Graphs encoding the generating properties of a finite group

Cristina Acciarri

University of Brasilia, University of Padua

Groups St Andrews 2017 in Birmingham

7th August 2017

The generating graph (M. Liebeck & A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group G is the graph defined on the elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.

The generating graph (M. Liebeck & A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group G is the graph defined on the elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.

Figure: Generating graph of D_8

Many deep results about finite groups G can be stated in terms of Γ(G).
 (see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M. Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal, G. P. Nagy, etc)

- Many deep results about finite groups G can be stated in terms of Γ(G).
 (see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M. Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal, G. P. Nagy, etc)
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty.

- Many deep results about finite groups G can be stated in terms of Γ(G).
 (see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M. Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal, G. P. Nagy, etc)
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty.
- The generating graph encodes significant information only when G is a 2-generator group.

- Many deep results about finite groups G can be stated in terms of Γ(G).
 (see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M. Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal, G. P. Nagy, etc)
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty.
- The generating graph encodes significant information only when G is a 2-generator group.
- We introduce and investigate a wider family of graphs which encode the generating property of G when G is an arbitrary finite group.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of G.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of G.

Let d(G) the smallest cardinality of a generating set of G.

If a + b < d(G), then $\Gamma_{a,b}(G)$ is an empty graph, so in general we implicitly assume $a + b \ge d(G)$.

In the generating graph $\Gamma(G)$ of a finite 2-generator group G there may be many isolated vertices:

In the generating graph $\Gamma(G)$ of a finite 2-generator group G there may be many isolated vertices:

- all the elements in the Frat(G) are isolated vertices,
- we can also find isolated vertices outside Frat(G): for example the nontrivial elements of the Klein subgroup are isolated vertices in $\Gamma(Sym(4))$,

In the generating graph $\Gamma(G)$ of a finite 2-generator group G there may be many isolated vertices:

- all the elements in the Frat(G) are isolated vertices,
- we can also find isolated vertices outside Frat(G): for example the nontrivial elements of the Klein subgroup are isolated vertices in $\Gamma(Sym(4))$,

so one can considered the subgraph $\Gamma^*(G)$ of $\Gamma(G)$ that is induced by all of the vertices that are not isolated.

In the generating graph $\Gamma(G)$ of a finite 2-generator group G there may be many isolated vertices:

- all the elements in the Frat(G) are isolated vertices,
- we can also find isolated vertices outside Frat(G): for example the nontrivial elements of the Klein subgroup are isolated vertices in $\Gamma(Sym(4))$,

so one can considered the subgraph $\Gamma^*(G)$ of $\Gamma(G)$ that is induced by all of the vertices that are not isolated.

The graph $\Gamma^*_{a,b}(G)$

We define the graph $\Gamma^*_{a,b}(G)$ as the graph obtained from $\Gamma_{a,b}(G)$ by deleting the isolated vertices.

Let $\Phi_G(d) = \{(x_1, \ldots, x_d) \mid G = \langle x_1, \ldots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

Let $\Phi_G(d) = \{(x_1, \ldots, x_d) \mid G = \langle x_1, \ldots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

• If a = 0, then the graph $\Gamma_{0,b}^*(G)$ is a star with one internal node, corresponding to the 0-tuple, and $\phi_G(b)$ leaves, corresponding to the ordered generating *b*-tuples of *G*.

Let $\Phi_G(d) = \{(x_1, \ldots, x_d) \mid G = \langle x_1, \ldots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

- If a = 0, then the graph $\Gamma_{0,b}^*(G)$ is a star with one internal node, corresponding to the 0-tuple, and $\phi_G(b)$ leaves, corresponding to the ordered generating *b*-tuples of *G*.
- If $a \ge d(G)$, then $\Gamma_{a,a}(G)$ contains loops: if $G = \langle g_1, \ldots, g_a \rangle$ then we have a loop around the vertex (g_1, \ldots, g_a) .

