On a finite 2,3-generated group of period 12

Andrei V. Zavarnitsine

Sobolev Institute of Mathematics

August, 2013

St Andrews

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-*generated* group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-*group*.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-*generated* group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-*group*.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B $(\sim$ finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3; 12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.
- Definition. A 2, 3-*generated* group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2,3; 12)-*group*.
- B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)
- It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite (2,3;12)-groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.

n=12 is one of the smallest unknown cases.

Definition. A 2, 3-*generated* group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.

n = 12 is one of the smallest unknown cases.

Definition. A 2,3-*generated* group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2,3-generated group of period 12 is called a (2,3; 12)-*group*.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$.

A 2, 3-generated group of period 12 is called a (2,3; 12)-group.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3; 12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period *n* need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2,3; 12)-group.

B=B(2,3;12) is the free $(2,3;\,12)$ -group. ($B=\mathbb{Z}_2*_{\mathfrak{B}_{12}}\mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3; 12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

- B = B(2,3;12) is the free (2,3;12)-group. $(B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3)$
- It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period *n* need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

- B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)
- It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite $(2,3;\,12)$ -groups

• B has a largest finite quotient $B_0 = B_0(2,3; 12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

- B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)
- It is unknown if B is finite.

We study the finite quotients of B (\sim finite (2,3; 12)-groups)

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite (2,3;12)-groups)

• B has a largest finite quotient $B_0 = B_0(2,3;12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period *n* need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite (2,3;12)-groups)

• *B* has a largest finite quotient $B_0 = B_0(2, 3; 12)$

Groups of small period are of interest in light of the Burnside problem.

- All groups period n = 1, 2, 3, 4, 6 are locally finite.
- Groups of large period n need not be locally finite.
- n = 12 is one of the smallest unknown cases.

Definition. A 2, 3-generated group is a quotient of $\mathbb{Z}_2 * \mathbb{Z}_3$. A 2, 3-generated group of period 12 is called a (2, 3; 12)-group.

B = B(2,3;12) is the free (2,3;12)-group. ($B = \mathbb{Z}_2 *_{\mathfrak{B}_{12}} \mathbb{Z}_3$)

• It is unknown if *B* is finite.

We study the finite quotients of B (\sim finite (2,3;12)-groups)

- *B* has a largest finite quotient $B_0 = B_0(2, 3; 12)$
 - (a consequence of the restricted BP)

• $|B_0| = 2^{66} \cdot 3^7 \approx 1.6 \cdot 10^{23}$.

- B_0 is solvable of derived length 4 and Fitting length 3; $Z(B_0) = 1$.
- The quotients of the derived series for B_0 are \mathbb{Z}_6 , \mathbb{Z}_{12}^2 , \mathbb{Z}_2^{61} , \mathbb{Z}_3^4 .
- A Sylow 2-subgroup of B_0 has nilpotency class 5 and rank 7.
- A Sylow 3-subgroup of B_0 has nilpotency class 2 and rank 4.
- $O_2(B_0)$ has order 2^{62} and nilpotency class 2.
- $O_{2,3}(B_0)/O_2(B_0) \cong \mathbb{Z}_3^6.$
- $B_0/\operatorname{O}_{2,3}(B_0)\cong\operatorname{SL}_2(3)\star\mathbb{Z}_4$; in particular, the 3-length of B_0 is 2.
- $O_3(B_0) \cong \mathbb{Z}_3^4$
- $O_{3,2}(B_0)/O_3(B_0)$ has order 2^{65} and nilpotency class 4.
- $B_0 / O_{3,2}(B_0) \cong 3^{1+2} : 2;$ in particular, the 2-length of B_0 is 2.

