RATIONALITY OF GROUPS AND CENTERS OF INTEGRAL GROUP RINGS

Andreas Bächle

Groups St Andrews 2017

NOTATION.

- G finite group
- $\mathbb{Z}G$ integral group ring of G
- $U(\mathbb{Z}G)$ group of units of $\mathbb{Z}G$

- 1. Rationality of Groups
- 2. Centers of Integral Group Rings
- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

- 1. Rationality of Groups
- 2. Centers of Integral Group Rings
- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

x rational in G : $\Leftrightarrow \qquad \forall j \in \mathbb{Z} : x^j \sim x \\ {}_{(j,o(x))=1}$

x rational in G:<> $\forall j \in \mathbb{Z} : x^j \sim x$ x semi-rational in G:<> $\exists m \in \mathbb{Z} \ \forall j \in \mathbb{Z} : x^j \sim x$ or $x^j \sim x^m$

x rational in G	:⇔	$orall j \in \mathbb{Z}$: (j,o(x))=1	$x^j \sim x$		
x semi-rational in G	$:\Leftrightarrow \exists m \in \mathbb{Z}$	$orall j \in \mathbb{Z}$: (j,o(x))=1	$x^j \sim x$	or	$\mathbf{x}^{j} \sim \mathbf{x}^{m}$
x inverse semi-rational in G	:⇔	$orall j \in \mathbb{Z}: \ (j,o(x))=1$	$x^j \sim x$	or	$x^j \sim x^{-1}$

x rational in G: $\forall j \in \mathbb{Z} : x^j \sim x$
(j,o(x))=1x semi-rational in G:: $\exists m \in \mathbb{Z} \quad \forall j \in \mathbb{Z} : x^j \sim x \text{ or } x^j \sim x^m$
(j,o(x))=1x inverse semi-rational in G : $\forall j \in \mathbb{Z} : x^j \sim x \text{ or } x^j \sim x^{-1}$
(j,o(x))=1

G is called *rational* $:\Leftrightarrow \forall x \in G : x$ is rational in *G* etc.

$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(\mathbf{y}) \colon \mathbf{y} \in G\})$$
$$\mathbb{Q}(\mathbf{x}) := \mathbb{Q}(\{\psi(\mathbf{x}) \colon \psi \in \operatorname{Irr}(G)\}).$$

$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(\mathbf{y}) : \mathbf{y} \in G\})$$
$$\mathbb{Q}(\mathbf{x}) := \mathbb{Q}(\{\psi(\mathbf{x}) : \psi \in \operatorname{Irr}(G)\}).$$

G rational
$$\Leftrightarrow$$
 CT(G) $\in \mathbb{Q}^{h \times h}$

$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(\mathbf{y}) \colon \mathbf{y} \in \mathbf{G}\})$$
$$\mathbb{Q}(\mathbf{x}) := \mathbb{Q}(\{\psi(\mathbf{x}) \colon \psi \in \mathsf{Irr}(\mathbf{G})\}).$$

 $\begin{array}{ll} G \text{ rational} & \Leftrightarrow & \mathsf{CT}(G) \in \mathbb{Q}^{h \times h} \\ G \text{ semi-rational} & \Leftrightarrow & \forall x \in G \text{: } [\mathbb{Q}(x) : \mathbb{Q}] \leq 2 \end{array}$

$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(y) : y \in G\})$$

 $\mathbb{Q}(x) := \mathbb{Q}(\{\psi(x) : \psi \in \mathsf{Irr}(G)\}).$

- G rational \Leftrightarrow $CT(G) \in \mathbb{Q}^{h \times h}$
- $\mathsf{G} \text{ semi-rational} \qquad \Leftrightarrow \quad \forall x \in \mathsf{G} \text{: } [\mathbb{Q}(x) : \mathbb{Q}] \leq 2$

G inverse semi-rational

 $\begin{array}{ll} \Leftrightarrow & \forall x \in G : \quad \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0} \\ \Leftrightarrow & \forall \chi \in \operatorname{Irr}(G) : \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_\chi}), d_\chi \in \mathbb{Z}_{\geq 0} \end{array}$