Let $\Phi_G(d) = \{(x_1, \dots, x_d) \mid G = \langle x_1, \dots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

- If a = 0, then the graph $\Gamma_{0,b}^*(G)$ is a star with one internal node, corresponding to the 0-tuple, and $\phi_G(b)$ leaves, corresponding to the ordered generating *b*-tuples of *G*.
- If $a \ge d(G)$, then $\Gamma_{a,a}(G)$ contains loops: if $G = \langle g_1, \ldots, g_a \rangle$ then we have a loop around the vertex (g_1, \ldots, g_a) .
- Let d = a + b. If $a \neq b$ then $\Gamma_{a,b}(G)$ and $\Gamma_{a,b}^*(G)$ are bipartite graphs with two parts, one corresponding to the elements of G^a and the other to the elements of G^b .

Let $\Phi_G(d) = \{(x_1, \dots, x_d) \mid G = \langle x_1, \dots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

- If a = 0, then the graph $\Gamma_{0,b}^*(G)$ is a star with one internal node, corresponding to the 0-tuple, and $\phi_G(b)$ leaves, corresponding to the ordered generating *b*-tuples of *G*.
- If $a \ge d(G)$, then $\Gamma_{a,a}(G)$ contains loops: if $G = \langle g_1, \ldots, g_a \rangle$ then we have a loop around the vertex (g_1, \ldots, g_a) .
- Let d = a + b. If $a \neq b$ then $\Gamma_{a,b}(G)$ and $\Gamma^*_{a,b}(G)$ are bipartite graphs with two parts, one corresponding to the elements of G^a and the other to the elements of G^b . $\Gamma_{a,b}(G)$ has $|G|^a + |G|^b$ vertices and there exists a bijective correspondence between $\Phi_G(d)$ and the set of the edges of $\Gamma_{a,b}(G)$.

Let $\Phi_G(d) = \{(x_1, \dots, x_d) \mid G = \langle x_1, \dots, x_d \rangle\}$ and $\phi_G(d)$ be its cardinality.

- If a = 0, then the graph $\Gamma_{0,b}^*(G)$ is a star with one internal node, corresponding to the 0-tuple, and $\phi_G(b)$ leaves, corresponding to the ordered generating *b*-tuples of *G*.
- If $a \ge d(G)$, then $\Gamma_{a,a}(G)$ contains loops: if $G = \langle g_1, \ldots, g_a \rangle$ then we have a loop around the vertex (g_1, \ldots, g_a) .
- Let d = a + b. If a ≠ b then Γ_{a,b}(G) and Γ^{*}_{a,b}(G) are bipartite graphs with two parts, one corresponding to the elements of G^a and the other to the elements of G^b. Γ_{a,b}(G) has |G|^a + |G|^b vertices and there exists a bijective correspondence between Φ_G(d) and the set of the edges of Γ_{a,b}(G).
 The number of edges of Γ_{a,b}(C) (of Γ^{*}_a(C)) is φ_a(d).
 - The number of edges of $\Gamma_{a,b}(G)$ (of $\Gamma_{a,b}^*(G)$) is $\phi_G(d)$.

• If a = b, then $\Gamma_{a,a}(G)$ has $|G|^a$ vertices, $\phi_G(a)$ loops and other $(\phi_G(d) - \phi_G(a))/2$ edges connecting two different vertices: the two elements $(g_1, \ldots, g_a, g_{a+1}, \ldots, g_d)$ and $(g_{a+1}, \ldots, g_d, g_1, \ldots, g_a)$ give rise to the same edge in $\Gamma_{a,a}(G)$.

- If a = b, then $\Gamma_{a,a}(G)$ has $|G|^a$ vertices, $\phi_G(a)$ loops and other $(\phi_G(d) \phi_G(a))/2$ edges connecting two different vertices: the two elements $(g_1, \ldots, g_a, g_{a+1}, \ldots, g_d)$ and $(g_{a+1}, \ldots, g_d, g_1, \ldots, g_a)$ give rise to the same edge in $\Gamma_{a,a}(G)$.
- If G is any non-trivial finite group and a is any positive integer, then any edge, which is not a loop, of the graph $\Gamma_{a,a}^*(G)$ lies in a 3-cycle, except when a = 1 and $G \cong C_2$.

