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A group G has period n if xn = 1 for all x ∈ G
(equivalently, if exp(G) is finite and divides n)

Groups of small period are of interest in light of the Burnside problem.

• All groups period n = 1, 2, 3, 4, 6 are locally finite.

• Groups of large period n need not be locally finite.

n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of Z2 ∗ Z3.
A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2, 3; 12) is the free (2, 3; 12)-group. (B = Z2 ∗B12
Z3 )

• It is unknown if B is finite.

We study the finite quotients of B ( ∼ finite (2, 3; 12)-groups )

• B has a largest finite quotient B0 = B0(2, 3; 12)

( a consequence of the restricted BP )
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Theorem. Let B0 = B0(2, 3; 12). Then the structure of B0 is known. In
particular, the following facts hold:
• |B0| = 266 · 37 ≈ 1.6 · 1023.
• B0 is solvable of derived length 4 and Fitting length 3; Z(B0) = 1.
• The quotients of the derived series for B0 are Z6, Z

2
12, Z

61
2 , Z4

3.
• A Sylow 2-subgroup of B0 has nilpotency class 5 and rank 7.
• A Sylow 3-subgroup of B0 has nilpotency class 2 and rank 4.
• O2(B0) has order 262 and nilpotency class 2.
• O2,3(B0)/O2(B0) ∼= Z

6
3.

• B0/O2,3(B0) ∼= SL2(3) ⋆ Z4; in particular, the 3-length of B0 is 2.
• O3(B0) ∼= Z

4
3.

• O3,2(B0)/O3(B0) has order 265 and nilpotency class 4.
• B0/O3,2(B0) ∼= 31+2 : 2; in particular, the 2-length of B0 is 2.

B0 is constructed explicitly in GAP and Magma

We prove that this group is indeed B0(2, 3; 12)
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B0 is obtained as a homomorphic image of

G = 〈 a, b | 1 = a2 = b3 = w12
1 = . . . = w12

18 〉, (∗)

where w1 = ab, w2 = abab2, . . . are explicitly given words.

• The largest known finite quotient of G is B0.

• The relators w12
i are all essential (if any one is omitted,

the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

• Is B0 the largest finite quotient of G ?

• Does the least number of words wi in (∗) that define a group with no
finite quotients bigger than B0 equal 18 ?

• Is G finite?

A positive answer to the last question would imply that B = B0
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General steps:

• construct a “large” finite (2,3;12)-group G0 (“Solvable Quotient”)
• prove G0 = B0

A technical simplification:

F = 〈x, y〉 is a free 2-generator group.

B = 〈a, b | 1 = a2 = b3 = w(a, b)12, ∀w ∈ F 〉 (∗)

• Take from F only words w expressible in s = ab and t = ab2

• Omit cyclically permuted words and inversions

L = {s; st; s2; s3t, s2t2; s4t, s3t2, (st)2s; . . .}

• L may be substituted for F in (∗)

L is the list of “candidates” for the above relators wi.
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Idea of the algorithm:

• Start with G = 〈a, b | 1 = a2 = b3 = r12, ∀r ∈ R〉, where R = ∅,

and with a known quotient G0 of G of period 12, say G0 = Z6.

• Try “Solvable Quotient” to find a bigger quotient G1 of G of order

2e|G0| successively for e = 1, 2, . . . until either e 6 max_e or G1 is found.

• If period of G1 is 12 then replace G0 := G1 and start over.

• Otherwise, find w ∈ L such that w12 6= 1 in G1.

• Add w to R, and start with a new G.

G0 is still a quotient of the new G, but G1 no longer is

Replace 2e with 3e, then back to 2e, etc.

A more formalized version of the algorithm:
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Input:

l := 10; // Maximal length in the alphabet {s, t} of elements in L

d0 := 6; // Known order of a (2,3;12)-quotient G0 of G

R:=[]; // Found relators
Multiplier:

p:=2 or 3; e:=1; // Searching for a new quotient of G0 of order d0 ∗ pe

max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:

G := < a,b | 1 = aˆ2 = bˆ3 = wˆ12, w in R >;

Quotient:

d1 := d0 * pˆe; // New order of a quotient to search for
G1 := SolvableQuotient(G, d1); // Invoking “Solvable Quotient” routine
If time > max_t Or memory > max_m Then -> Output;

If G1 = fail Then { e := e+1; If e > max_e Then -> Output;

Else -> Quotient; }

If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }

Else {

Search:

find w in L : w(a,b)ˆ12 <> 1 in G1;

If found Then { add w to R; e := 1; -> Start; }

Else { l:=l+1; add words of length l to L; -> Search; } }

Output:

return G0;

• GAP: found G0 of order 224 ·37, but exceeded time for 2|G0| and 3|G0|

• Magma: found G0 of order 266 · 37, no quotients up to 210|G0|,
but exceeded memory for 3|G0|.