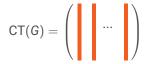
$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(y) : y \in G\})$$

 $\mathbb{Q}(x) := \mathbb{Q}(\{\psi(x) : \psi \in \mathsf{Irr}(G)\}).$

- G rational \Leftrightarrow $CT(G) \in \mathbb{Q}^{h \times h}$
- G semi-rational $\Leftrightarrow \quad \forall x \in G: [\mathbb{Q}(x) : \mathbb{Q}] \leq 2$

G inverse semi-rational

$$\begin{array}{ll} \Leftrightarrow & \forall x \in G: \quad \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0} \\ \Leftrightarrow & \forall \chi \in \operatorname{Irr}(G): \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_\chi}), d_\chi \in \mathbb{Z}_{\geq 0} \end{array}$$



$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(y) : y \in G\})$$

 $\mathbb{Q}(x) := \mathbb{Q}(\{\psi(x) : \psi \in \mathsf{Irr}(G)\}).$

- G rational \Leftrightarrow $CT(G) \in \mathbb{Q}^{h \times h}$
- $\textbf{G semi-rational} \qquad \Leftrightarrow \quad \forall x \in \textbf{G} \text{:} [\mathbb{Q}(x) : \mathbb{Q}] \leq 2$

G inverse semi-rational

 $\begin{array}{ll} \Leftrightarrow & \forall x \in G: \quad \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0} \\ \Leftrightarrow & \forall \chi \in \operatorname{Irr}(G): \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_\chi}), d_\chi \in \mathbb{Z}_{\geq 0} \end{array}$

$$CT(G) = \left(\begin{array}{c} & \cdots \\ & \end{array} \right) \quad CT(G) = \left(\begin{array}{c} & \cdots \\ & \end{array} \right) \quad CT(G) = \left(\begin{array}{c} & \cdots \\ & \cdots \end{array} \right)$$

► *S_n* is rational.

- S_n is rational.
- ► $P \in Syl_p(S_n)$.

• S_n is rational.

►
$$P \in \operatorname{Syl}_p(S_n)$$
.
 $P \text{ rational } \Leftrightarrow p = 2$.

• S_n is rational.

▶
$$P \in \text{Syl}_p(S_n)$$
.
 $P \text{ rational } \Leftrightarrow p = 2$.
 $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.

- ► S_n is rational.
- ► $P \in \text{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.

►
$$P \in \operatorname{Syl}_p(\operatorname{GL}(n, p^f)).$$

- ► S_n is rational.
- ► $P \in \operatorname{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.

►
$$P \in \text{Syl}_p(\text{GL}(n, p^f)).$$

 $P \text{ rational } \Leftrightarrow p = 2$

- ► S_n is rational.
- ► $P \in \operatorname{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.

►
$$P \in \operatorname{Syl}_p(\operatorname{GL}(n, p^f)).$$

 $P \text{ rational } \Leftrightarrow p = 2 \text{ and } n \leq 12.$

- S_n is rational.
- ► $P \in \operatorname{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.
- ► $P \in \text{Syl}_p(\text{GL}(n, p^f)).$ $P \text{ rational } \Leftrightarrow p = 2 \text{ and } n \le 12.$ P inverse semi-rational $\Rightarrow p = 2 \text{ and } n \le 24 \text{ or } p = 3 \text{ and } n \le 18.$

- S_n is rational.
- ► $P \in \text{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.
- ► $P \in \text{Syl}_p(\text{GL}(n, p^f)).$ $P \text{ rational } \Leftrightarrow p = 2 \text{ and } n \le 12.$ P inverse semi-rational $\Rightarrow p = 2 \text{ and } n \le 24 \text{ or } p = 3 \text{ and } n \le 18.$

DEFINITION.

