Finiteness conditions for the non-abelian tensor product of groups¹

Raimundo Bastos Universidade de Brasília - UnB

Joint work with Irene Nakaoka (UEM) and Noraí Rocco (UnB)

Groups St Andrews 2017 - Birmingham

Let G and H be groups each of which acts upon the other (on the right),

$$G \times H \to G$$
, $(g,h) \mapsto g^h$; $H \times G \to H$, $(h,g) \mapsto h^g$

and on itself by conjugation, in such a way that for all $g,g_1\in G$ and $h,h_1\in H$,

$$g^{(h^{g_1})} = \left(\left(g^{g_1^{-1}} \right)^h \right)^{g_1} \text{ and } h^{\left(g^{h_1} \right)} = \left(\left(h^{h_1^{-1}} \right)^g \right)^{h_1}.$$
 (1)

2 / 13

Raimundo Bastos Finiteness conditions Groups St Andrews

Let G and H be groups each of which acts upon the other (on the right),

$$G \times H \rightarrow G, (g, h) \mapsto g^h; H \times G \rightarrow H, (h, g) \mapsto h^g$$

and on itself by conjugation, in such a way that for all $g,g_1\in G$ and $h,h_1\in H$,

$$g^{(h^{g_1})} = \left(\left(g^{g_1^{-1}} \right)^h \right)^{g_1} \text{ and } h^{\left(g^{h_1} \right)} = \left(\left(h^{h_1^{-1}} \right)^g \right)^{h_1}.$$
 (1)

In this situation we say that G and H act *compatibly* on each other. Let H^{φ} be an extra copy of H, isomorphic via $\varphi: H \to H^{\varphi}, \ h \mapsto h^{\varphi}$, for all $h \in H$.

2 / 13

Raimundo Bastos Finiteness conditions Groups St Andrews

Let G and H be groups each of which acts upon the other (on the right),

$$G \times H \to G$$
, $(g,h) \mapsto g^h$; $H \times G \to H$, $(h,g) \mapsto h^g$

and on itself by conjugation, in such a way that for all $g, g_1 \in G$ and $h, h_1 \in H$

$$g^{(h^{g_1})} = \left(\left(g^{g_1^{-1}} \right)^h \right)^{g_1} \text{ and } h^{\left(g^{h_1} \right)} = \left(\left(h^{h_1^{-1}} \right)^g \right)^{h_1}.$$
 (1)

In this situation we say that G and H act compatibly on each other. Let H^{φ} be an extra copy of H, isomorphic via $\varphi: H \to H^{\varphi}, h \mapsto h^{\varphi}$, for all $h \in H$. Consider the group $\eta(G, H)$ defined in [Nak00] as

$$\begin{split} \eta(G,H) = \langle G,H^{\varphi} \mid & [g,h^{\varphi}]^{g_1} = [g^{g_1},(h^{g_1})^{\varphi}], \ [g,h^{\varphi}]^{h_1^{\varphi}} = [g^{h_1},(h^{h_1})^{\varphi}], \\ \forall g,g_1 \in G, \ h,h_1 \in H \rangle. \end{split}$$

Raimundo Bastos Finiteness conditions Groups St Andrews

It is a well known fact (see [Nak00, Proposition 2.2]) that the subgroup $[G, H^{\varphi}]$ of $\eta(G, H)$ is canonically isomorphic with the *non-abelian tensor* product $G \otimes H$, as defined by R. Brown and J.-L. Loday in their seminal paper [BL87], the isomorphism being induced by $g \otimes h \mapsto [g, h^{\varphi}]$ (see also [EL95]).

