas

Department of Computer Science

http://www.cs.le.ac.uk/people/rthomas/

Groups St Andrews 2013

Languages

- Σ : finite set of symbols.
- Σ^* : the set of all finite words formed from the symbols in Σ (including the *empty word* ε).

Formal language theory – "languages" and abstract models of "machines" that "recognize" languages.

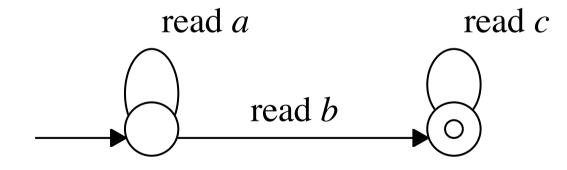
A *language L* is a subset of Σ^* (for some finite set Σ).

To *recognize L* we want an algorithm that decides, given an input $\alpha \in \Sigma^*$, whether or not α is an element of *L*.

Regular languages

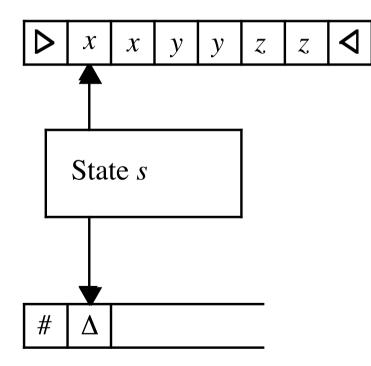
Regular languages are the languages accepted by *finite automata*.

A word α is *accepted* by a finite automaton *M* if α maps the start state to an accept state. For example, the finite automaton below accepts the language { $a^nbc^m : n, m \ge 0$ }:



Turing machines

We can also consider a general model of computation such as a *Turing machine*.



Here we have some memory (in the form of a *work tape*) as well as the input. A Turing machine with a given input will either

- (i) terminate (if it enters a halt state); or
- (ii) hang (no legal move defined); or
- (iii) run indefinitely without terminating.

We will take a *decisionmaking Turing machine* $\alpha \longrightarrow M$ (one that always terminates and outputs true or false) here (we are considering the class of *recursive languages*).

Structures

A structure $A = (D, R_1, R_2, ..., R_n)$ consists of:

- a set *D*, called the *domain* of *A*;
- for each *i* with $1 \le i \le n$, there exists $r = r_i \ge 1$ such that $R_i \subseteq D^r$.

A structure $A = (D, R_1, R_2, ..., R_n)$ is said to be *computable* if:

- there is a set of symbols Σ such that D ⊆ Σ* and there is a decision-making Turing machine for D;
- for each R_i there is a decision-making Turing machine that, on input $(\alpha_1, \alpha_2, ..., \alpha_r)$, outputs *true* if $\alpha_i \in D$ for each *i* and $(\alpha_1, \alpha_2, ..., \alpha_r) \in R_i$ and outputs *false* otherwise.

FA-presentable structures

A structure $A = (D, R_1, R_2, ..., R_n)$ is said to be *FA*-presentable if:

- there is an alphabet Σ , a language L over Σ and a surjective map $\varphi: L \rightarrow D$;
- *L* is recognized by a finite automaton;
- there is a finite automaton that accepts a pair (α , β) if and only if α , $\beta \in L$ and $\alpha \varphi = \beta \varphi$.
- for each R_i there is a finite automaton that accepts ($\alpha_1, \alpha_2, ..., \alpha_r$) if and only if $\alpha_i \in L$ for all *i* and ($\alpha_1, \alpha_2, ..., \alpha_r$) $\in R_i$.

Without loss of generality we may assume that φ is bijective.

Nerode & Khoussainov. If *A* is an FA-presentable structure then the first-order theory of *A* is decidable.

A group can be viewed as a structure (*G*, °, *e*, $^{-1}$), where ° has arity 3, *e* has arity 1 and $^{-1}$ has arity 2.

Example. Conjugacy in a group is a first-order definable relation: $C(a, b) := (\exists x: x^{-1}ax = b).$

So the conjugacy problem is decidable in a FA-presentable group.

There are not many examples where we have a complete characterization of FA-presentable structures.

Delhomme, Goranko & Knapik. An ordinal α is FA-presentable if and only if $\alpha < \omega^{\omega}$.

Khoussainov, Nies, Rubin & Stephan. An integral domain is FApresentable if and only if it is finite.

 \mathcal{B} : Boolean algebra of all finite and cofinite subsets of N.

Khoussainov, Nies, Rubin & Stephan. An infinite Boolean algebra is FA-presentable if and only if it is a direct sum of the form \mathcal{B}^n .

FA-presentable groups

Oliver & Thomas. A finitely generated group is FA-presentable if and only if it has an abelian subgroup of finite index.

So, if a finitely generated group is FA-presentable, then it is automatic (but the converse is false).

Nies & Thomas. Every finitely generated subgroup of an FApresentable group has an abelian subgroup of finite index. Moreover, there exists *N* such that any such subgroup is a finite extension of \mathbb{Z}^n where $n \leq N$.

Cancellative semigroups

We could consider some naturally occurring classes of semigroups (such as cancellative semigroups).

Cain, Ruskuc, Oliver & Thomas. A finitely generated cancellative semigroup is FA-presentable if and only if it embeds in a (finitely generated) virtually abelian group.

There is an example (due to Alan Cain) of a non-automatic semigroup that is a finitely generated subsemigroup of a virtually abelian group; so a finitely generated cancellative FApresentable semigroup need not be automatic.

FA-presentable rings

Nies & Thomas. If *R* is an FA-presentable ring with identity, then every finitely generated subring of *R* is finite.

This generalizes the earlier result about integral domains. There do exist infinite FA-presentable rings with identity; however, we can show that any FA-presentable division ring is finite.

Nies & Thomas. If *R* is an FA-presentable commutative ring with identity which is not the direct sum of two non-trivial FA-presentable rings, then *R* is finite.

Thank you!