- S_n is rational.
- ► $P \in \text{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.
- ► $P \in \text{Syl}_p(\text{GL}(n, p^f)).$ $P \text{ rational } \Leftrightarrow p = 2 \text{ and } n \le 12.$ P inverse semi-rational $\Rightarrow p = 2 \text{ and } n \le 24 \text{ or } p = 3 \text{ and } n \le 18.$

DEFINITION.

 $\pi(G) = \{p \text{ prime} : p \mid |G|\}, \text{ the prime spectrum of } G.$

- S_n is rational.
- ► $P \in \text{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.
- ▶ $P \in \text{Syl}_p(\text{GL}(n, p^f)).$ $P \text{ rational } \Leftrightarrow p = 2 \text{ and } n \le 12.$ P inverse semi-rational $\Rightarrow p = 2 \text{ and } n \le 24 \text{ or } p = 3 \text{ and } n \le 18.$

DEFINITION.

 $\pi(G) = \{p \text{ prime} : p \mid |G|\}, \text{ the prime spectrum of } G.$

Then $|\pi(S_n)| \longrightarrow \infty$ for $n \to \infty$.

G rational	G inverse semi-rational	G semi-rational

	G rational	G inverse semi-rational	G semi-rational
G solvable			

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Rightarrow $\pi(G) \subseteq \{2, 3, 5\}$ Gow, 1976		

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Rightarrow $\pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\overrightarrow{\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}}$ Dolfi, 2010

	G rational	G inverse semi-rational	G semi-rational
G solvable	$ \begin{array}{c} \Longrightarrow \\ \pi(G) \subseteq \{2,3,5\} \\ \text{Gow, 1976} \end{array} $		$\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$ Dolfi, 2010

	G rational	G inverse semi-rational	G semi-rational
G solvable	$ \begin{array}{c} \Longrightarrow \\ \pi(G) \subseteq \{2,3,5\} \\ \text{Gow, 1976} \end{array} $		$\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$ Dolfi, 2010
G odd			

	G rational	G inverse semi-rational	G semi-rational
G solvable	$ \begin{array}{c} \Longrightarrow \\ \pi(G) \subseteq \{2,3,5\} \\ \text{Gow, 1976} \end{array} $		$\begin{array}{c} \Longrightarrow & ?\\ \pi(G) \subseteq \{2,3,5,7,13,17\}\\ \text{Dolfi, 2010} \end{array}$
G odd	G = 1		

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Rightarrow $\pi(G) \subseteq \{2, 3, 5\}$ Gow, 1976		$\xrightarrow{\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}}$
G odd	G = 1		G inverse semi-rational hillag-Dolfi, 2010

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Rightarrow $\pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\begin{array}{c} \Longrightarrow & ?\\ \pi(\mathcal{G}) \subseteq \{2, 3, 5, 7, 13, 17\}\\ \text{Dolfi, 2010} \end{array}$
G odd	G = 1		G inverse semi-rational Chillag-Dolfi, 2010
G simple			

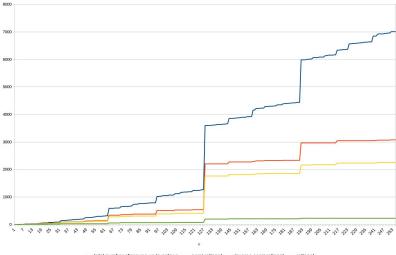
	G rational	G inverse semi-rational	G semi-rational
G solvable	$ \begin{array}{c} \Longrightarrow \\ \pi(G) \subseteq \{2,3,5\} \\ \text{Gow, 1976} \end{array} $		$\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$ Dolfi, 2010
G odd	G = 1	G semi-rational ↔ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989		

	G rational	G inverse semi-rational	G semi-rational
G solvable	$\Rightarrow \pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\qquad \qquad $
G odd	G = 1	G semi-rational ⇐⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989		all A _n + 41 groups Alavi-Daneshkhah, 2016

	G rational	G inverse semi-rational	G semi-rational
G solvable	$\Rightarrow \pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\qquad \qquad $
G odd	G = 1	G semi-rational ↔ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989	25 groups	all A _n + 41 groups Alavi-Daneshkhah, 2016

