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The generating graph

The generating graph (M. Liebeck & A. Shalev, 1996)

The generating graph Γ(G) of a finite group G is the graph defined on the
elements of G in such a way that two distinct vertices are connected by an
edge if and only if they generate G.
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The generating graph

Many deep results about finite groups G can be stated in terms of
Γ(G).
(see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M.
Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal,
G. P. Nagy, etc )

If G is not generated by two elements, then the graph Γ(G) is empty.

The generating graph encodes significant information only when G is
a 2-generator group.

We introduce and investigate a wider family of graphs which encode
the generating property of G when G is an arbitrary finite group.
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G. P. Nagy, etc )

If G is not generated by two elements, then the graph Γ(G) is empty.

The generating graph encodes significant information only when G is
a 2-generator group.

We introduce and investigate a wider family of graphs which encode
the generating property of G when G is an arbitrary finite group.

Cristina Acciarri Graphs and generating properties 3 / 24



The generating graph

Many deep results about finite groups G can be stated in terms of
Γ(G).
(see many authors R. M. Guralnick, M. Liebeck, A. Shalev, W. M.
Kantor, T. Breuer, A. Lucchini, A. Maróti, C. M. Roney-Dougal,
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A natural generalization of Γ(G)

The graph Γa,b(G)

Assume that G is a finite group and let a and b be non-negative integers.

Γa,b(G) is an undirected graph whose vertices correspond to the elements
of Ga ∪Gb and in which two tuples (x1, . . . , xa) and (y1, . . . , yb) are
adjacent if and only 〈x1, . . . , xa, y1, . . . , yb〉 = G.

Notice that Γ1,1(G) is the generating graph Γ(G) of G.

Let d(G) the smallest cardinality of a generating set of G.

If a+ b < d(G), then Γa,b(G) is an empty graph, so in general we
implicitly assume a+ b ≥ d(G).
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A natural generalization of Γ(G)

In the generating graph Γ(G) of a finite 2-generator group G there may be
many isolated vertices:

all the elements in the Frat(G) are isolated vertices,

we can also find isolated vertices outside Frat(G): for example the
nontrivial elements of the Klein subgroup are isolated vertices in
Γ(Sym(4)),

so one can considered the subgraph Γ∗(G) of Γ(G) that is induced by all
of the vertices that are not isolated.

The graph Γ∗a,b(G)

We define the graph Γ∗a,b(G) as the graph obtained from Γa,b(G) by
deleting the isolated vertices.
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Some observations on the graphs Γa,b(G) and Γ∗a,b(G)

Let ΦG(d) = {(x1, . . . , xd) | G = 〈x1, . . . , xd〉} and φG(d) be its
cardinality.

If a = 0, then the graph Γ∗0,b(G) is a star with one internal node,
corresponding to the 0-tuple, and φG(b) leaves, corresponding to the
ordered generating b-tuples of G.

If a ≥ d(G), then Γa,a(G) contains loops: if G = 〈g1, . . . , ga〉 then we
have a loop around the vertex (g1, . . . , ga).

Let d = a+ b. If a 6= b then Γa,b(G) and Γ∗a,b(G) are bipartite graphs
with two parts, one corresponding to the elements of Ga and the
other to the elements of Gb. Γa,b(G) has |G|a + |G|b vertices and
there exists a bijective correspondence between ΦG(d) and the set of
the edges of Γa,b(G).
The number of edges of Γa,b(G) (of Γ∗a,b(G)) is φG(d).
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Some observations on the graphs Γa,b(G) and Γ∗a,b(G)

If a = b, then Γa,a(G) has |G|a vertices, φG(a) loops and other
(φG(d)− φG(a))/2 edges connecting two different vertices: the two
elements (g1, . . . , ga, ga+1, . . . , gd) and (ga+1, . . . , gd, g1, . . . , ga) give
rise to the same edge in Γa,a(G).

If G is any non-trivial finite group and a is any positive integer, then
any edge, which is not a loop, of the graph Γ∗a,a(G) lies in a 3-cycle,
except when a = 1 and G ∼= C2.

For any a, no connected component of Γ∗a,a(G) is bipartite.

If |G| ≥ 3, then Γ∗a,b(G) contains a vertex x of degree 1 if and only if
a = 0, b ≥ d(G) and x is one of the φG(b) leaves of the star Γ∗0,b(G).
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Connectivity

The swap graph

For a d-generator finite group G, the swap graph Σd(G) is the graph in
which the vertices are the ordered generating d-tuples and in which two
vertices (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if they differ
only by one entry.

The swap conjecture (Tennant & Turner, 1992)

Σd(G) is connected for every finite group G and every d ≥ d(G)

Theorem (E. Crestani & A. Lucchini, ’13)
If G is a 2-generator soluble group, then Γ∗(G) is connected.

The result above is equivalent to say that “swap conjecture” is satisfied by
the 2-generator finite soluble groups.
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Connectivity

Theorem(E.Crestani & A.Lucchini ’13, M.Di Summa & A.Lucchini
’16)
Σd(G) is connected if either d > d(G) or d = d(G) and G is soluble.