 B_0 is constructed explicitly in GAP and Magma We prove that this group is indeed $B_0(2,3; 12)$

- $|B_0| = 2^{66} \cdot 3^7 \approx 1.6 \cdot 10^{23}$.
- B_0 is solvable of derived length 4 and Fitting length 3; $Z(B_0) = 1$.
- The quotients of the derived series for B_0 are \mathbb{Z}_6 , \mathbb{Z}_{12}^2 , \mathbb{Z}_2^{61} , \mathbb{Z}_3^4 .
- A Sylow 2-subgroup of B_0 has nilpotency class 5 and rank 7.
- A Sylow 3-subgroup of B_0 has nilpotency class 2 and rank 4.
- $O_2(B_0)$ has order 2^{62} and nilpotency class 2.
- $O_{2,3}(B_0) / O_2(B_0) \cong \mathbb{Z}_3^6.$
- $B_0/\mathcal{O}_{2,3}(B_0) \cong SL_2(3) \star \mathbb{Z}_4$; in particular, the 3-length of B_0 is 2.
- $O_3(B_0) \cong \mathbb{Z}_3^4$.
- $O_{3,2}(B_0)/O_3(B_0)$ has order 2^{65} and nilpotency class 4.
- $B_0 / O_{3,2}(B_0) \cong 3^{1+2} : 2$; in particular, the 2-length of B_0 is 2.

 B_0 is constructed explicitly in GAP and Magma We prove that this group is indeed $B_0(2,3; 12)$

- $|B_0| = 2^{66} \cdot 3^7 \approx 1.6 \cdot 10^{23}.$
- B_0 is solvable of derived length 4 and Fitting length 3; $Z(B_0) = 1$.
- The quotients of the derived series for B_0 are \mathbb{Z}_6 , \mathbb{Z}_{12}^2 , \mathbb{Z}_2^{61} , \mathbb{Z}_3^4 .
- A Sylow 2-subgroup of B_0 has nilpotency class 5 and rank 7.
- A Sylow 3-subgroup of B_0 has nilpotency class 2 and rank 4.
- $O_2(B_0)$ has order 2^{62} and nilpotency class 2.
- $O_{2,3}(B_0) / O_2(B_0) \cong \mathbb{Z}_3^6.$
- $B_0/\mathcal{O}_{2,3}(B_0) \cong SL_2(3) \star \mathbb{Z}_4$; in particular, the 3-length of B_0 is 2.
- $O_3(B_0) \cong \mathbb{Z}_3^4$.
- $O_{3,2}(B_0)/O_3(B_0)$ has order 2^{65} and nilpotency class 4.
- $B_0 / O_{3,2}(B_0) \cong 3^{1+2} : 2$; in particular, the 2-length of B_0 is 2.

 B_0 is constructed explicitly in GAP and Magma

We prove that this group is indeed $B_0(2,3;\,12)$

- $|B_0| = 2^{66} \cdot 3^7 \approx 1.6 \cdot 10^{23}.$
- B_0 is solvable of derived length 4 and Fitting length 3; $Z(B_0) = 1$.
- The quotients of the derived series for B_0 are \mathbb{Z}_6 , \mathbb{Z}_{12}^2 , \mathbb{Z}_2^{61} , \mathbb{Z}_3^4 .
- A Sylow 2-subgroup of B_0 has nilpotency class 5 and rank 7.
- A Sylow 3-subgroup of B_0 has nilpotency class 2 and rank 4.
- $O_2(B_0)$ has order 2^{62} and nilpotency class 2.
- $O_{2,3}(B_0) / O_2(B_0) \cong \mathbb{Z}_3^6.$
- $B_0/\mathcal{O}_{2,3}(B_0) \cong SL_2(3) \star \mathbb{Z}_4$; in particular, the 3-length of B_0 is 2.
- $O_3(B_0) \cong \mathbb{Z}_3^4$.
- $O_{3,2}(B_0)/O_3(B_0)$ has order 2^{65} and nilpotency class 4.
- $B_0/O_{3,2}(B_0) \cong 3^{1+2}$: 2; in particular, the 2-length of B_0 is 2.

 B_0 is constructed explicitly in GAP and Magma We prove that this group is indeed $B_0(2,3;12)$

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1=ab,\;w_2=abab^2,\ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

 The relators w_i¹² are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?
- Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1=ab,\;w_2=abab^2,\ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

 The relators w_i¹² are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

• Is B_0 the largest finite quotient of G?

• Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?

• Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

 The relators w_i¹² are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

• Is B_0 the largest finite quotient of G?

• Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?

• Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

 The relators w_i¹² are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?
- Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

- The largest *known* finite quotient of G is B_0 .
- The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).
- The following questions concerning G are of interest:
- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?
- Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

• The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

• Is B_0 the largest finite quotient of G?

• Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?

• Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

• The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

• Is B_0 the largest finite quotient of G?

• Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?

• Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

• The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?

• Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

• The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?
- Is G finite?

$$G = \langle a, b \mid 1 = a^2 = b^3 = w_1^{12} = \dots = w_{18}^{12} \rangle, \qquad (*)$$

where $w_1 = ab, w_2 = abab^2, \ldots$ are explicitly given words.

• The largest *known* finite quotient of G is B_0 .

• The relators w_i^{12} are all *essential* (if any one is omitted, the resulting group will have finite homomorphic images of exponent 24).

The following questions concerning G are of interest:

- Is B_0 the largest finite quotient of G?
- Does the least number of words w_i in (*) that define a group with no finite quotients bigger than B_0 equal 18?
- Is G finite?

A positive answer to the last question would imply that $B = B_0$

3

construct a "large" finite (2,3;12)-group G₀ ("Solvable Quotient")
prove G₀ = B₀

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*

- Take from F only words w expressible in s=ab and $t=ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

construct a "large" finite (2,3;12)-group G₀ ("Solvable Quotient")
prove G₀ = B₀

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (4)

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

 $L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$

• L may be substituted for F in (*)

construct a "large" finite (2,3;12)-group G₀ ("Solvable Quotient")
prove G₀ = B₀

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$

- Take from F only words w expressible in s=ab and $t=ab^2$
- Omit cyclically permuted words and inversions

 $L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$

- Take from F only words w expressible in s=ab and $t=ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$

• Take from
$$F$$
 only words w expressible in $s = ab$ and $t = ab^2$

Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$

- Take from F only words w expressible in s=ab and $t=ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

 $L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*)

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

 $L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*)

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*)

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

- construct a "large" finite (2,3;12)-group G_0 ("Solvable Quotient")
- prove $G_0 = B_0$

A technical simplification:

 $F = \langle x, y \rangle$ is a free 2-generator group.

$$B = \langle a, b \mid 1 = a^2 = b^3 = w(a, b)^{12}, \ \forall w \in F \rangle$$
 (*)

- Take from F only words w expressible in s = ab and $t = ab^2$
- Omit cyclically permuted words and inversions

$$L = \{s; st; s^2; s^3t, s^2t^2; s^4t, s^3t^2, (st)^2s; \ldots\}$$

• L may be substituted for F in (*)

• Start with $G=\langle a,b\mid 1=a^2=b^3=r^{12},\; orall r\in R
angle$, where R=arnothing ,

and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.

• Try "Solvable Quotient" to find a bigger quotient G_1 of G of order

 $2^e |G_0|$ successively for $e=1,2,\ldots$ until either $e\leqslant extsf{max_e}$ or G_1 is found.

- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

• Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$,

and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.

• Try "Solvable Quotient" to find a bigger quotient G_1 of G of order

 $2^e |G_0|$ successively for $e=1,2,\ldots$ until either $e\leqslant extsf{max_e}$ or G_1 is found.

- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

• Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.

 $2^{e}|G_{0}|$ successively for e = 1, 2, ... until either $e \leq \max$ e or G_{1} is found

- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.

 G_0 is still a quotient of the new G, but G_1 no longer is

Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$,
- and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order
- $2^e |G_0|$ successively for $e=1,2,\ldots$ until either $e\leqslant extsf{max_e}$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is
- Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.

 G_0 is still a quotient of the new G, but G_1 no longer is Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.

 G_0 is still a quotient of the new G, but G_1 no longer is Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.

 G_0 is still a quotient of the new G, but G_1 no longer is Replace 2^e with 3^e , then back to 2^e , etc.

- Start with $G = \langle a, b \mid 1 = a^2 = b^3 = r^{12}, \forall r \in R \rangle$, where $R = \emptyset$, and with a known quotient G_0 of G of period 12, say $G_0 = \mathbb{Z}_6$.
- Try "Solvable Quotient" to find a bigger quotient G_1 of G of order $2^e|G_0|$ successively for e = 1, 2, ... until either $e \leq \max_e$ or G_1 is found.
- If period of G_1 is 12 then replace $G_0 := G_1$ and start over.
- Otherwise, find $w \in L$ such that $w^{12} \neq 1$ in G_1 .
- Add w to R, and start with a new G.
- G_0 is still a quotient of the new G, but G_1 no longer is Replace 2^e with 3^e , then back to 2^e , etc.