	G rational	G inverse semi-rational	G semi-rational
G solvable	$\Rightarrow \pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\qquad \qquad $
G odd	G = 1	G semi-rational ⇐⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989	25 groups	all A _n + 41 groups Alavi-Daneshkhah, 2016
$ G \leq 511$			

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Rightarrow $\pi(G) \subseteq \{2,3,5\}$ Gow, 1976		$\qquad \qquad $
G odd	G = 1	G semi-rational ⇐⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989	25 groups	all A _n + 41 groups Alavi-Daneshkhah, 2016
$ G \leq 511$	pprox 1%	pprox 46%	pprox 61%



1. Rationality of Groups

2. Centers of Integral Group Rings

- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

$\mathsf{U}(\mathbb{Z}\mathsf{G})$

$\pm G \subseteq \mathsf{U}(\mathbb{Z}G) \quad \text{- "trivial units"}$

- $\pm G \subseteq U(\mathbb{Z}G)$ "trivial units"
- $\pm G = U(\mathbb{Z}G) \iff G$ abelian with exp $G \mid 4$ or exp $G \mid 6$ or G Hamiltonian 2-group (Higman, 1940)

- $\pm G \subseteq U(\mathbb{Z}G) \quad \quad \text{"trivial units"} \\ \pm G = U(\mathbb{Z}G) \quad \Leftrightarrow \quad G \text{ abelian with}$
- $\pm G = U(\mathbb{Z}G) \iff G \text{ abelian with } \exp G \mid 4 \text{ or } \exp G \mid 6 \text{ or}$ G Hamiltonian 2-group (Higman, 1940)

 $\mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G}))$

- $\pm G \subseteq U(\mathbb{Z}G)$ "trivial units"
- $\pm G = U(\mathbb{Z}G) \iff G$ abelian with exp $G \mid 4$ or exp $G \mid 6$ or G Hamiltonian 2-group (Higman, 1940)

$$\pm \mathsf{Z}(\mathsf{G}) \subseteq \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) \quad \text{-} \quad \text{``trivial central units''}$$

- $\pm G \subseteq \mathsf{U}(\mathbb{Z}G) \quad \text{- "trivial units"}$
- $\pm G = U(\mathbb{Z}G) \quad \Leftrightarrow \quad G \text{ abelian with } \exp G \mid 4 \text{ or } \exp G \mid 6$ or G Hamiltonian 2-group (Higman, 1940)

$$\begin{array}{ll} \pm \mathsf{Z}(\mathsf{G}) \subseteq \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & \neg \\ \pm \mathsf{Z}(\mathsf{G}) = \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & \Leftarrow \end{array}$$

- "trivial central units"
- ⇒: G cut group (all central units trivial)

- $\pm G \subseteq \mathsf{U}(\mathbb{Z}G) \quad \text{- "trivial units"}$
- $\pm G = U(\mathbb{Z}G) \quad \Leftrightarrow \quad G \text{ abelian with } \exp G \mid 4 \text{ or } \exp G \mid 6$ or G Hamiltonian 2-group (Higman, 1940)

$$\begin{array}{ll} \pm \mathsf{Z}(\mathsf{G}) \subseteq \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & \neg \\ \pm \mathsf{Z}(\mathsf{G}) = \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & \Leftrightarrow : \end{array}$$

"trivial central units" G cut group (all central units trivial)

$$\left[\mathsf{U}(\mathbb{Z}\mathsf{G}):\Big\langle \;(\mathbb{Z}\mathsf{G})^1,\mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G}))\;\Big\rangle\right]<\infty$$