- If a = b, then $\Gamma_{a,a}(G)$ has $|G|^a$ vertices, $\phi_G(a)$ loops and other $(\phi_G(d) \phi_G(a))/2$ edges connecting two different vertices: the two elements $(g_1, \ldots, g_a, g_{a+1}, \ldots, g_d)$ and $(g_{a+1}, \ldots, g_d, g_1, \ldots, g_a)$ give rise to the same edge in $\Gamma_{a,a}(G)$.
- If G is any non-trivial finite group and a is any positive integer, then any edge, which is not a loop, of the graph $\Gamma_{a,a}^*(G)$ lies in a 3-cycle, except when a = 1 and $G \cong C_2$.
- For any a, no connected component of $\Gamma_{a,a}^*(G)$ is bipartite.

- If a = b, then $\Gamma_{a,a}(G)$ has $|G|^a$ vertices, $\phi_G(a)$ loops and other $(\phi_G(d) \phi_G(a))/2$ edges connecting two different vertices: the two elements $(g_1, \ldots, g_a, g_{a+1}, \ldots, g_d)$ and $(g_{a+1}, \ldots, g_d, g_1, \ldots, g_a)$ give rise to the same edge in $\Gamma_{a,a}(G)$.
- If G is any non-trivial finite group and a is any positive integer, then any edge, which is not a loop, of the graph $\Gamma_{a,a}^*(G)$ lies in a 3-cycle, except when a = 1 and $G \cong C_2$.
- For any a, no connected component of $\Gamma_{a,a}^*(G)$ is bipartite.
- If |G| ≥ 3, then Γ^{*}_{a,b}(G) contains a vertex x of degree 1 if and only if a = 0, b ≥ d(G) and x is one of the φ_G(b) leaves of the star Γ^{*}_{0,b}(G).

The swap graph

For a *d*-generator finite group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap graph

For a *d*-generator finite group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap conjecture (Tennant & Turner, 1992)

 $\Sigma_d(G)$ is connected for every finite group G and every $d \ge d(G)$

The swap graph

For a *d*-generator finite group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap conjecture (Tennant & Turner, 1992)

 $\Sigma_d(G)$ is connected for every finite group G and every $d \geq d(G)$

Theorem (E. Crestani & A. Lucchini, '13) If G is a 2-generator soluble group, then $\Gamma^*(G)$ is connected.

The swap graph

For a *d*-generator finite group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap conjecture (Tennant & Turner, 1992)

 $\Sigma_d(G)$ is connected for every finite group G and every $d \geq d(G)$

Theorem (E. Crestani & A. Lucchini, '13)

If G is a 2-generator soluble group, then $\Gamma^*(G)$ is connected.

The result above is equivalent to say that "swap conjecture" is satisfied by the 2-generator finite soluble groups.

Theorem(E.Crestani & A.Lucchini '13, M.Di Summa & A.Lucchini '16)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Theorem(E.Crestani & A.Lucchini '13, M.Di Summa & A.Lucchini '16)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Theorem (CA & A. Lucchini '17) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Theorem(E.Crestani & A.Lucchini '13, M.Di Summa & A.Lucchini '16)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Theorem (CA & A. Lucchini '17) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Corollary

If G is a finite group and either a + b > d(G) or a + b = d(G) and G is soluble, then $\Gamma^*_{a,b}(G)$ is connected.

Theorem(E.Crestani & A.Lucchini '13, M.Di Summa & A.Lucchini '16)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Theorem (CA & A. Lucchini '17) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Corollary

If G is a finite group and either a + b > d(G) or a + b = d(G) and G is soluble, then $\Gamma^*_{a,b}(G)$ is connected.

Open problem:

to decide whether $\Gamma_{a,b}^{\ast}(G)$ is connected when a+b=d(G) and G is unsoluble.

We conjecture that the answer is positive.

