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Groups with all subgroups subnormal

A subgroup H of a group G is said to be subnormal if H is a term
of a finite series of G, i.e. if there exists distinct subgroups
Ho, H1, ..., Ho—1, H, such that

H=Hy<xHi<...<H,_1<H,=G.
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In a nilpotent group of class ¢ every subgroup is subnormal of
defect at most c.
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Groups with all subgroups subnormal

A subgroup H of a group G is said to be subnormal if H is a term
of a finite series of G, i.e. if there exists distinct subgroups
Ho, H1, ..., Ho—1, H, such that

H=Hy<xHi<...<H,_1<H,=G.

If H is subnormal in G, then the defect of H in G is the shortest
length of such a series.

In a nilpotent group of class ¢ every subgroup is subnormal of
defect at most c.

Is a group with all subgroups subnormal nilpotent?
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Groups with all subgroups subnormal

Dedekind 1897, Baer 1933

All the subgroups of a group G are normal if and only if G is
abelian or the direct product of a quaternion group of order 8, an
elementary abelian 2-group and an abelian group with all its
elements of odd order.
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Groups with all subgroups subnormal

Dedekind 1897, Baer 1933

All the subgroups of a group G are normal if and only if G is
abelian or the direct product of a quaternion group of order 8, an
elementary abelian 2-group and an abelian group with all its
elements of odd order.

Roseblade, 1965

Let G be a group in which every subgroup is subnormal of defect
at most n > 1. Then G is nilpotent of class bounded by a function
depending only on n.
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Groups with all subgroups subnormal

Heineken and Mohamed, 1968

There exists infinite metabelian p-groups that have trivial centre
but all proper subgroups subnormal and nilpotent.
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A group G is of Heineken-Mohamed type if G is not nilpotent and
all of its proper subgroups are subnormal and nilpotent.
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all of its proper subgroups are subnormal and nilpotent.

e Hartley (1973) obtained Heineken-Mohamed groups as
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e Menegazzo (1995) gave examples of soluble
Heineken-Mohamed p-groups of arbitrary derived length;
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Heineken and Mohamed, 1968

There exists infinite metabelian p-groups that have trivial centre
but all proper subgroups subnormal and nilpotent.

A group G is of Heineken-Mohamed type if G is not nilpotent and
all of its proper subgroups are subnormal and nilpotent.

e Hartley (1973) obtained Heineken-Mohamed groups as
subgroups of C, wr C3°;

e Menegazzo (1995) gave examples of soluble
Heineken-Mohamed p-groups of arbitrary derived length;

e Smith (1983, 2001) found non-nilpotent hypercentral groups
with all subgroups subnormal
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Groups with all subgroups subnormal

Heineken and Mohamed, 1968

There exists infinite metabelian p-groups that have trivial centre
but all proper subgroups subnormal and nilpotent.

A group G is of Heineken-Mohamed type if G is not nilpotent and
all of its proper subgroups are subnormal and nilpotent.

e Hartley (1973) obtained Heineken-Mohamed groups as
subgroups of C, wr C3°;

e Menegazzo (1995) gave examples of soluble
Heineken-Mohamed p-groups of arbitrary derived length;

e Smith (1983, 2001) found non-nilpotent hypercentral groups
with all subgroups subnormal: these groups have elements of
infinite order.
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Groups with all subgroups subnormal

Baer, 1955

If every cyclic subgroup of a group is subnormal, then every finitely
generated subgroup is subnormal and nilpotent.
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Groups with all subgroups subnormal

Baer, 1955

If every cyclic subgroup of a group is subnormal, then every finitely
generated subgroup is subnormal and nilpotent.

Mohres, 1990

A group with all subgroups subnormal is soluble.
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Groups with all subgroups subnormal

Baer, 1955

If every cyclic subgroup of a group is subnormal, then every finitely
generated subgroup is subnormal and nilpotent.

Mohres, 1990

A group with all subgroups subnormal is soluble.

It is enough to deal with the case of a p-group and the case of a
torsion-free group.
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Groups with all subgroups subnormal

Baer, 1955

If every cyclic subgroup of a group is subnormal, then every finitely
generated subgroup is subnormal and nilpotent.

Mohres, 1990
A group with all subgroups subnormal is soluble.

It is enough to deal with the case of a p-group and the case of a
torsion-free group.

Casolo 2001, Smith 2001
A torsion-free group with all subgroups subnormal is nilpotent.
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Groups with all non-soluble subgroups subnormal

Mohres, 1990

A group with all subgroups subnormal is soluble.
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Groups with all non-soluble subgroups subnormal

Mohres, 1990

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.
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Groups with all non-soluble subgroups subnormal

Mohres, 1990

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or nilpotent. Then G is soluble.
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Groups with all non-soluble subgroups subnormal

Mohres, 1990

A group with all subgroups subnormal is soluble.

Asar, 2000
A locally finite group with all proper subgroups nilpotent is soluble.