Input:

```
1 := 10; // Maximal length in the alphabet \{s, t\} of elements in L
   d0 := 6; // Known order of a (2,3;12)-quotient G_0 of G
   R:=[]; // Found relators
Multiplier:
   p:=2 or 3; e:=1; // Searching for a new quotient of G_0 of order d_0 * p^e
   max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:
   G := \langle a, b | 1 = a^2 = b^3 = w^{12}, w \text{ in } R \rangle;
Quotient:
   d1 := d0 * p^e; // New order of a quotient to search for
   G1 := SolvableQuotient(G, d1); // Invoking "Solvable Quotient" routine
   If time > max_t Or memory > max_m Then -> Output;
   If G1 = fail Then { e := e+1; If e > max_e Then -> Output;
                                               Else -> Quotient; }
   If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }
   Else {
Search:
   find w in L : w(a,b)^{12} \ll 1 in G1;
   If found Then { add w to R; e := 1; -> Start; }
   Else { 1:=1+1; add words of length 1 to L; -> Search; } }
Output:
   return GO;
```

• GAP: found G_0 of order $2^{24} \cdot 3^7$, but exceeded time for $2|G_0|$ and $3|G_0|$

• Magma: found G_0 of order $2^{66} \cdot 3^7$, no quotients up to $2^{10}|G_0|$, but exceeded memory for $3|G_0|$.

Input:

```
1 := 10; // Maximal length in the alphabet \{s, t\} of elements in L
   d0 := 6; // Known order of a (2,3;12)-quotient G_0 of G
   R:=[]; // Found relators
Multiplier:
   p:=2 or 3; e:=1; // Searching for a new quotient of G_0 of order d_0 * p^e
   max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:
   G := \langle a, b | 1 = a^2 = b^3 = w^{12}, w \text{ in } R \rangle;
Quotient:
   d1 := d0 * p^e; // New order of a quotient to search for
   G1 := SolvableQuotient(G, d1); // Invoking "Solvable Quotient" routine
   If time > max_t Or memory > max_m Then -> Output;
   If G1 = fail Then { e := e+1; If e > max_e Then -> Output;
                                               Else -> Quotient; }
   If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }
   Else {
Search:
   find w in L : w(a,b)^{12} \ll 1 in G1;
   If found Then { add w to R; e := 1; -> Start; }
   Else { 1:=1+1; add words of length 1 to L; -> Search; } }
Output:
   return GO;
```

- GAP: found G_0 of order $2^{24} \cdot 3^7$, but exceeded time for $2|G_0|$ and $3|G_0|$
- Magma: found G₀ of order 2⁶⁶ ⋅ 3⁷, no quotients up to 2¹⁰|G₀ but exceeded memory for 3|G₀|.

6

```
Input:
```

```
1 := 10; // Maximal length in the alphabet \{s, t\} of elements in L
   d0 := 6; // Known order of a (2,3;12)-quotient G_0 of G
   R:=[]; // Found relators
Multiplier:
   p:=2 or 3; e:=1; // Searching for a new quotient of G_0 of order d_0 * p^e
   max_e:=10; max_t:=100 h; max_m:=16 G; // Maximal exponent e, time, memory
Start:
   G := \langle a, b | 1 = a^2 = b^3 = w^{12}, w \text{ in } R \rangle;
Quotient:
   d1 := d0 * p^e; // New order of a quotient to search for
   G1 := SolvableQuotient(G, d1); // Invoking "Solvable Quotient" routine
   If time > max_t Or memory > max_m Then -> Output;
   If G1 = fail Then { e := e+1; If e > max_e Then -> Output;
                                               Else -> Quotient; }
   If period(G1) = 12 Then { G0 := G1; d0 := d1; e := 1; -> Quotient; }
   Else {
Search:
   find w in L : w(a,b)^{12} \ll 1 in G1;
   If found Then { add w to R; e := 1; -> Start; }
   Else { 1:=1+1; add words of length 1 to L; -> Search; } }
Output:
   return GO;
```

- GAP: found G_0 of order $2^{24} \cdot 3^7$, but exceeded time for $2|G_0|$ and $3|G_0|$
- Magma: found G_0 of order $2^{66} \cdot 3^7$, no quotients up to $2^{10}|G_0|$, but exceeded memory for $3|G_0|$.