- $\pm G \subseteq U(\mathbb{Z}G) \quad \quad \text{"trivial units"} \\ \pm G = U(\mathbb{Z}G) \quad \leftrightarrow \quad G \text{ abelian with}$
- $\pm G = U(\mathbb{Z}G) \iff G \text{ abelian with } \exp G \mid 4 \text{ or } \exp G \mid 6 \text{ or}$ G Hamiltonian 2-group (Higman, 1940)

$$\begin{array}{ll} \pm \mathsf{Z}(\mathsf{G}) \subseteq \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & - \\ \pm \mathsf{Z}(\mathsf{G}) = \mathsf{Z}(\mathsf{U}(\mathbb{Z}\mathsf{G})) & \Leftrightarrow : \end{array}$$

"trivial central units" G cut group (all central units trivial)

$$\begin{bmatrix} U(\mathbb{Z}G) : \left\langle (\mathbb{Z}G)^1, Z(U(\mathbb{Z}G)) \right\rangle \end{bmatrix} < \infty$$

$$\xrightarrow{\nearrow} \qquad \stackrel{\swarrow}{\longrightarrow}$$
often up to f.i. covered by "bi-
cyclic units" & "Bass units"

THEOREM (Ritter-Sehgal, et.al.) For a finite group *G* TFAE (1) *G* is cut. (2) $\forall \chi \in Irr(G)$: $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), \quad d_{\chi} \in \mathbb{Z}_{>0}.$

THEOREM (Ritter-Sehgal, et.al.) For a finite group *G* TFAE

- (1) G is cut.
- (2) $\forall \chi \in Irr(G)$: $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), \quad d_{\chi} \in \mathbb{Z}_{\geq 0}.$
- (3) G is inverse semi-rational.

THEOREM (Ritter-Sehgal, et.al.) For a finite group G TFAE

- (1) G is cut.
- (2) $\forall \chi \in Irr(G)$: $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), \quad d_{\chi} \in \mathbb{Z}_{\geq 0}.$
- (3) G is inverse semi-rational.
- (4) $K_1(\mathbb{Z}G)$ is finite.

THEOREM (Ritter-Sehgal, et.al.) For a finite group G TFAE

(1) *G* is cut.

- (2) $\forall \chi \in Irr(G)$: $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), \quad d_{\chi} \in \mathbb{Z}_{\geq 0}.$
- (3) G is inverse semi-rational.
- (4) $K_1(\mathbb{Z}G)$ is finite.

In particular: $G \operatorname{cut} \Rightarrow G/N \operatorname{cut}$ for all $N \leq G$.

- 1. Rationality of Groups
- 2. Centers of Integral Group Rings
- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

THEOREM (Bakshi-Maheshwary-Passi, 2016) $G \neq 1$ cut-group (1) $2 \in \pi(G)$ or $3 \in \pi(G)$.

- (2) If G is nilpotent, then G is a $\{2,3\}$ -group.
- (3) If G is metacyclic, then G is in a list of 52 groups.

THEOREM (Bakshi-Maheshwary-Passi, 2016) $G \neq 1$ cut-group (1) $2 \in \pi(G)$ or $3 \in \pi(G)$.

- (2) If G is nilpotent, then G is a $\{2,3\}$ -group.
- (3) If G is metacyclic, then G is in a list of 52 groups.

THEOREM (Maheshwary, 2016) Let *G* be a solvable cut group.

(1) If |G| is odd $\Longrightarrow \pi(G) \subseteq \{3,7\}$ and all elements of *G* are of prime power order.

(2) If |G| is even and all elements of *G* are of prime power order $\implies \pi(G) \subseteq \{2, 3, 5, 7\}.$ THEOREM (Bakshi-Maheshwary-Passi, 2016) $G \neq 1$ cut-group (1) $2 \in \pi(G)$ or $3 \in \pi(G)$.

- (2) If G is nilpotent, then G is a $\{2,3\}$ -group.
- (3) If G is metacyclic, then G is in a list of 52 groups.

THEOREM (Maheshwary, 2016) Let G be a solvable cut group.