It is a well known fact (see [Nak00, Proposition 2.2]) that the subgroup $[G, H^{\varphi}]$ of $\eta(G, H)$ is canonically isomorphic with the *non-abelian tensor* product $G \otimes H$, as defined by R. Brown and J.-L. Loday in their seminal paper [BL87], the isomorphism being induced by $g \otimes h \mapsto [g, h^{\varphi}]$ (see also [EL95]). It is clear that the subgroup $[G, H^{\varphi}]$ is normal in $\eta(G, H)$

It is a well known fact (see [Nak00, Proposition 2.2]) that the subgroup $[G,H^{\varphi}]$ of $\eta(G,H)$ is canonically isomorphic with the *non-abelian tensor* product $G\otimes H$, as defined by R. Brown and J.-L. Loday in their seminal paper [BL87], the isomorphism being induced by $g\otimes h\mapsto [g,h^{\varphi}]$ (see also [EL95]). It is clear that the subgroup $[G,H^{\varphi}]$ is normal in $\eta(G,H)$ and one has the decomposition

$$\eta(G, H) = ([G, H^{\varphi}] \cdot G) \cdot H^{\varphi}, \tag{2}$$

where the dots mean (internal) semidirect products.

Raimundo Bastos

It is a well known fact (see [Nak00, Proposition 2.2]) that the subgroup $[G,H^{\varphi}]$ of $\eta(G,H)$ is canonically isomorphic with the *non-abelian tensor product* $G\otimes H$, as defined by R. Brown and J.-L. Loday in their seminal paper [BL87], the isomorphism being induced by $g\otimes h\mapsto [g,h^{\varphi}]$ (see also [EL95]). It is clear that the subgroup $[G,H^{\varphi}]$ is normal in $\eta(G,H)$ and one has the decomposition

$$\eta(G, H) = ([G, H^{\varphi}] \cdot G) \cdot H^{\varphi}, \tag{2}$$

where the dots mean (internal) semidirect products.

We observe that the defining relations of the tensor product can be viewed as abstractions of commutator relations (see also [Kap99]).

Raimundo Bastos

We observe that when G = H and all actions are conjugations, $\eta(G, H)$ becomes the group $\nu(G)$ introduced in [Roc91]. More precisely,

$$\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}}, \ g_i \in G \rangle.$$

We observe that when G = H and all actions are conjugations, $\eta(G, H)$ becomes the group $\nu(G)$ introduced in [Roc91]. More precisely,

$$\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}}, \ g_i \in G \rangle.$$

In particular, $\nu(G) = ([G, G^{\varphi}] \cdot G) \cdot G^{\varphi}$, where $[G, G^{\varphi}]$ is isomorphic to $G \otimes G$, the non-abelian tensor square of G. In the notation of [NR94], we denote by $\Delta(G)$ the diagonal subgroup of the non-abelian tensor square $[G, G^{\varphi}]$, $\Delta(G) = \langle [g, g^{\varphi}] \mid g \in G \rangle$.

We observe that when G = H and all actions are conjugations, $\eta(G, H)$ becomes the group $\nu(G)$ introduced in [Roc91]. More precisely,

$$\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}}, \ g_i \in G \rangle.$$

In particular, $\nu(G) = ([G, G^{\varphi}] \cdot G) \cdot G^{\varphi}$, where $[G, G^{\varphi}]$ is isomorphic to $G \otimes G$, the non-abelian tensor square of G. In the notation of [NR94], we denote by $\Delta(G)$ the diagonal subgroup of the non-abelian tensor square $[G, G^{\varphi}]$, $\Delta(G) = \langle [g, g^{\varphi}] \mid g \in G \rangle$.

There is also a connection between $\nu(G)$ and a group, $\chi(G)$, introduced by Sidki [Sid80],

We observe that when G = H and all actions are conjugations, $\eta(G, H)$ becomes the group $\nu(G)$ introduced in [Roc91]. More precisely,

$$\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}}, \ g_i \in G \rangle.$$

In particular, $\nu(G) = ([G, G^{\varphi}] \cdot G) \cdot G^{\varphi}$, where $[G, G^{\varphi}]$ is isomorphic to $G \otimes G$, the non-abelian tensor square of G. In the notation of [NR94], we denote by $\Delta(G)$ the diagonal subgroup of the non-abelian tensor square $[G, G^{\varphi}]$, $\Delta(G) = \langle [g, g^{\varphi}] \mid g \in G \rangle$.