Bounding the diameter of $\Gamma_{1,1}^*(G)$ in the soluble case

Theorem (A. Lucchini '17)

When G is soluble and 2-generated, then $\Gamma^*(G) = \Gamma^*_{1,1}(G)$ has diameter at most 3.

Bounding the diameter of $\Gamma_{1,1}^*(G)$ in the soluble case

Theorem (A. Lucchini '17)

When G is soluble and 2-generated, then $\Gamma^*(G) = \Gamma^*_{1,1}(G)$ has diameter at most 3.

This bound is best possible, but it can be improved to 2 if G satisfies the following additional property:

P(*)

 $|\operatorname{End}_G(V)|>2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G

Bounding the diameter of $\Gamma_{1,1}^*(G)$ in the soluble case

Theorem (A. Lucchini '17)

When G is soluble and 2-generated, then $\Gamma^*(G) = \Gamma^*_{1,1}(G)$ has diameter at most 3.

This bound is best possible, but it can be improved to 2 if G satisfies the following additional property:

P(*)

 $|\operatorname{End}_G(V)|>2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G

Note that if the derived subgroup of G is nilpotent or has odd order, then G satisfy P(*).
Bounding the diameter of $\Gamma^*_{a,b}(G)$ when G is soluble

Theorem (AC & A. Lucchini '17)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or G satisfies the property P(*), then there exists $(z_1, \ldots, z_a) \in G^a$ such that $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle.$

Bounding the diameter of $\Gamma^*_{a,b}(G)$ when G is soluble

Theorem (AC & A. Lucchini '17)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or G satisfies the property P(*), then there exists $(z_1, \ldots, z_a) \in G^a$ such that $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle.$

Corollary (AC & A. Lucchini '17)

Let G be a finite soluble group and let a and b non-negative integers such that $a + b \ge d(G)$. Then diam $(\Gamma_{a,b}^*(G)) \le 4$.

Bounding the diameter of $\Gamma_{a,b}^*(G)$ when G is soluble

Theorem (AC & A. Lucchini '17)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or G satisfies the property P(*), then there exists $(z_1, \ldots, z_a) \in G^a$ such that $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle.$

Corollary (AC & A. Lucchini '17)

Let G be a finite soluble group and let a and b non-negative integers such that $a + b \ge d(G)$. Then diam $(\Gamma_{a,b}^*(G)) \le 4$. Moreover:

(1) Assume a = b. If either G has the property P(*) or $a \neq 1$, then $\operatorname{diam}(\Gamma^*_{a,a}(G)) \leq 2$. Otherwise $\operatorname{diam}(\Gamma^*_{a,a}(G)) \leq 3$.

Bounding the diameter of $\Gamma_{a,b}^*(G)$ when G is soluble

Theorem (AC & A. Lucchini '17)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or G satisfies the property P(*), then there exists $(z_1, \ldots, z_a) \in G^a$ such that $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle.$

Corollary (AC & A. Lucchini '17)

Let G be a finite soluble group and let a and b non-negative integers such that $a + b \ge d(G)$. Then diam $(\Gamma_{a,b}^*(G)) \le 4$. Moreover:

- (1) Assume a = b. If either G has the property P(*) or $a \neq 1$, then $\operatorname{diam}(\Gamma^*_{a,a}(G)) \leq 2$. Otherwise $\operatorname{diam}(\Gamma^*_{a,a}(G)) \leq 3$.
- (2) Assume a < b. If either G has the property P(*) or $a \neq 1$, then $\operatorname{diam}(\Gamma^*_{a,b}(G)) \leq 3$.

Bounding the diameter of the swap graph

Theorem (AC & A. Lucchini '17)

If G is soluble and has property P(*), then the diameter of the swap graph $\Sigma_d(G)$ is at most 2d - 1, whenever $d \ge d(G)$.

The bound $\operatorname{diam}(\Gamma_{a,b}^*(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

The bound $\operatorname{diam}(\Gamma^*_{a,b}(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

For every positive integer η and every pair a, b of positive integer, a finite group G can be constructed such that d(G) = a + b and $\Gamma^*_{a,b}(G)$ is connected with diameter at least η .