- (1) If |G| is odd $\Longrightarrow \pi(G) \subseteq \{3,7\}$ and all elements of *G* are of prime power order.
- (2) If |G| is even and all elements of *G* are of prime power order $\implies \pi(G) \subseteq \{2, 3, 5, 7\}.$

THEOREM (B., 2017) Let G be a solvable cut group. Then $\pi(G) \subseteq \{2, 3, 5, 7\}$. **THEOREM (B., 2017)** Let *G* be a solvable cut group. Then $\pi(G) \subseteq \{2, 3, 5, 7\}$. THEOREM (B., 2017) Let G be a solvable cut group. Then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Strategy of proof.

- $\pi(G) \subseteq \{2, 3, 5, 7, 13\}$ (Chillag-Dolfi).
- Let G be a minimal counterexample, $V \leq G$ minimal.
- Then $G \simeq V \rtimes G/V$, G/V is again cut.
- The $\mathbb{F}_{13}[G/V]$ -module V has the "12-eigenvalue property".
- Derive restrictions on field of character values of V.
- By a result of Farias e Soares such a module cannot exist for a solvable group G/V.

- 1. Rationality of Groups
- 2. Centers of Integral Group Rings
- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

THEOREM (B., 2017). Let *K* be a Frobenius complement.

(1) If |*K*| is even ...

(2) If |K| is odd ...

THEOREM (B., 2017). Let *K* be a Frobenius complement.

(1) If |K| is even and the compelement of a cut Frobenius group *G*, then *G* is isomorphic to a group in the series on the left $(b, c, d \in \mathbb{Z}_{\geq 1})$ or one of the groups on the right.

(a) $C_3^b \rtimes C_2$ (b) $C_3^{2b} \rtimes C_4$ (c) $C_3^{2b} \rtimes Q_8$ (c) $C_5^{2b} \rtimes Q_8$ (c) $C_5^{2b} \rtimes Q_8$ (c) $C_5^2 \rtimes C_4$ (c) $C_5^2 \rtimes C_4$ (c) $C_7^d \rtimes C_6$ (c) $C_7^{2d} \rtimes (Q_8 \times C_3)$ (c) $C_7^{2d} \rtimes (Q_8 \times C_3)$

Conversely, for each of the above structure descriptions, there is a unique cut Frobenius group.

(2) If |K| is odd ...

THEOREM (B., 2017). Let *K* be a Frobenius complement.

(1) If |*K*| is even ...

(2) If |K| is odd, then there is a cut Frobenius group *G* if and only if $K \simeq C_3$ and the kernel *F* is a group admitting a fixed-point free automorphism σ of order 3 such that

(a) *F* is a cut 2-group.

In particular, $|F| = 2^{2a}$, $a \in \mathbb{Z}_{\geq 1}$ and F is an extension of an abelian group of exponent a divisor of 4 by an an abelian group of exponent a divisor of 4.

(b) *F* is an extension of an elementary abelian 7-group by an elementary abelian 7-group, $\exp F = 7$ and σ fixes each cyclic subgroup of *F*. Strategy of proof. G cut Frobenius group with complement K.

- K is also cut.
- Show that *K* is solvable, so $\pi(G) \subseteq \{2, 3, 5, 7\}$.
- Determine possible structures of $P \in Syl_p(K)$.
- Determine possible structures of *K*.
- ► Use irreducible representations of these complements to describe structure of some *G*.
- Decide which subdirect products of the groups above are cut Frobenius groups.

REFERENCES

A. BÄCHLE, Integral group rings of solvable groups with trivial central units, 2017, arXiv:1701.04347[math.GR].

G.K. BAKSHI, S. MAHESHWARY, I.B.S. PASSI, Integral group rings with all central units trivial, J. Pure Appl. Algebra, **221**(8), 1955-1965, 2017, arXiv:1606.06860[math.RA].

D. CHILLAG, S. DOLFI, *Semi-rational solvable groups*, J. Group Theory **13**(4), 535-548, 2010.

S. MAHESHWARY, Integral group rings with all central units trivial: solvable groups, 2016, arXiv:1612.08344[math.RA].

J. RITTER, S.K. SEHGAL, Integral group rings with trivial central units, Proc. Amer. Math. Soc. **108**(2), 327-329, 1990.