There is also a connection between $\nu(G)$ and a group, $\chi(G)$, introduced by Sidki [Sid80], defined by

$$\chi(G) := \langle G, G^{\varphi} \mid [g, g^{\varphi}] = 1, \ \forall g \in G \rangle.$$

Some Results

Let G and H be groups that act compatibly on each other.

• (G. Ellis, [Ell87]) If G and H are finite, then the non-abelian tensor product $[G, H^{\varphi}]$ is finite;

Some Results

Let G and H be groups that act compatibly on each other.

- (G. Ellis, [Ell87]) If G and H are finite, then the non-abelian tensor product [G, H^φ] is finite;
- (P. Moravec, [Mor08]) If G and H are locally finite, then the non-abelian tensor product $[G, H^{\varphi}]$ is locally finite;

Some Results

Let G and H be groups that act compatibly on each other.

- (G. Ellis, [Ell87]) If G and H are finite, then the non-abelian tensor product [G, H^φ] is finite;
- (P. Moravec, [Mor08]) If G and H are locally finite, then the non-abelian tensor product $[G, H^{\varphi}]$ is locally finite;

Now, consider G = H and all actions are conjugations.

• (Parvizi and Niroomand, [PN12]) Suppose that G is a finitely generated group. If the non-abelian tensor square $[G, G^{\varphi}]$ is finite, then so is G.

Question

An element $\alpha \in \eta(G, H)$ is called a *tensor* if $\alpha = [a, b^{\varphi}]$ for suitable $a \in G$ and $b \in H$. If N and K are subgroups of G and H, respectively, let $T_{\otimes}(N, K)$ denote the set of all tensors $[a, b^{\varphi}]$ with $a \in N$ and $b \in K$. In particular, $[N, K^{\varphi}] = \langle T_{\otimes}(N, K) \rangle$.

Question

An element $\alpha \in \eta(G,H)$ is called a *tensor* if $\alpha = [a,b^{\varphi}]$ for suitable $a \in G$ and $b \in H$. If N and K are subgroups of G and H, respectively, let $T_{\otimes}(N,K)$ denote the set of all tensors $[a,b^{\varphi}]$ with $a \in N$ and $b \in K$. In particular, $[N,K^{\varphi}] = \langle T_{\otimes}(N,K) \rangle$.

In the present paper we want to study the following question:

Question

An element $\alpha \in \eta(G,H)$ is called a *tensor* if $\alpha = [a,b^{\varphi}]$ for suitable $a \in G$ and $b \in H$. If N and K are subgroups of G and H, respectively, let $T_{\otimes}(N,K)$ denote the set of all tensors $[a,b^{\varphi}]$ with $a \in N$ and $b \in K$. In particular, $[N,K^{\varphi}] = \langle T_{\otimes}(N,K) \rangle$.

In the present paper we want to study the following question:

Question: If we assume certain restrictions on the set $T_{\otimes}(G, H)$, how does this influence in the structure of the groups $[G, H^{\varphi}]$ or $\eta(G, H)$?

Commutators and Tensors

In [Ros62] Rosenlicht proved that if N and K are subgroups of a group M, with N normal in M, and if the set of commutators $\{[n,k]:n\in N,\ k\in K\}$ is finite, then so is the commutator subgroup [N,K]. Under appropriate conditions we can extend this result to the subgroup $[N,K^{\varphi}]$ of $\eta(G,H)$.

Commutators and Tensors

In [Ros62] Rosenlicht proved that if N and K are subgroups of a group M, with N normal in M, and if the set of commutators $\{[n,k]:n\in N,\ k\in K\}$ is finite, then so is the commutator subgroup [N,K]. Under appropriate conditions we can extend this result to the subgroup $[N,K^{\varphi}]$ of $\eta(G,H)$.