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or nilpotent. Then G is soluble. Moreover, if G is
torsion-free, then it is nilpotent.
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Groups with all non-soluble subgroups subnormal

Let G be a locally graded group and suppose that, for some n > 1,
every non-nilpotent subgroup of G is subnormal of defect at most
nin G. Then G is soluble. Moreover, if G is torsion-free, then it is
nilpotent.
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Groups with all non-soluble subgroups subnormal

A group is locally graded if every non-trivial finitely generated
subgroup has a non-trivial finite quotient, e.g. locally
(soluble-by-finite) groups and residually finite groups.

Let G be a locally graded group and suppose that, for some n > 1,
every non-nilpotent subgroup of G is subnormal of defect at most
nin G. Then G is soluble. Moreover, if G is torsion-free, then it is
nilpotent.
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Groups with all non-soluble subgroups subnormal

A group is locally graded if every non-trivial finitely generated
subgroup has a non-trivial finite quotient, e.g. locally
(soluble-by-finite) groups and residually finite groups.

Let G be a locally graded group and suppose that, for some n > 1,
every non-nilpotent subgroup of G is subnormal of defect at most
nin G. Then G is soluble. Moreover, if G is torsion-free, then it is
nilpotent.

This restriction is made in order to avoid Tarski groups, i.e. infinite
2-generator simple groups with all proper non-trivial subgroups of
prime order.
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Groups with all non-soluble subgroups subnormal

A new problem

Study locally graded groups with all subgroups subnormal or
soluble.
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Study locally graded groups with all subgroups subnormal or
soluble.

A minimal simple group is a non-abelian simple group with all
proper subgroups soluble.
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Groups with all non-soluble subgroups subnormal

A new problem

Study locally graded groups with all subgroups subnormal or
soluble.

A minimal simple group is a non-abelian simple group with all
proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the
following groups:

(/) PSL(2,2P), where p is any prime;

Antonio Tortora Groups with all subgroups subnormal or soluble of length < d



Groups with all non-soluble subgroups subnormal

A new problem

Study locally graded groups with all subgroups subnormal or
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following groups:
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A new problem

Study locally graded groups with all subgroups subnormal or
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A minimal simple group is a non-abelian simple group with all
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Every finite minimal simple group is isomorphic to one of the
following groups:

(/) PSL(2,2P), where p is any prime;
(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2, p), where p > 3 is any prime s.t. p?> +1 =0 (mod 5);
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Groups with all non-soluble subgroups subnormal

A new problem

Study locally graded groups with all subgroups subnormal or
soluble.

A minimal simple group is a non-abelian simple group with all
proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the
following groups:

(i) PSL(2,2P), where p is any prime;

(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2, p), where p > 3 is any prime s.t. p?> +1 =0 (mod 5);
(iv) PSL(3,3);
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Groups with all non-soluble subgroups subnormal

A new problem

Study locally graded groups with all subgroups subnormal or
soluble.

A minimal simple group is a non-abelian simple group with all
proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the
following groups:

(i) PSL(2,2P), where p is any prime;
(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2,p), where p > 3 is any prime s.t. p?> +1 =0 (mod 5);
(iv) PSL(3,3);
(v) Sz(2P), where p is any odd prime.
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Groups with all non-soluble subgroups subnormal

Proposition
Let G be a finite non-abelian simple group with all proper
subgroups metabelian. Then G is isomorphic to one of the

following groups:
(/) PSL(2,2P), where p is any prime;
(i) PSL(2,3P), where p is any odd prime;

Antonio Tortora Groups with all subgroups subnormal or soluble of length < d



Groups with all non-soluble subgroups subnormal

Proposition
Let G be a finite non-abelian simple group with all proper
subgroups metabelian. Then G is isomorphic to one of the

following groups:
(/) PSL(2,2P), where p is any prime;
(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2,p), where p > 3 is any prime such that p?> +1 =0
(mod 5) and p? — 1 # 0 (mod 16).
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Groups with all non-soluble subgroups subnormal

Proposition

Let G be a finite non-abelian simple group with all proper
subgroups metabelian. Then G is isomorphic to one of the
following groups:

(/) PSL(2,2P), where p is any prime;

(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2,p), where p > 3 is any prime such that p?> +1 =0

(mod 5) and p? — 1 # 0 (mod 16).

Every proper subgroup of PSL(3,3) has derived length at most 5
and PSL(3,3) contains a subgroup of derived length 5.
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Groups with all non-soluble subgroups subnormal

Proposition

Let G be a finite non-abelian simple group with all proper
subgroups metabelian. Then G is isomorphic to one of the
following groups:

(/) PSL(2,2P), where p is any prime;

(i) PSL(2,3P), where p is any odd prime;
(iii) PSL(2,p), where p > 3 is any prime such that p?> +1 =0

(mod 5) and p? — 1 # 0 (mod 16).

Every proper subgroup of PSL(3,3) has derived length at most 5
and PSL(3,3) contains a subgroup of derived length 5.