The bound $\operatorname{diam}(\Gamma^*_{a,b}(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

For every positive integer η and every pair a, b of positive integer, a finite group G can be constructed such that d(G) = a + b and $\Gamma^*_{a,b}(G)$ is connected with diameter at least η .

Let S be a non-abelian finite simple group, $d \ge 2$ be a positive integer and let $\tau = \tau_d(S)$ be the largest positive integer r such that S^r can be generated by d elements.

The bound $\operatorname{diam}(\Gamma^*_{a,b}(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

For every positive integer η and every pair a, b of positive integer, a finite group G can be constructed such that d(G) = a + b and $\Gamma^*_{a,b}(G)$ is connected with diameter at least η .

Let S be a non-abelian finite simple group, $d \ge 2$ be a positive integer and let $\tau = \tau_d(S)$ be the largest positive integer r such that S^r can be generated by d elements.

Theorem (AC & A. Lucchini '17) *If a and b are positive integers, then*

$$\lim_{p \to \infty} \operatorname{diam}(\Gamma_{a,b}^*(\operatorname{SL}(2,2^p)^{\tau_{a+b}(\operatorname{SL}(2,2^p)}))) = \infty.$$

Recovering information on G from the graphs

We investigate how one can deduce information on G from the knowledge of the graphs $\Gamma^*_{a,b}(G)$ for all the possible choices of a and b.

Recovering information on G from the graphs

We investigate how one can deduce information on G from the knowledge of the graphs $\Gamma^*_{a,b}(G)$ for all the possible choices of a and b.

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

Recovering information on G from the graphs

We investigate how one can deduce information on G from the knowledge of the graphs $\Gamma^*_{a,b}(G)$ for all the possible choices of a and b.

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not paid enough attention during this operation and we lost the information to which group G these graphs correspond and the labels a, b.

DO NOT PANIC! a big amount of the lost information can be reconstructed!

Let G be a finite group. From the knowledge of $\Lambda^*(G)$

• we may recognize whether G is cyclic (and in that case determine |G|);

- we may recognize whether G is cyclic (and in that case determine |G|);
- we may recognize whether G is isomorphic either to the Klein group or to the dihedral group D_p for some odd prime p (and in that case determine |G|);

- we may recognize whether G is cyclic (and in that case determine |G|);
- we may recognize whether G is isomorphic either to the Klein group or to the dihedral group D_p for some odd prime p (and in that case determine |G|);
- we may recognize which vertices have a loop around (and put them back assuming that we have removed all loops in advance), whenever G is non-cyclic and not isomorphic neither to the Klein group nor to D_p for some odd prime p;

- we may recognize whether G is cyclic (and in that case determine |G|);
- we may recognize whether G is isomorphic either to the Klein group or to the dihedral group D_p for some odd prime p (and in that case determine |G|);
- we may recognize which vertices have a loop around (and put them back assuming that we have removed all loops in advance), whenever G is non-cyclic and not isomorphic neither to the Klein group nor to D_p for some odd prime p;
- we may determine d(G);

- we may recognize whether G is cyclic (and in that case determine |G|);
- we may recognize whether G is isomorphic either to the Klein group or to the dihedral group D_p for some odd prime p (and in that case determine |G|);
- we may recognize which vertices have a loop around (and put them back assuming that we have removed all loops in advance), whenever G is non-cyclic and not isomorphic neither to the Klein group nor to D_p for some odd prime p;
- we may determine d(G);
- if $\Gamma \in \Lambda^*(G)$, we may uniquely determine a pair $a \leq b$ such that $\Gamma \cong \Gamma^*_{a,b}(G)$, whenever a + b > d(G) and $G \neq 1$;

- we may recognize whether G is cyclic (and in that case determine |G|);
- we may recognize whether G is isomorphic either to the Klein group or to the dihedral group D_p for some odd prime p (and in that case determine |G|);
- we may recognize which vertices have a loop around (and put them back assuming that we have removed all loops in advance), whenever G is non-cyclic and not isomorphic neither to the Klein group nor to D_p for some odd prime p;
- we may determine d(G);
- if $\Gamma \in \Lambda^*(G)$, we may uniquely determine a pair $a \leq b$ such that $\Gamma \cong \Gamma^*_{a,b}(G)$, whenever a + b > d(G) and $G \neq 1$;
- we may determine |G|.