ИМ

СО РАН

6

Input:

l := 10; // Maximal length in the alphabet {s, t} of elements in L

d0 := 6; // Known order of a (2,3;12)-quotient G0 of G

R:=[]; // Found relators
Multiplier:

p:=2 or 3; e:=1; // Searching for a new quotient of G0 of order d0 ∗ pe

max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:

G := < a,b | 1 = aˆ2 = bˆ3 = wˆ12, w in R >;

Quotient:

d1 := d0 * pˆe; // New order of a quotient to search for
G1 := SolvableQuotient(G, d1); // Invoking “Solvable Quotient” routine
If time > max_t Or memory > max_m Then -> Output;

If G1 = fail Then { e := e+1; If e > max_e Then -> Output;

Else -> Quotient; }

If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }

Else {

Search:

find w in L : w(a,b)ˆ12 <> 1 in G1;

If found Then { add w to R; e := 1; -> Start; }

Else { l:=l+1; add words of length l to L; -> Search; } }

Output:

return G0;

• GAP: found G0 of order 224 ·37, but exceeded time for 2|G0| and 3|G0|

• Magma: found G0 of order 266 · 37, no quotients up to 210|G0|,
but exceeded memory for 3|G0|.



ИМ

СО РАН

6

Input:

l := 10; // Maximal length in the alphabet {s, t} of elements in L

d0 := 6; // Known order of a (2,3;12)-quotient G0 of G

R:=[]; // Found relators
Multiplier:

p:=2 or 3; e:=1; // Searching for a new quotient of G0 of order d0 ∗ pe

max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:

G := < a,b | 1 = aˆ2 = bˆ3 = wˆ12, w in R >;

Quotient:

d1 := d0 * pˆe; // New order of a quotient to search for
G1 := SolvableQuotient(G, d1); // Invoking “Solvable Quotient” routine
If time > max_t Or memory > max_m Then -> Output;

If G1 = fail Then { e := e+1; If e > max_e Then -> Output;

Else -> Quotient; }

If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }

Else {

Search:

find w in L : w(a,b)ˆ12 <> 1 in G1;

If found Then { add w to R; e := 1; -> Start; }

Else { l:=l+1; add words of length l to L; -> Search; } }

Output:

return G0;

• GAP: found G0 of order 224 ·37, but exceeded time for 2|G0| and 3|G0|

• Magma: found G0 of order 266 · 37, no quotients up to 210|G0|,
but exceeded memory for 3|G0|.



ИМ

СО РАН

7

Maximality of G0 of order 266 · 37.

Suppose there is a bigger (2, 3; 12)-group E.

1 → V → E → G0 → 1

• V is elementary abelian p-group with p = 2, 3.

• V is irreducible as FpG0-module.

Restrictions on V :

p = 3: x ∈ G0, |x| = 3 ⇒ x2 + x+ 1 = 0 on V (quadratic action)

p = 2: x ∈ G0, |x| = 4 ⇒ x3+x2+x+1 = 0 on V (cubic action)

Lemma. Let H be a periodic group of p-period pl and let V be a
p-elementary abelian invariant section of H viewed as an FpH-module.
Then, for every h ∈ H of order pl, we have

1 + h+ h2 + . . .+ h|h|−1 = 0
on V .
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p = 2: O2(G0) 6 KerX, where X is a representation corresp. to V

|O2(G0)| = 262, |G/O2(G0)| = 24 · 37

p 2 3

V V
(2)
1 V

(2)
2 V

(2)
3 V

(2)
4 V

(2)
5 V

(3)
1 V

(3)
2 V

(3)
3

dim V 1 2 2 4 6 1 1 4
dim H2(G0, V ) 14 24 12 22 34 3 4 6

p = 3: |G/O3(G0)| = 266 · 33 (no hope of fining all irreducibles)

Let B = B(2, 3; 12), K = F3, and W = KB/(x8 + x4 + 1 | x ∈ B)

• W is a free cyclic KB-module with quadratic action of elts. of order 3.

Lemma. dimW = 16.

An analog was proved by A. S. Mamontov without computer help.

• There are 3 irreducible quotients of W .
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Suppose V is fixed. Check, for every extension

1 → V → E → G0 → 1,

• if E has period 12 ( V ⋋G0 automatically does )

• if E is 2, 3-generated

Extensions E are parameterized by elements of H2(G0, V ).

For small H2(G0, V ), one could use exhaustive search

For bigger H2(G0, V ), the action of Comp(G0, V )6Aut(G0)×Aut(V )

For big H2(G0, V ), the search can be linearized (ex. |H2(G0, V )|=234)

Result:

• Most extensions E have exponent exceeding 12 ( ⇒ period 6= 12 )

• Those of period 12 are not 2, 3-generated

Theorem. G0 = B0.
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