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NOTATION.

G finite group

ZG integral group ring of G

U(ZG) group of units of ZG
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DEFINITIONS. x ∈ G.

x rational in G :⇔ ∀ j ∈ Z
(j,o(x))=1

: xj ∼ x

x semi-rational in G :⇔ ∃m ∈ Z ∀ j ∈ Z
(j,o(x))=1

: xj ∼ x or xj ∼ xm

x inverse semi-rational in G :⇔ ∀ j ∈ Z
(j,o(x))=1

: xj ∼ x or xj ∼ x−1

G is called rational :⇔ ∀ x ∈ G : x is rational in G
etc.
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For χ ∈ Irr(G), x ∈ G set

Q(χ) := Q({χ(y) : y ∈ G})
Q(x) := Q({ψ(x) : ψ ∈ Irr(G)}).

G rational ⇔ CT(G) ∈ Qh×h

G semi-rational ⇔ ∀x ∈ G: [Q(x) : Q] ≤ 2

G inverse semi-rational ⇔ ∀x ∈ G: Q(x) ⊆ Q(
√
−dx), dx ∈ Z≥0

⇔ ∀χ ∈ Irr(G): Q(χ) ⊆ Q(
√
−dχ), dχ ∈ Z≥0

CT(G) =

 ...

 CT(G) =

 ...

 CT(G) =

 ...
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EXAMPLES.

I Sn is rational.
I P ∈ Sylp(Sn).

P rational ⇔ p = 2.
P inverse semi-rational ⇔ p ∈ {2,3}.

I P ∈ Sylp(GL(n, pf)).
P rational ⇔ p = 2 and n ≤ 12.
P inverse semi-rational

⇒ p = 2 and n ≤ 24 or p = 3 and n ≤ 18.

DEFINITION.
π(G) = {p prime : p | |G|}, the prime spectrum of G.

Then |π(Sn)| −→ ∞ for n→∞.
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±G ⊆ U(ZG) – “trivial units”
±G = U(ZG) ⇔ G abelian with expG | 4 or expG | 6 or

G Hamiltonian 2-group
(Higman, 1940)

±Z(G) ⊆ Z(U(ZG)) – “trivial central units”
±Z(G) = Z(U(ZG)) ⇔: G cut group

(all central units trivial)

[
U(ZG) :

〈
(ZG)1,Z(U(ZG))

〉]
<∞

↗ ↖
often up to f.i.
by “bicyclic
units”

covered by “bi-
cyclic units” &
“Bass units”
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THEOREM (Ritter-Sehgal, et.al.) For a finite group G TFAE
(1) G is cut.
(2) ∀χ ∈ Irr(G): Q(χ) ⊆ Q(

√
−dχ), dχ ∈ Z≥0.

(3) G is inverse semi-rational.
(4) K1(ZG) is finite.

In particular: G cut ⇒ G/N cut for all NE G.
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THEOREM (Bakshi-Maheshwary-Passi, 2016) G 6= 1 cut-group
(1) 2 ∈ π(G) or 3 ∈ π(G).
(2) If G is nilpotent, then G is a {2,3}-group.
(3) If G is metacyclic, then G is in a list of 52 groups.

THEOREM (Maheshwary, 2016) Let G be a solvable cut group.
(1) If |G| is odd =⇒ π(G) ⊆ {3, 7} and

all elements of G are of prime power order.
(2) If |G| is even and all elements of G are of prime power order

=⇒ π(G) ⊆ {2,3,5, 7}.

THEOREM (B., 2017) Let G be a solvable cut group.
Then π(G) ⊆ {2,3,5, 7}.
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THEOREM (B., 2017) Let G be a solvable cut group.
Then π(G) ⊆ {2,3,5, 7}.

Strategy of proof.
I π(G) ⊆ {2,3,5, 7, 13} (Chillag-Dolfi).
I Let G be a minimal counterexample, V E G minimal.
I Then G ' V o G/V, G/V is again cut.
I The F13[G/V]-module V has the “12-eigenvalue property”.
I Derive restrictions on field of character values of V.
I By a result of Farias e Soares such a module cannot exist

for a solvable group G/V. �
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THEOREM (B., 2017). Let K be a Frobenius complement.

(1) If |K| is even ...

(2) If |K| is odd ...
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THEOREM (B., 2017). Let K be a Frobenius complement.

(1) If |K| is even and the compelement of a cut Frobenius
group G, then G is isomorphic to a group in the series on
the left (b, c, d ∈ Z≥1) or one of the groups on the right.
(a) Cb

3 o C2 (α) C2
5 o Q8

(b) C2b
3 o C4 (β) C2

5 o (C3 o C4)
(c) C2b

3 o Q8 (γ) C2
5 o SL(2,3)

(d) Cc
5 o C4 (δ) C2

7 o SL(2,3)
(e) Cd

7 o C6
(f) C2d

7 o (Q8 × C3)
Conversely, for each of the above structure descriptions,
there is a unique cut Frobenius group.

(2) If |K| is odd ...
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THEOREM (B., 2017). Let K be a Frobenius complement.

(1) If |K| is even ...

(2) If |K| is odd, then there is a cut Frobenius group G if and
only if K ' C3 and the kernel F is a group admitting a
fixed-point free automorphism σ of order 3 such that

(a) F is a cut 2-group.
In particular, |F| = 22a, a ∈ Z≥1 and F is an extension of an
abelian group of exponent a divisor of 4 by an an abelian
group of exponent a divisor of 4.

(b) F is an extension of an elementary abelian
7-group by an elementary abelian 7-group,
exp F = 7 and σ fixes each cyclic subgroup of F.
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Strategy of proof. G cut Frobenius group with complement K.
I K is also cut.
I Show that K is solvable, so π(G) ⊆ {2,3,5, 7}.
I Determine possible structures of P ∈ Sylp(K).
I Determine possible structures of K.
I Use irreducible representations of these complements to

describe structure of some G.
I Decide which subdirect products of the groups above are

cut Frobenius groups. �
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