• Considerations on the number of edges of the graphs in $\Lambda^*(G)$ allows us to determine, for every $t \in \mathbb{N}$, the number $\phi_G(t)$ of the ordered generating *t*-tuples of *G*.

• Considerations on the number of edges of the graphs in $\Lambda^*(G)$ allows us to determine, for every $t \in \mathbb{N}$, the number $\phi_G(t)$ of the ordered generating *t*-tuples of *G*.

Philip Hall observed that the probability $\phi_G(t)/|G|^t$ of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t}$$

where $a_n(G) = \sum_{|G:H|=n} \mu_G(H)$ and μ is the Möbius function on the subgroup lattice of G.

• Considerations on the number of edges of the graphs in $\Lambda^{*}(G)$ allows us to determine, for every $t \in \mathbb{N}$, the number $\phi_{G}(t)$ of the ordered generating *t*-tuples of *G*.

Philip Hall observed that the probability $\phi_G(t)/|G|^t$ of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t}$$

where $a_n(G) = \sum_{|G:H|=n} \mu_G(H)$ and μ is the Möbius function on the subgroup lattice of G.

• For a given finite group G, $P_G(s)$ can be determined from $\Lambda^*(G)$.

 $P_G(s)$ is a uniquely determined Dirichlet polynomial, with s a complex variable and satisfying the property that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t randomly chosen elements.

 $P_G(s)$ is a uniquely determined Dirichlet polynomial, with s a complex variable and satisfying the property that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t randomly chosen elements.

Note that the reciprocal of $P_G(s)$ is the "probabilistic zeta function" of G.

 $P_G(s)$ is a uniquely determined Dirichlet polynomial, with s a complex variable and satisfying the property that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t randomly chosen elements.

Note that the reciprocal of $P_G(s)$ is the "probabilistic zeta function" of G.

We may also recover from $\Lambda^*(G)$ all the information that can be determined from $P_G(s)$. In particular

• we may deduce whether G is soluble or supersoluble;

 $P_G(s)$ is a uniquely determined Dirichlet polynomial, with s a complex variable and satisfying the property that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t randomly chosen elements.

Note that the reciprocal of $P_G(s)$ is the "probabilistic zeta function" of G.

We may also recover from $\Lambda^{\!*}\!(G)$ all the information that can be determined from $P_G(s).$ In particular

- we may deduce whether G is soluble or supersoluble;
- for every prime power n, we may determine the number of maximal subgroups of G of index n.

More properties of G: nilpotency

Not all the properties of G can be recognized by the knowledge of the coefficients of the Dirichlet polynomial $P_G(s)$.

More properties of G: nilpotency

Not all the properties of G can be recognized by the knowledge of the coefficients of the Dirichlet polynomial $P_G(s)$.

For example we cannot deduce from $P_G(s)$ whether G is nilpotent.

Example

Consider $G_1 = C_6 \times C_3$ and $G_2 = \text{Sym}(3) \times C_3$. It turns out that

$$P_{G_1}(s) = P_{G_2}(s) = \left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{3^s}\right) \left(1 - \frac{3}{3^s}\right).$$

More properties of G: nilpotency

Not all the properties of G can be recognized by the knowledge of the coefficients of the Dirichlet polynomial $P_G(s)$.

For example we cannot deduce from $P_G(s)$ whether G is nilpotent.

Example

Consider $G_1 = C_6 \times C_3$ and $G_2 = \text{Sym}(3) \times C_3$. It turns out that

$$P_{G_1}(s) = P_{G_2}(s) = \left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{3^s}\right) \left(1 - \frac{3}{3^s}\right).$$

On the contrary $\Lambda^{\!\!*\!}(G)$ encodes enough information to decide whether G is nilpotent.

