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Non-abelian tensor product of groups (Commutator Approach)

Non-abelian tensor product of groups

Let G and H be groups each of which acts upon the other (on the right),

G × H → G , (g , h) 7→ gh; H × G → H, (h, g) 7→ hg

and on itself by conjugation, in such a way that for all g , g1 ∈ G and
h, h1 ∈ H,

g (hg1 ) =

((
gg−1

1

)h
)g1

and h(gh1) =
((

hh
−1
1

)g)h1
. (1)

In this situation we say that G and H act compatibly on each other. Let
Hϕ be an extra copy of H, isomorphic via ϕ : H → Hϕ, h 7→ hϕ, for all
h ∈ H. Consider the group η(G ,H) defined in [Nak00] as

η(G ,H) = 〈G ,Hϕ | [g , hϕ]g1 = [gg1 , (hg1)ϕ], [g , hϕ]h
ϕ
1 = [gh1 , (hh1)ϕ],

∀g , g1 ∈ G , h, h1 ∈ H〉.
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Non-abelian tensor product of groups (Commutator Approach)

Non-abelian tensor product of groups

It is a well known fact (see [Nak00, Proposition 2.2]) that the subgroup
[G ,Hϕ] of η(G ,H) is canonically isomorphic with the non-abelian tensor
product G ⊗ H, as defined by R. Brown and J.-L. Loday in their seminal
paper [BL87], the isomorphism being induced by g ⊗ h 7→ [g , hϕ] (see also
[EL95]).

It is clear that the subgroup [G ,Hϕ] is normal in η(G ,H) and
one has the decomposition

η(G ,H) = ([G ,Hϕ] · G ) · Hϕ, (2)

where the dots mean (internal) semidirect products.

We observe that the defining relations of the tensor product can be viewed
as abstractions of commutator relations (see also [Kap99]).
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Non-abelian tensor square of groups

Non-abelian tensor square of groups

We observe that when G = H and all actions are conjugations, η(G ,H)
becomes the group ν(G ) introduced in [Roc91]. More precisely,

ν(G ) := 〈G ,Gϕ | [g1, g2
ϕ]g3 = [g1

g3 , (g2
g3)ϕ] = [g1, g2

ϕ]g3
ϕ
, gi ∈ G 〉.

In particular, ν(G ) = ([G ,Gϕ] · G ) · Gϕ, where [G ,Gϕ] is isomorphic to
G ⊗ G , the non-abelian tensor square of G . In the notation of [NR94], we
denote by ∆(G ) the diagonal subgroup of the non-abelian tensor square
[G ,Gϕ], ∆(G ) = 〈[g , gϕ] | g ∈ G 〉.

There is also a connection between ν(G ) and a group, χ(G ), introduced
by Sidki [Sid80], defined by

χ(G ) := 〈G ,Gϕ | [g , gϕ] = 1, ∀g ∈ G 〉.
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Non-abelian tensor square of groups

Some Results

Let G and H be groups that act compatibly on each other.

(G. Ellis, [Ell87]) If G and H are finite, then the non-abelian tensor
product [G ,Hϕ] is finite;

(P. Moravec, [Mor08]) If G and H are locally finite, then the
non-abelian tensor product [G ,Hϕ] is locally finite;

Now, consider G = H and all actions are conjugations.

(Parvizi and Niroomand, [PN12]) Suppose that G is a finitely
generated group. If the non-abelian tensor square [G ,Gϕ] is finite,
then so is G .
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Non-abelian tensor square of groups

Question

An element α ∈ η(G ,H) is called a tensor if α = [a, bϕ] for suitable a ∈ G
and b ∈ H. If N and K are subgroups of G and H, respectively, let
T⊗(N,K ) denote the set of all tensors [a, bϕ] with a ∈ N and b ∈ K . In
particular, [N,Kϕ] = 〈T⊗(N,K )〉.

In the present paper we want to study the following question:

Question: If we assume certain restrictions on the set T⊗(G ,H), how
does this influence in the structure of the groups [G ,Hϕ] or η(G ,H)?
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Non-abelian tensor square of groups

Commutators and Tensors

In [Ros62] Rosenlicht proved that if N and K are subgroups of a group M,
with N normal in M, and if the set of commutators
{[n, k] : n ∈ N, k ∈ K} is finite, then so is the commutator subgroup
[N,K ]. Under appropriate conditions we can extend this result to the
subgroup [N,Kϕ] of η(G ,H).

Theorem 1. Let G and H be groups that act compatibly on each other
and suppose that N and K are subgroups of G and H, respectively, such
that N is K -invariant and K is N-invariant. If the set T⊗(N,K ) is finite,
then so is the subgroup [N,Kϕ] of η(G ,H). In particular, the set
T⊗(G ,H) is finite if and only if [G ,Hϕ] is finite.

An immediate consequence of the above theorem is the finiteness criterion
for the non-abelian tensor product of finite groups due to G. Ellis (see also
[Tho10]).
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Non-abelian tensor square of groups

Non-abelian tensor square of groups

In the opposite direction one could be interested in studying conditions
under which the finiteness of the [G ,Hϕ] implies that of G and H;

in
general, the finiteness of [G ,Hϕ] does not implies the finiteness of the
groups involved.

However, when G = H and all actions are conjugations, we obtain the
following result for the non-abelian tensor square:

Theorem 2. Let G be a group. The non-abelian tensor square [G ,Gϕ] is
finite if and only if G is a BFC-group and [G ab, (G ab)ϕ] is finite.
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Non-abelian tensor square of groups

Non-abelian tensor square of groups

In the sequel we consider certain finiteness conditions for the group G in
terms of the torsion elements of the non-abelian tensor square [G ,Gϕ].

Lemma. (Rocco, [Roc94]) Let G be a group with finitely generated
abelianization. Suppose that the diagonal subgroup ∆(G ) is periodic.
Then the abelianization G ab is finite.

Theorem 3. Let G be a group with finitely generated abelianization.

(a) If the diagonal subgroup ∆(G ) is periodic, then ∆(G ) is finite.
Moreover, the abelianization G ab is isomorphic to a subgroup of the
diagonal subgroup ∆(G ).

(b) If π is a set of primes and the non-abelian tensor square [G ,Gϕ] is a
π-group, then so is the group G .
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Non-abelian tensor square of groups

A celebrated result due to E. I. Zel’manov [Zel91a, Zel91b] refers to the
positive solution of the Restricted Burnside Problem: every residually finite
group of bounded exponent is locally finite.

Later, P. Shumyatsky [Shu99]
prove that if G is a residually finite group in which every commutator has
order dividing pm, then G ′ is locally finite. We obtain the following results:

Proposition 1. Let G be a finitely generated locally graded group.
Suppose that the non-abelian tensor square [G ,Gϕ] has bounded
exponent. Then G is finite.

Proposition 2. Let p be a prime and m a positive integer. Let G be a
finitely generated locally graded group. Suppose that every tensor has
order dividing pm. Then G is finite.
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