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1. Introduction

Definition. Let F be a field. A symplectic alternating algebra over F is
a triple (V, ( , ), · ) where V is a symplectic vector space over F with
respect to a non-degenerate aternating form ( , ) and · is a bilinear
and alternating binary operation on V such that

(u · v,w) = (v · w, u)

for all u, v,w ∈ V.

Remark. The condition above is equivalent to (u · x, v) = (u, v · x)

Origin.There is a 1-1 correpondence between SAA’s over the field
GF(3) and a certain class of powerful 2-Engel groups of exponent 27.
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Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

Let (u1, . . . , u2r) be any basis for L. The structure of L is determined
from

(uiuj, uk) = γijk, i < j < k

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and each
alternating ternary form defines a unique symplectic alternating algebra.
Classifying symplectic alternating algebras of dimension 2r over F is then
equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).
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2. Some general structure theory

Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x, y ∈ L then the subspace generated by
y, yx, yxx, · · · is isotropic.

Proposition 2. If I is an ideal of L then I⊥ is also an ideal of L.
Furthermore I · I⊥ = {0}.

Theorem 3. Either L contains an abelian ideal or L is semisimple. In
the latter case the direct summands are uniquely determined as the
minimal ideals of L

Theorem 4.(Tota, Tortora, T) Let L be a symplectic alternating algebra
that is abelian-by-(class c). We then have that L is nilpotent of class
at most 2c + 1.
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3. Nilpotent Symplectic Alternating Algebras

Proposition 1. Zi(L) = (Li+1)⊥.

Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

rank(L) = dim Z(L).

Proof. We have rank(L) = dim L− dim L2 = dim (L2)⊥ = dim Z(L).

In particular there is no nilpotent SAA where Z(L) is one dimensional.

Lemma 3. Let I and J be ideals of L. Then Jx ≤ I ⇔ I⊥x ≤ J⊥.
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Proposition 5. There exists an ascending chain of isotropic ideals

{0} = I0 < I1 < · · · < In−1 < In

where dim Im = m.

Furthermore the chain

{0} < I2 < I3 < · · · < In−1 < I⊥n−1 < I⊥n−2 < · · · < I⊥2 < L

is a central chain and I⊥n−1 is abelian. In particular, L is nilpotent of
class at most 2n− 3.

Presentation We can pick a standard basis (x1, y1, x2, y2, · · · , xn, yn)
such that

I1 = Fxn, I2 = I1 + Fxn−1, · · · In = In−1 + Fx1,

I⊥n−1 = In + Fy1, I⊥n−2 = I⊥n−1 + Fy2, · · · , I⊥0 = L = I⊥1 + Fyn

Here the only triples that are not neccessarily zero are

(xiyj, yk) = αijk, (yiyj, yk) = βijk 1 ≤ i < j < k ≤ n. (1)

Conversely any such presentation (1) gives us a nilpotent SAA with
ascending chain I1 < I2 < · · · < In as above.
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SAA’s of maximal class

Theorem 6. Let L be nilpotent SAA of dimension 2n and of maximal
class. We have for k = 2, . . . , n− 1 that

Zk−1(L) = L2n−1−k

is the unique ideal of dimension k and for k = n + 1, . . . , 2n− 2 we
have that

Zk−2(L) = L2n−k

is the unique ideal of dimension k.

Remark. For each n ≥ 4, there exists a SAA of dimension 2n that is of
maximal class.
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