Every proper subgroup of a finite minimal simple group has derived
length at most 5.
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Groups with all non-soluble subgroups subnormal

Open question

It is still unknown whether an infinite locally graded group with all
proper subgroups soluble is soluble.
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Let G be an infinite locally graded group with all proper subgroups
soluble. Then:

@ G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
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Let G be an infinite locally graded group with all proper subgroups
soluble. Then:

@ G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
@ G is locally soluble (Dixon, Evans and Smith, 2007).
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Groups with all non-soluble subgroups subnormal

Open question

It is still unknown whether an infinite locally graded group with all
proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups
soluble. Then:

@ G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
@ G is locally soluble (Dixon, Evans and Smith, 2007).

Zaicev 1969, Dixon and Evans 1999

Let G be an infinite locally graded group with all subgroups soluble
of derived length < d. Then G is soluble of derived length < d.

<
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Groups with all non-soluble subgroups subnormal

Open question

It is still unknown whether an infinite locally graded group with all
proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups
soluble. Then:

@ G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
@ G is locally soluble (Dixon, Evans and Smith, 2007).

Zaicev 1969, Dixon and Evans 1999

Let G be an infinite locally graded group with all subgroups soluble
of derived length < d. Then G is soluble of derived length < d.

Zaicev showed that an infinite soluble group of derived length d
has a subgroup of derived length d.
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Main results

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(i) G is locally soluble,
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Main results

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(/) G is locally soluble, or

(ii) G(") is finite for some integer r and G is an extension of a
soluble group by a finite almost minimal simple group.
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Main results

An almost minimal simple groups fits between a minimal simple
group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(/) G is locally soluble, or

(ii) G(") is finite for some integer r and G is an extension of a
soluble group by a finite almost minimal simple group.
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Main results

An almost minimal simple groups fits between a minimal simple
group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(/) G is locally soluble, or

(ii) G(") is finite for some integer r and G is an extension of a
soluble group by a finite almost minimal simple group.

In (i) one cannot expect that G is an extension of a soluble group
by a finite minimal simple group
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Main results

An almost minimal simple groups fits between a minimal simple
group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(/) G is locally soluble, or

(ii) G(") is finite for some integer r and G is an extension of a
soluble group by a finite almost minimal simple group.

In (i) one cannot expect that G is an extension of a soluble group
by a finite minimal simple group : it suffices to consider the direct
product of any abelian group by the symmetric group of degree 5.
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Main results

Theorem A

Let G be a locally (soluble-by-finite) group and suppose that, for
some positive integer d, every subgroup of G is either subnormal
or soluble of derived length at most d. Then either

(/) G is soluble,
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Main results

Theorem A

Let G be a locally (soluble-by-finite) group and suppose that, for

some positive integer d, every subgroup of G is either subnormal

or soluble of derived length at most d. Then either

(/) G is soluble, or

(i) G is finite for some integer r and G is an extension of a
soluble group of derived length at most d by a finite almost
minimal simple group.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G(") < S and
G is soluble.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G(") < S and
G is soluble.

Let G be locally soluble and suppose that it is not soluble.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G(") < S and
G is soluble.

Let G be locally soluble and suppose that it is not soluble. In
according to Smith, we have G©) = G(+1) for some s > 0.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G(") < S and
G is soluble.

Let G be locally soluble and suppose that it is not soluble. In
according to Smith, we have G©) = G(+1) for some s > 0.

Moreover, G(5) is not soluble and every proper subgroup of G()
is soluble of length at most d.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G(") s finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G(") < S and
G is soluble.

Let G be locally soluble and suppose that it is not soluble. In
according to Smith, we have G©) = G(+1) for some s > 0.

Moreover, G(5) is not soluble and every proper subgroup of G()
is soluble of length at most d. Thus G() is finite by Zaicev's
result, a contradiction.
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Main results

Proposition B

Let G be a locally graded group and suppose that, for some
positive integer n, every non-soluble subgroup of G is subnormal
of defect at most n. Then G is locally (soluble-by-finite).
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Main results

Proposition B

Let G be a locally graded group and suppose that, for some
positive integer n, every non-soluble subgroup of G is subnormal
of defect at most n. Then G is locally (soluble-by-finite).

Theorem B

Let G be a locally graded group and suppose that, for some
positive integers n and d, every subgroup of G is either subnormal
of defect at most n or soluble of derived length at most d. Then
either

(i) G is soluble of derived length not exceeding a function
depending on n and d,
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Main results

Proposition B

Let G be a locally graded group and suppose that, for some
positive integer n, every non-soluble subgroup of G is subnormal
of defect at most n. Then G is locally (soluble-by-finite).

Theorem B

Let G be a locally graded group and suppose that, for some

positive integers n and d, every subgroup of G is either subnormal

of defect at most n or soluble of derived length at most d. Then

either

(i) G is soluble of derived length not exceeding a function
depending on n and d, or

(ii) G is finite for some integer r = r(n) and G is an extension
of a soluble group of derived length at most d by a finite
almost minimal simple group.
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