Theorem (CA & A. Lucchini ’17)
If Σa+b(G) is connected, then Γ∗a,b(G) is connected.

Corollary
If G is a finite group and either a+ b > d(G) or a+ b = d(G) and G is
soluble, then Γ∗a,b(G) is connected.

Open problem:
to decide whether Γ∗a,b(G) is connected when a+ b = d(G) and G is
unsoluble.

We conjecture that the answer is positive.
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Bounding the diameter of Γ∗1,1(G) in the soluble case

Theorem (A. Lucchini ’17)
When G is soluble and 2-generated, then Γ∗(G) = Γ∗1,1(G) has diameter
at most 3.

This bound is best possible, but it can be improved to 2 if G satisfies the
following additional property:

P(∗)
|EndG(V )| > 2 for every non-trivial irreducible G-module V which is
G-isomorphic to a complemented chief factor of G

Note that if the derived subgroup of G is nilpotent or has odd order, then
G satisfy P(∗).
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Bounding the diameter of Γ∗a,b(G) when G is soluble

Theorem (AC & A. Lucchini ’17)
Assume that G is a finite soluble group and that (x1, . . . , xb) and
(y1, . . . , yb) are non-isolated vertices of Γa,b(G): if either a 6= 1 or G
satisfies the property P(∗), then there exists (z1, . . . , za) ∈ Ga such that
G = 〈z1, . . . , za, x1, . . . , xb〉 = 〈z1, . . . , za, y1, . . . , yb〉.

Corollary (AC & A. Lucchini ’17)
Let G be a finite soluble group and let a and b non-negative integers such
that a+ b ≥ d(G). Then diam(Γ∗a,b(G)) ≤ 4. Moreover:

(1) Assume a = b. If either G has the property P(∗) or a 6= 1, then
diam(Γ∗a,a(G)) ≤ 2. Otherwise diam(Γ∗a,a(G)) ≤ 3.

(2) Assume a < b. If either G has the property P(∗) or a 6= 1, then
diam(Γ∗a,b(G)) ≤ 3.
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Bounding the diameter of the swap graph

Theorem (AC & A. Lucchini ’17)
If G is soluble and has property P(∗) , then the diameter of the swap
graph Σd(G) is at most 2d− 1, whenever d ≥ d(G).
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Direct powers of simple groups

The bound diam(Γ∗a,b(G)) ≤ 4 that we prove for finite soluble groups
cannot be generalized to an arbitrary finite group.

For every positive integer η and every pair a, b of positive integer, a finite
group G can be constructed such that d(G) = a+ b and Γ∗a,b(G) is
connected with diameter at least η.

Let S be a non-abelian finite simple group, d ≥ 2 be a positive integer and
let τ = τd(S) be the largest positive integer r such that Sr can be
generated by d elements.

Theorem (AC & A. Lucchini ’17)
If a and b are positive integers, then

lim
p→∞

diam(Γ∗a,b(SL(2, 2p)τa+b(SL(2,2
p))) =∞.
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Recovering information on G from the graphs

We investigate how one can deduce information on G from the knowledge
of the graphs Γ∗a,b(G) for all the possible choices of a and b.

Denote by Λ∗(G) the collection of all the connected components of the
graphs Γ∗a,b(G), for all the possible choices of a, b in N. However for each
of the graphs in this family, we don’t assume to know from which choice
of a, b it arises.

We can think that we packaged all the graphs Γ∗a,b(G) in a (quite
spacious) box but that we did not paid enough attention during this
operation and we lost the information to which group G these graphs
correspond and the labels a, b.

DO NOT PANIC! a big amount of the lost information can be
reconstructed!
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Recognizing properties of G from the graphs

Let G be a finite group. From the knowledge of Λ∗(G)

we may recognize whether G is cyclic (and in that case determine
|G|);

we may recognize whether G is isomorphic either to the Klein group
or to the dihedral group Dp for some odd prime p (and in that case
determine |G|);

we may recognize which vertices have a loop around (and put them
back assuming that we have removed all loops in advance), whenever
G is non-cyclic and not isomorphic neither to the Klein group nor to
Dp for some odd prime p;

we may determine d(G);

if Γ ∈ Λ∗(G), we may uniquely determine a pair a ≤ b such that
Γ ∼= Γ∗a,b(G), whenever a+ b > d(G) and G 6= 1;

we may determine |G|.
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Recognizing properties of G from the graphs

Considerations on the number of edges of the graphs in Λ∗(G) allows
us to determine, for every t ∈ N, the number φG(t) of the ordered
generating t-tuples of G.

Philip Hall observed that the probability φG(t)/|G|t of generating a given
finite group G by a random t-tuple of elements is given by

PG(t) =
∑
n∈N

an(G)

nt

where an(G) =
∑
|G:H|=n µG(H) and µ is the Möbius function on the

subgroup lattice of G.

