Certain Monomial Characters and Their Subnormal Constituents

Carolina Vallejo

Universitat de València

St. Andrews, August 2013

- 12

590

<ロト <回ト < 三ト < 三ト

This is a joint work with G. Navarro.

590

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Introduction

臣

5900

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Let G be a group. A character $\chi \in Irr(G)$ is said to be monomial if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in Irr(U)$, such that

$$\chi = \lambda^G$$
.

- 1

200

・ロン ・回 と ・ ヨン

Let G be a group. A character $\chi \in Irr(G)$ is said to be monomial if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in Irr(U)$, such that

$$\chi = \lambda^G$$

A group G is said to be **monomial** if all its irreducible characters are monomial.

1

200

イロト イポト イヨト イヨト

1

200

<ロト <回ト < 三ト < 三ト

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

3

590

글 네 글 네 글 네

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

Thus, supersolvable groups are monomial groups.

San

물 제 문 제 문 제

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

Thus, supersolvable groups are monomial groups. But this result depends more on the structure of the group than on characters themselves.

San

(4) (E) (A) (E) (A)

An interesting result.

1

590

イロト イヨト イヨト イヨト

An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in Irr(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.

- 12

San

물 제 문 제 문 제

Image: A math b

An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in Irr(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.

We give a monomiality criterium which also deals with fields of values and degrees of characters.

化原环 化原环

Notation: For n an integer, we write

 $\mathbb{Q}_n = \mathbb{Q}(\xi),$

where ξ is a primitive *n*th root of unity.

200

Notation: For n an integer, we write

 $\mathbb{Q}_n = \mathbb{Q}(\xi),$

where ξ is a primitive *n*th root of unity.

Theorem A

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and the values of χ are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is monomial.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Notation: For n an integer, we write

 $\mathbb{Q}_n = \mathbb{Q}(\xi),$

where ξ is a primitive *n*th root of unity.

Theorem A

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and the values of χ are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is monomial.

When p = 2, we can recover Gow's result from Theorem A.

Carolina Vallejo (Universitat de València)

The hypothesis about the index $|N_G(P): P|$ is necessary.

1

590

イロト イヨト イヨト

The hypothesis about the index $|N_G(P) : P|$ is necessary. For instance, the group SL(2,3) and the prime p=3.

200

The hypothesis about the index $|N_G(P) : P|$ is necessary. For instance, the group SL(2,3) and the prime p=3.

The solvability hypothesis is necessary in both Gow's and Theorem A.

- 12

200

The hypothesis about the index $|\mathbf{N}_G(P): P|$ is necessary. For instance, the group SL(2,3) and the prime p=3.

The solvability hypothesis is necessary in both Gow's and Theorem A. The alternating group A_6 is a counterexample in both cases.

200

B_{π} Theory

12

DQC

・ロ・ ・ 日・ ・ 田・ ・ 田・

We say that $\chi \in Irr(G)$ is a π -special character of G, if

3

200

・ロト ・回ト ・ヨト ・ヨト

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π -number.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π -number.

A B_{π} character of a group G

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π -number.

A B_{π} character of a group G may be thought as an irreducible character of G induced from a π -special character of some subgroup of G.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π -number.

A B_{π} character of a group G may be thought as an irreducible character of G induced from a π -special character of some subgroup of G. (True in groups of odd order).

Main results

Carolina Vallejo (Universitat de València)

Certain Monomial Characters

St. Andrews, August 2013 11 / 15

1

590

・ロ・ ・ 日・ ・ 田・ ・ 田・

Theorem B

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

200

Theorem B

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

Notice that B_p characters with degree not divisible by p are monomial.

Theorem B

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

Notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.

3

590

・ロト ・回ト ・ヨト ・ヨト

Corollary C

Let G be a p-solvable group. Suppose that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in Syl_{p}(G)$ for some prime p. If $\chi \in Irr(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_n}$, then every subnormal constituent of χ is monomial.

San

Corollary C

Let G be a p-solvable group. Suppose that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_p}$, then every subnormal constituent of χ is monomial.

Key: Subnormal constituents of B_{π} characters are B_{π} characters.

Corollary C

Let G be a p-solvable group. Suppose that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_p}$, then every subnormal constituent of χ is monomial.

Key: Subnormal constituents of B_{π} characters are B_{π} characters. Gow's Theorem and Theorem A do not provide information about the subnormal constituents.

We also obtain the following consequence.

1

200

イロト イヨト イヨト

We also obtain the following consequence.

Corollary D

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}_{|G|_p}$ equals the number of orbits under the natural action of $\mathbf{N}_G(P)$ on P/P'.

San

(日) (四) (王) (王) (王)

We also obtain the following consequence.

Corollary D

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}_{|G|_p}$ equals the number of orbits under the natural action of $\mathbf{N}_G(P)$ on P/P'.

The number of such characters can be computed locally.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Thanks for your attention!

590

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