Theorem (AC & A. Lucchini '17)

Let G be a finite nilpotent group. If H is a finite group and $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Example

Consider
$$G_1 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^2 \rangle$$
 and

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Example

Consider
$$G_1 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^2 \rangle$$
 and $G_2 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^4 \rangle$.

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Example

Consider
$$G_1 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^2 \rangle$$
 and
 $G_2 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^4 \rangle$.
We have that $|G_1| = |G_2| = 20$ and $P_{G_1}(s) = P_{G_2}(s) = (1 - \frac{1}{2^s})(1 - \frac{5}{5^s})$
however $\operatorname{Frat}(G_1) = 1$ and $\operatorname{Frat}(G_2) = \langle x^2 \rangle$.

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Example

Consider
$$G_1 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^2 \rangle$$
 and
 $G_2 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^4 \rangle$.
We have that $|G_1| = |G_2| = 20$ and $P_{G_1}(s) = P_{G_2}(s) = (1 - \frac{1}{2^s})(1 - \frac{5}{5^s})$
however $\operatorname{Frat}(G_1) = 1$ and $\operatorname{Frat}(G_2) = \langle x^2 \rangle$.

Theorem (AC & A. Lucchini '17)

Let G be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^*(G)$.

Another information that we cannot recover from the knowledge of |G| and $P_G(s)$ is the order of Frat(G).

Example

Consider
$$G_1 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^2 \rangle$$
 and
 $G_2 = \langle x, y \mid x^5 = 1, y^4 = 1, x^y = x^4 \rangle$.
We have that $|G_1| = |G_2| = 20$ and $P_{G_1}(s) = P_{G_2}(s) = (1 - \frac{1}{2^s})(1 - \frac{5}{5^s})$
however $\operatorname{Frat}(G_1) = 1$ and $\operatorname{Frat}(G_2) = \langle x^2 \rangle$.

Theorem (AC & A. Lucchini '17)

Let G be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^*(G)$.

Theorem (AC & A. Lucchini '17)

Let G be a finite non-abelian simple group. If H is finite group and $\Lambda^*(H) = \Lambda^*(G)$, then $H \cong G$.

Note that most of the arguments use only a partial amount of the information given by the family $\Lambda^{*}(G)$.
Can a smaller family of graphs efficiently encode the generating property of G?

Can a smaller family of graphs efficiently encode the generating property of G?

In same crucial steps of the proofs of our results (for example when we recognize the nilpotency and $|\operatorname{Frat}(G)|$ of G) a decisive role is played by the graphs $\Gamma_{1,t}^*(G)$.

Can a smaller family of graphs efficiently encode the generating property of G?

In same crucial steps of the proofs of our results (for example when we recognize the nilpotency and $|\operatorname{Frat}(G)|$ of G) a decisive role is played by the graphs $\Gamma_{1,t}^*(G)$.

We can consider the family $\Lambda_1^*(G)$ of the connected components of the graphs $\Gamma_{1,t}^*(G)$ for $t \in \mathbb{N}$.

Can a smaller family of graphs efficiently encode the generating property of G?

In same crucial steps of the proofs of our results (for example when we recognize the nilpotency and $|\operatorname{Frat}(G)|$ of G) a decisive role is played by the graphs $\Gamma_{1,t}^*(G)$.

We can consider the family $\Lambda_1^*(G)$ of the connected components of the graphs $\Gamma_{1,t}^*(G)$ for $t \in \mathbb{N}$.

Theorem (AC & A. Lucchini '17)

Assume that the family $\Lambda_1^*(G)$ is known. We may determine |G|, d(G), $P_G(s)$ and $|\operatorname{Frat}(G)|$. Moreover we may recognize whether or not G is soluble, supersoluble, nilpotent.