Theorem 1. Let G and H be groups that act compatibly on each other and suppose that N and K are subgroups of G and H, respectively, such that N is K-invariant and K is N-invariant. If the set $T_{\otimes}(N,K)$ is finite, then so is the subgroup $[N,K^{\varphi}]$ of $\eta(G,H)$. In particular, the set $T_{\otimes}(G,H)$ is finite if and only if $[G,H^{\varphi}]$ is finite.

Commutators and Tensors

In [Ros62] Rosenlicht proved that if N and K are subgroups of a group M, with N normal in M, and if the set of commutators $\{[n,k]:n\in N,\ k\in K\}$ is finite, then so is the commutator subgroup [N,K]. Under appropriate conditions we can extend this result to the subgroup $[N,K^{\varphi}]$ of $\eta(G,H)$.

Theorem 1. Let G and H be groups that act compatibly on each other and suppose that N and K are subgroups of G and H, respectively, such that N is K-invariant and K is N-invariant. If the set $T_{\otimes}(N,K)$ is finite, then so is the subgroup $[N,K^{\varphi}]$ of $\eta(G,H)$. In particular, the set $T_{\otimes}(G,H)$ is finite if and only if $[G,H^{\varphi}]$ is finite.

An immediate consequence of the above theorem is the finiteness criterion for the non-abelian tensor product of finite groups due to G. Ellis (see also [Tho10]).

In the opposite direction one could be interested in studying conditions under which the finiteness of the $[G, H^{\varphi}]$ implies that of G and H;

In the opposite direction one could be interested in studying conditions under which the finiteness of the $[G, H^{\varphi}]$ implies that of G and H; in general, the finiteness of $[G, H^{\varphi}]$ does not implies the finiteness of the groups involved.

In the opposite direction one could be interested in studying conditions under which the finiteness of the $[G, H^{\varphi}]$ implies that of G and H; in general, the finiteness of $[G, H^{\varphi}]$ does not implies the finiteness of the groups involved.

However, when G = H and all actions are conjugations, we obtain the following result for the non-abelian tensor square:

In the opposite direction one could be interested in studying conditions under which the finiteness of the $[G,H^{\varphi}]$ implies that of G and H; in general, the finiteness of $[G,H^{\varphi}]$ does not implies the finiteness of the groups involved.

However, when G = H and all actions are conjugations, we obtain the following result for the non-abelian tensor square:

Theorem 2. Let G be a group. The non-abelian tensor square $[G, G^{\varphi}]$ is finite if and only if G is a BFC-group and $[G^{ab}, (G^{ab})^{\varphi}]$ is finite.

In the sequel we consider certain finiteness conditions for the group G in terms of the torsion elements of the non-abelian tensor square $[G, G^{\varphi}]$.

In the sequel we consider certain finiteness conditions for the group G in terms of the torsion elements of the non-abelian tensor square $[G, G^{\varphi}]$.

Lemma. (Rocco, [Roc94]) Let G be a group with finitely generated abelianization. Suppose that the diagonal subgroup $\Delta(G)$ is periodic. Then the abelianization G^{ab} is finite.

In the sequel we consider certain finiteness conditions for the group G in terms of the torsion elements of the non-abelian tensor square $[G, G^{\varphi}]$.

Lemma. (Rocco, [Roc94]) Let G be a group with finitely generated abelianization. Suppose that the diagonal subgroup $\Delta(G)$ is periodic. Then the abelianization G^{ab} is finite.

Theorem 3. Let G be a group with finitely generated abelianization.

- (a) If the diagonal subgroup $\Delta(G)$ is periodic, then $\Delta(G)$ is finite. Moreover, the abelianization G^{ab} is isomorphic to a subgroup of the diagonal subgroup $\Delta(G)$.
- (b) If π is a set of primes and the non-abelian tensor square $[G, G^{\varphi}]$ is a π -group, then so is the group G.