For a given finite group G, PG(s) can be determined from Λ∗(G).
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Recognizing properties of G from the graphs

PG(s) is a uniquely determined Dirichlet polynomial, with s a complex
variable and satisfying the property that for t ∈ N the number PG(t)
coincides with the probability of generating G by t randomly chosen
elements.

Note that the reciprocal of PG(s) is the “probabilistic zeta function” of G.

We may also recover from Λ∗(G) all the information that can be
determined from PG(s). In particular

we may deduce whether G is soluble or supersoluble;

for every prime power n, we may determine the number of maximal
subgroups of G of index n.
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More properties of G: nilpotency

Not all the properties of G can be recognized by the knowledge of the
coefficients of the Dirichlet polynomial PG(s).

For example we cannot deduce from PG(s) whether G is nilpotent.

Example

Consider G1 = C6 × C3 and G2 = Sym(3)× C3. It turns out that

PG1(s) = PG2(s) =

(
1− 1

2s

)(
1− 1

3s

)(
1− 3

3s

)
.

On the contrary Λ∗(G) encodes enough information to decide whether G is
nilpotent.
Theorem (AC & A. Lucchini ’17)
Let G be a finite nilpotent group. If H is a finite group and

Λ∗(H) = Λ∗(G), then H is nilpotent.
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More properties of G: the order of the Frattini subgroup

Another information that we cannot recover from the knowledge of |G|
and PG(s) is the order of Frat(G).

Example

Consider G1 = 〈x, y | x5 = 1, y4 = 1, xy = x2〉 and
G2 = 〈x, y | x5 = 1, y4 = 1, xy = x4〉.
We have that |G1| = |G2| = 20 and PG1(s) = PG2(s) =

(
1− 1

2s

) (
1− 5

5s

)
however Frat(G1) = 1 and Frat(G2) = 〈x2〉.

Theorem (AC & A. Lucchini ’17)
Let G be a finite group. We may determine |Frat(G)| from the

knowledge of Λ∗(G).

Theorem (AC & A. Lucchini ’17)
Let G be a finite non-abelian simple group. If H is finite group and

Λ∗(H) = Λ∗(G), then H ∼= G.
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More properties of G: the order of the Frattini subgroup

Another information that we cannot recover from the knowledge of |G|
and PG(s) is the order of Frat(G).

Example

Consider G1 = 〈x, y | x5 = 1, y4 = 1, xy = x2〉 and
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Note that most of the arguments use only a partial amount of the
information given by the family Λ∗(G).

Can a smaller family of graphs efficiently encode the generating property
of G?

In same crucial steps of the proofs of our results (for example when we
recognize the nilpotency and |Frat(G)| of G) a decisive role is played by
the graphs Γ∗1,t(G).

We can consider the family Λ1
∗(G) of the connected components of the

graphs Γ∗1,t(G) for t ∈ N.

Theorem (AC & A. Lucchini ’17)
Assume that the family Λ1

∗(G) is known. We may determine |G|, d(G),
PG(s) and |Frat(G)|. Moreover we may recognize whether or not G is
soluble, supersoluble, nilpotent.
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The following notion was recently introduced by P. Cameron, A. Lucchini
and C. Roney-Dougal:

Efficiently generation

A finite group G is efficiently generated if for all x ∈ G, d{x}(G) = d(G)
implies that x ∈ Frat(G), where d{x}(G) denotes the smallest cardinality
of a set of elements of G generating G together with x.

Generalizing another definition given by the same authors for 2-generator
groups, we say that

Non-zero spread

A finite group G has non-zero spread if (g) is not isolated in the graph
Γ1,d(G)−1(G) for every g 6= 1.
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Finite groups with non-zero spread

Theorem (AC & A. Lucchini ’17)
Let G be a finite group.

(1) Assume that the family Λ1
∗(G) = {Γ∗1,r−1(G)}r∈N is known. We may

deduce whether G is or not efficiently generated.

(2) G has non-zero spread if and only if G is efficiently generated and has
trivial Frattini subgroup.

If G is a finite group with non-zero spread, then G has the property that
every proper quotient can be generated by d(G)− 1 elements, but G
cannot.
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Finite groups with non-zero spread

Let L be a monolithic primitive group and let A be its unique minimal
normal subgroup.

For each positive integer k, let Lk be the k-fold direct
product of L. The crown-based power of L of size k is the subgroup Lk of
Lk defined by Lk = {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk mod A}.
From results of F. Dalla Volta and A. Lucchini one can deduce:

If G has non-zero spread, then there exist a monolithic primitive group L
and a positive integer t such that G ∼= Lt and d(Lt−1) < d(Lt) (setting
L0 = L/ soc(L)).

Conversely
Theorem (AC & A. Lucchini ’17)
Let L be a finite monolithic primitive group and t ∈ N. Assume that
G ∼= Lt and d(Lt−1) < d(Lt), then G has non-zero spread, except possibly
when t = 1 and d(L) = 2.
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Thank you!
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