The following notion was recently introduced by P. Cameron, A. Lucchini and C. Roney-Dougal:

Efficiently generation

A finite group G is efficiently generated if for all $x \in G$, $d_{\{x\}}(G) = d(G)$ implies that $x \in Frat(G)$, where $d_{\{x\}}(G)$ denotes the smallest cardinality of a set of elements of G generating G together with x.

The following notion was recently introduced by P. Cameron, A. Lucchini and C. Roney-Dougal:

Efficiently generation

A finite group G is efficiently generated if for all $x \in G$, $d_{\{x\}}(G) = d(G)$ implies that $x \in Frat(G)$, where $d_{\{x\}}(G)$ denotes the smallest cardinality of a set of elements of G generating G together with x.

Generalizing another definition given by the same authors for 2-generator groups, we say that

Non-zero spread

A finite group G has non-zero spread if (g) is not isolated in the graph $\Gamma_{1,d(G)-1}(G)$ for every $g\neq 1.$

Theorem (AC & A. Lucchini '17)

- Let G be a finite group.
- (1) Assume that the family $\Lambda_1^*(G) = {\Gamma_{1,r-1}^*(G)}_{r \in \mathbb{N}}$ is known. We may deduce whether G is or not efficiently generated.

Theorem (AC & A. Lucchini '17)

- Let G be a finite group.
- (1) Assume that the family $\Lambda_1^*(G) = {\Gamma_{1,r-1}^*(G)}_{r \in \mathbb{N}}$ is known. We may deduce whether G is or not efficiently generated.
- (2) G has non-zero spread if and only if G is efficiently generated and has trivial Frattini subgroup.

Theorem (AC & A. Lucchini '17)

Let G be a finite group.

- (1) Assume that the family $\Lambda_1^*(G) = {\Gamma_{1,r-1}^*(G)}_{r \in \mathbb{N}}$ is known. We may deduce whether G is or not efficiently generated.
- (2) G has non-zero spread if and only if G is efficiently generated and has trivial Frattini subgroup.

If G is a finite group with non-zero spread, then G has the property that every proper quotient can be generated by d(G) - 1 elements, but G cannot.

Let L be a monolithic primitive group and let A be its unique minimal normal subgroup.

Let L be a monolithic primitive group and let A be its unique minimal normal subgroup. For each positive integer k, let L^k be the k-fold direct product of L. The crown-based power of L of size k is the subgroup L_k of L^k defined by $L_k = \{(l_1, \ldots, l_k) \in L^k \mid l_1 \equiv \cdots \equiv l_k \mod A\}.$

Let L be a monolithic primitive group and let A be its unique minimal normal subgroup. For each positive integer k, let L^k be the k-fold direct product of L. The crown-based power of L of size k is the subgroup L_k of L^k defined by $L_k = \{(l_1, \ldots, l_k) \in L^k \mid l_1 \equiv \cdots \equiv l_k \mod A\}.$

From results of F. Dalla Volta and A. Lucchini one can deduce:

If G has non-zero spread, then there exist a monolithic primitive group L and a positive integer t such that $G \cong L_t$ and $d(L_{t-1}) < d(L_t)$ (setting $L_0 = L/\operatorname{soc}(L)$).

Let L be a monolithic primitive group and let A be its unique minimal normal subgroup. For each positive integer k, let L^k be the k-fold direct product of L. The crown-based power of L of size k is the subgroup L_k of L^k defined by $L_k = \{(l_1, \ldots, l_k) \in L^k \mid l_1 \equiv \cdots \equiv l_k \mod A\}.$

From results of F. Dalla Volta and A. Lucchini one can deduce:

If G has non-zero spread, then there exist a monolithic primitive group L and a positive integer t such that $G \cong L_t$ and $d(L_{t-1}) < d(L_t)$ (setting $L_0 = L/\operatorname{soc}(L)$).

Conversely

Theorem (AC & A. Lucchini '17)

Let L be a finite monolithic primitive group and $t \in \mathbb{N}$. Assume that $G \cong L_t$ and $d(L_{t-1}) < d(L_t)$, then G has non-zero spread, except possibly when t = 1 and d(L) = 2.

Thank you!