Maximality of G_0 of order $2^{66} \cdot 3^7$. Suppose there is a bigger (2, 3; 12)-group E

 $1 \to V \to E \to G_0 \to 1$

• V is elementary abelian p-group with p = 2, 3.

• V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

Maximality of G_0 of order $2^{66} \cdot 3^7$. Suppose there is a bigger (2,3; 12)-group E. $1 \rightarrow V \rightarrow E \rightarrow G_0 \rightarrow$

- V is elementary abelian p-group with p = 2, 3.
- V is irreducible as \mathbb{F}_pG_0 -module.
- Restrictions on V:

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

Maximality of G_0 of order $2^{66} \cdot 3^7$. Suppose there is a bigger (2, 3; 12)-group E. $1 \rightarrow V \rightarrow E \rightarrow G_0 \rightarrow 1$

• V is elementary abelian p-group with p = 2, 3.

• V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module Then, for every $h\in H$ of order p^l , we have

 $1 + h + h^2 + \ldots + h^{|h|-1} = 0$

Maximality of G_0 of order $2^{66} \cdot 3^7$. Suppose there is a bigger (2, 3; 12)-group E. $1 \rightarrow V \rightarrow E \rightarrow G_0 \rightarrow 1$

• V is elementary abelian p-group with p = 2, 3.

• V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

 $1 + h + h^2 + \ldots + h^{|h|-1} = 0$

Suppose there is a bigger (2, 3; 12)-group E.

 $1 \to V \to E \to G_0 \to 1$

- V is elementary abelian p-group with p = 2, 3.
- V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

Suppose there is a bigger (2, 3; 12)-group E.

 $1 \to V \to E \to G_0 \to 1$

- V is elementary abelian p-group with p = 2, 3.
- V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p=3: x \in G_0, |x|=3 \Rightarrow x^2+x+1=0$ on V (quadratic action) $p=2: x \in G_0, |x|=4 \Rightarrow x^3+x^2+x+1=0$ on V (cubic action)

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

Suppose there is a bigger (2, 3; 12)-group E.

 $1 \to V \to E \to G_0 \to 1$

• V is elementary abelian p-group with p = 2, 3.

• V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p = 3: x \in G_0, |x| = 3 \Rightarrow x^2 + x + 1 = 0 \text{ on } V \text{ (quadratic action)}$ $p = 2: x \in G_0, |x| = 4 \Rightarrow x^3 + x^2 + x + 1 = 0 \text{ on } V \text{ (cubic action)}$

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module Then, for every $h\in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

on V.

Suppose there is a bigger (2,3; 12)-group E.

 $1 \to V \to E \to G_0 \to 1$

- V is elementary abelian p-group with p = 2, 3.
- V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p = 3: x \in G_0, |x| = 3 \Rightarrow x^2 + x + 1 = 0 \text{ on } V \text{ (quadratic action)}$ $p = 2: x \in G_0, |x| = 4 \Rightarrow x^3 + x^2 + x + 1 = 0 \text{ on } V \text{ (cubic action)}$

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module Then, for every $h\in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

Suppose there is a bigger (2,3; 12)-group E.

 $1 \to V \to E \to G_0 \to 1$

- V is elementary abelian p-group with p = 2, 3.
- V is irreducible as \mathbb{F}_pG_0 -module.

Restrictions on V:

 $p = 3: x \in G_0, |x| = 3 \Rightarrow x^2 + x + 1 = 0 \text{ on } V \text{ (quadratic action)}$ $p = 2: x \in G_0, |x| = 4 \Rightarrow x^3 + x^2 + x + 1 = 0 \text{ on } V \text{ (cubic action)}$

Lemma. Let H be a periodic group of p-period p^l and let V be a p-elementary abelian invariant section of H viewed as an \mathbb{F}_pH -module. Then, for every $h \in H$ of order p^l , we have

$$1 + h + h^2 + \ldots + h^{|h|-1} = 0$$

on V.