A celebrated result due to E. I. Zel'manov [Zel91a, Zel91b] refers to the positive solution of the *Restricted Burnside Problem*: every residually finite group of bounded exponent is locally finite.

A celebrated result due to E. I. Zel'manov [Zel91a, Zel91b] refers to the positive solution of the *Restricted Burnside Problem*: every residually finite group of bounded exponent is locally finite. Later, P. Shumyatsky [Shu99] prove that if G is a residually finite group in which every commutator has order dividing p^m , then G' is locally finite.

A celebrated result due to E. I. Zel'manov [Zel91a, Zel91b] refers to the positive solution of the *Restricted Burnside Problem*: every residually finite group of bounded exponent is locally finite. Later, P. Shumyatsky [Shu99] prove that if G is a residually finite group in which every commutator has order dividing p^m , then G' is locally finite. We obtain the following results:

A celebrated result due to E. I. Zel'manov [Zel91a, Zel91b] refers to the positive solution of the *Restricted Burnside Problem*: every residually finite group of bounded exponent is locally finite. Later, P. Shumyatsky [Shu99] prove that if G is a residually finite group in which every commutator has order dividing p^m , then G' is locally finite. We obtain the following results:

Proposition 1. Let G be a finitely generated locally graded group. Suppose that the non-abelian tensor square $[G, G^{\varphi}]$ has bounded exponent. Then G is finite.

A celebrated result due to E. I. Zel'manov [Zel91a, Zel91b] refers to the positive solution of the *Restricted Burnside Problem*: every residually finite group of bounded exponent is locally finite. Later, P. Shumyatsky [Shu99] prove that if G is a residually finite group in which every commutator has order dividing p^m , then G' is locally finite. We obtain the following results:

Proposition 1. Let G be a finitely generated locally graded group. Suppose that the non-abelian tensor square $[G, G^{\varphi}]$ has bounded exponent. Then G is finite.

Proposition 2. Let p be a prime and m a positive integer. Let G be a finitely generated locally graded group. Suppose that every tensor has order dividing p^m . Then G is finite.

- **BL87** R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, **26** (1987), pp. 311–335.
- **Ell87** G. Ellis, *The non-abelian tensor product of finite groups is finite*, J. Algebra, **111** (1987), pp. 203–205.
- EL59 G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Royal Irish Acad., 95A (1995), pp. 137–147.
- Kap99 L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes, 261 (1999), 447–454.
- Mor08 P. Moravec, *The exponents of nonabelian tensor products of groups*, J. Pure Appl. Algebra, **212** (2008), 1840–1848.

- Nak00 I. N. Nakaoka, *Non-abelian tensor products of solvable groups*, J. Group Theory, **3** (2000), pp. 157–167.
 - PN12 M. Parvizi and P. Niroomand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra, **352** (2012), pp. 347–353.
- Roc91 N. R. Rocco, On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat., 22 (1991), 63–79.
- Roc94 N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra, 22 (1994), pp. 1975–1998.
- Ros62 M. Rosenlicht, *On a result of Baer*, Proc. Amer. Math. Soc., **13** (1962), pp. 99–101.

- **Shu99** P. Shumyatsky, *On groups with commutators of bounded order*, Proc. Amer. Math. Soc., **127** (1999), pp. 2583–2586.
 - **Sid80** S. N. Sidki, *On weak permutability between groups*, J. Algebra, **63**, (1980) pp. 186–225.
- **Tho10** V. Z. Thomas, *The non-abelian tensor product of finite groups is finite: a Homology-free proof*, Glasgow Math. J. **52**, (2010) pp. 473–477.
- Zel91a E. I. Zel'manov, The solution of the restricted Burnside problem for groups of odd exponent, Math. USSR Izv., 36 (1991), pp. 41–60.
- **Zel91b** E. I. Zel'manov, *The solution of the restricted Burnside problem for 2-groups*, Math. Sb., **182** (1991), pp. 568–592.