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e Groups of large period n need not be locally finite.

n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of Zs * Zs.
A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2,3;12) is the free (2, 3; 12)-group. (B = 7Zsg %p,, 23 )
e It is unknown if B is finite.
We study the finite quotients of B ( ~ finite (2, 3; 12)-groups)

e B has a largest finite quotient By = By(2, 3; 12)
( a consequence of the restricted BP )
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A Sylow 3-subgroup of By has nilpotency class 2 and rank 4.

O, (By) has order 2°% and nilpotency class 2.

O23(Byg)/ O2(By) = Z5.

By/ O2.5(By) = SLy(3) * Zy4; in particular, the 3-length of By is 2.
O3(By) = Z3.

O32(Byg)/ O3(By) has order 2°° and nilpotency class 4.

Bo/ O32(By) = 312 : 2; in particular, the 2-length of By is 2.

By is constructed explicitly in GAP and Magma
We prove that this group is indeed By(2, 3; 12)
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By is obtained as a homomorphic image of

G=(a,b|l=a’"=b=w’=...=wy), (%)
where w; = ab, wy = abab?,... are explicitly given words.

e The largest known finite quotient of GG is By.

e The relators w;? are all essential (if any one is omitted,
the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning (G are of interest:
e Is By the largest finite quotient of G 7

e Does the least number of words w; in (x) that define a group with no
finite quotients bigger than By equal 187

o Is (G finite?

A positive answer to the last question would imply that B = B,
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General steps:

e construct a “large” finite (2,3;12)-group Gy  ("Solvable Quotient”)
e prove Gy = By

A technical simplification:

F = (x,y) is a free 2-generator group.
B={ab|1=a®="V"=w(a,b)"? Ywe F) (%)

e Take from F only words w expressible in s = ab and t = ab?

e Omit cyclically permuted words and inversions
L = {s; st; s%; s°t, s°t%; s*t, s°t°, (st)?s; ...}

e [ may be substituted for F'in (x)

L is the list of “candidates’ for the above relators w;.
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o Start with G = {(a,b|1=0a*=10°=r'? Vr € R), where R = &,
and with a known quotient G of GG of period 12, say Go = Zs.

e Try "Solvable Quotient” to find a bigger quotient G of GG of order
2¢|G| successively for e = 1,2, ... until either e < max_e or GGy is found.
e If period of (G is 12 then replace Gy := (G; and start over.

e Otherwise, find w € L such that w!'?> 41 in G;.

e Add w to R, and start with a new G.

(o is still a quotient of the new GG, but GG1 no longer is

Replace 2¢ with 3¢, then back to 2¢, etc.

A more formalized version of the algorithm:
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G :=<a,b|] 1=2a2=b"3=w"12, w in R >;
Quotient:
dl := d0 * p~e; // New order of a quotient to search for
Gl := SolvableQuotient(G, d1); // Invoking “Solvable Quotient’ routine
If time > max_t Or memory > max_m Then -> Output;
If G1 = fail Then { e := e+l; If e > max_e Then -> Output;
Else -> Quotient; }
If period(Gl) = 12 Then { GO := G1; dO := d1; e := 1; -> Quotient; }
Else {
Search:
find w in L : w(a,b)"12 <> 1 in G1;
If found Then { add w to R; e := 1; -> Start; }
Else { 1:=1+1; add words of length 1 to L; -> Search; } }
Output:
return GO;

o GAP: found G of order 2%* - 37, but exceeded time for 2|Gy| and 3|GY|

e Magma: found Gy of order 2% - 37, no quotients up to 2'°|Gy|,
but exceeded memory for 3|Gy].
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Suppose there is a bigger (2, 3; 12)-group E.
1>V > FE—Gy—1
e 1 is elementary abelian p-group with p = 2, 3.
e V is irreducible as F,Gy-module.
Restrictions on V':
p=3 1€Gy, |z|=3 = 2°+2+1=0 onV (quadratic action)
p=2 x€Gy, |z|=4 = 2*+2°+2x+1=0 onV (cubic action)
Lemma. Let H be a periodic group of p-period p' and let V' be a

p-elementary abelian invariant section of H viewed as an F,H-module.
Then, for every h € H of order p', we have

1+h+h24+ .. RN =9
on V.
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D 2 3
v Vl(z) V2(2) Vg(z) ‘/4(2) ‘/5(2) Vl(S) ‘/2(3) V?)(S)
dim V 2 1 4
dim H2(Go, V) 12 - ¢

p:3: ‘G/OS(GO)‘ :266'33
Let B = B(2,3;12), K =F3,and W = KB/(2° +2* +1 | x € B)
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p=2. 05(Gy) < KerX, where X is a representation corresp. to V

02(Go)| = 2%,  |G/O2(Gp)| =2*- 3"
D 2 3
v Vl(z) V2(2) Vg(z) ‘/4(2) ‘/5(2) Vl(S) ‘/2(3) V?)(S)
dim V 2 1 4
dim H2(Go, V) 12 - ¢

p:3: ‘G/Og(GQ)‘ :266'33

(no hope of fining all irreducibles)

Let B= B(2,3;12), K =F3, and W = KB/(2® +2* +1 |z € B)

e IV is a free cyclic K B-module with quadratic action of elts. of order 3.

Lemma. dim W = 16.



p=2. 05(Gy) < KerX, where X is a representation corresp. to V
|02(Go)| = 2%, |G/Oz(Go)| = 2*- 3
P 2 3
v Vl(z) V2(2) Vg(z) ‘/4(2) ‘/5(2) Vl(S) ‘/2(3) V?)(S)
dim V 1 2 2 4 6 1 1 4
dim H2(Go, V)| 14 24 12 22 34| 3 4 6

D= &

G/ O4(Gy)| = 256 . 33

(no hope of fining all irreducibles)

Let B = B(2,3;12), K =F3,and W = KB/(2° +2* +1 | x € B)
e IV is a free cyclic K B-module with quadratic action of elts. of order 3.

Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.



p=2. 05(Gy) < KerX, where X is a representation corresp. to V
|02(Go)| = 2%, |G/Oz(Go)| = 2*- 3
P 2 3
v Vl(z) V2(2) Vg(z) ‘/4(2) ‘/5(2) Vl(S) ‘/2(3) V?)(S)
dim V 1 2 2 4 6 1 1 4
dim H2(Go, V)| 14 24 12 22 34| 3 4 6

p=23:. |G/O3(Gp)| =2 .33
Let B= B(2,3;12), K =F3, and W = KB/(2® +2* +1 |z € B)

e IV is a free cyclic K B-module with quadratic action of elts. of order 3.
Lemma. dim IV = 16.

An analog was proved by A.S. Mamontov without computer help.

(no hope of fining all irreducibles)

e There are 3 irreducible quotients of V.
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For big H*(Gy, V), the search can be linearized (ex. |H?(Gy, V)|=2%)
Result:

e Most extensions E have exponent exceeding 12 (= period # 12 )
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Suppose V is fixed. Check, for every extension

1>V > FE—Gy—1,
e if E has period 12 ( V X\ Gy automatically does )
e if Eis2,3-generated

Extensions E are parameterized by elements of H?*(Gg, V).

For small H?(Gg, V'), one could use exhaustive search

For bigger H*(Gy, V), the action of Comp(Gy, V) <Aut(Gy) x Aut(V)
For big H*(Gy, V), the search can be linearized (ex. |H?(Gy, V)|=2%)
Result:

e Most extensions E have exponent exceeding 12 (= period # 12 )

e Those of period 12 are not 2, 3-generated
Theorem. Gy = B,.
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