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

		2				3	
$\dim V$	2	2					
dim $H^2(G_0, V)$	24	12	22	34	3		

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W_{i}

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

		2				3	
$\dim V$	2	2					
dim $H^2(G_0, V)$	24	12	22	34	3		

 $p = 3: |G/O_3(G_0)| = 2^{66} \cdot 3^3 \text{ (no hope of fining all irreducibles)}$ Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$ • W is a free cyclic KB-module with quadratic action of elts. of order

Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W_{\cdot}

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
$\dim V$	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

 $p = 3: |G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3; 12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 | x \in B)$ ● W is a free cyclic KB-module with quadratic action of elts. of order

Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W.

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

 $p = 3: |G/O_3(G_0)| = 2^{66} \cdot 3^3 \text{ (no hope of fining all irreducibles)}$ Let $B = B(2, 3; 12), K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$ • W is a free cyclic KB-module with quadratic action of elts. of order 3 Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

 $p = 3: |G/O_3(G_0)| = 2^{66} \cdot 3^3 \text{ (no hope of fining all irreducibles)}$ Let $B = B(2, 3; 12), K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$ • W is a free cyclic KB-module with quadratic action of elts. of order 3 Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.
There are 3 irreducible quotients of W.

p = 2: $O_2(G_0) \leq \text{Ker } \mathfrak{X}$, where \mathfrak{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W.

p = 2: $O_2(G_0) \leq \text{Ker } \mathcal{X}$, where \mathcal{X} is a representation corresp. to V $|O_2(G_0)| = 2^{62}$, $|G/O_2(G_0)| = 2^4 \cdot 3^7$

p			2				3	
V	$V_1^{(2)}$	$V_{2}^{(2)}$	$V_{3}^{(2)}$	$V_{4}^{(2)}$	$V_{5}^{(2)}$	$V_1^{(3)}$	$V_{2}^{(3)}$	$V_{3}^{(3)}$
dim V	1	2	2	4	6	1	1	4
dim $H^2(G_0, V)$	14	24	12	22	34	3	4	6

p = 3: $|G/O_3(G_0)| = 2^{66} \cdot 3^3$ (no hope of fining all irreducibles) Let B = B(2,3;12), $K = \mathbb{F}_3$, and $W = KB/(x^8 + x^4 + 1 \mid x \in B)$

• W is a free cyclic KB-module with quadratic action of elts. of order 3. Lemma. dim W = 16.

An analog was proved by A.S. Mamontov without computer help.

• There are 3 irreducible quotients of W.

Suppose V is fixed. Check, for every extension $1 \rightarrow V \rightarrow E \rightarrow G_0 \rightarrow 1$,

- if E has period 12 ($V
 ightarrow G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\operatorname{Comp}(G_0, V) \leq \operatorname{Aut}(G_0) \times \operatorname{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\operatorname{Comp}(G_0, V) \leq \operatorname{Aut}(G_0) \times \operatorname{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

• Most extensions E have exponent exceeding 12 (\Rightarrow period \neq 12) • Those of period 12 are not 2.3-generated

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

- Most extensions E have exponent exceeding 12 (\Rightarrow period \neq 12)
- Those of period 12 are not 2, 3-generated

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

- Most extensions E have exponent exceeding 12 (\Rightarrow period $\neq 12$)
- Those of period 12 are not 2, 3-generated

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

• Most extensions *E* have exponent exceeding 12 (\Rightarrow period \neq 12) There is for a range of the second state of the second s

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

- Most extensions E have exponent exceeding 12 (\Rightarrow period \neq 12)
- Those of period 12 are not 2, 3-generated

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

Most extensions E have exponent exceeding 12 (⇒ period ≠ 12)
 Those of period 12 are not 2, 3-generated
 Theorem. G₀ = B₀.

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

- Most extensions E have exponent exceeding 12 (\Rightarrow period \neq 12)
- Those of period 12 are not 2, 3-generated

 $1 \to V \to E \to G_0 \to 1,$

- if E has period 12 ($V > G_0$ automatically does)
- if E is 2, 3-generated

Extensions E are parameterized by elements of $H^2(G_0, V)$. For small $H^2(G_0, V)$, one could use exhaustive search For bigger $H^2(G_0, V)$, the action of $\text{Comp}(G_0, V) \leq \text{Aut}(G_0) \times \text{Aut}(V)$ For big $H^2(G_0, V)$, the search can be linearized (ex. $|H^2(G_0, V)| = 2^{34}$) Result:

- Most extensions E have exponent exceeding 12 (\Rightarrow period \neq 12)
- Those of period 12 are not 2, 3-generated