Fibers of word maps and composition factors Contributed talk at the Groups St Andrews Conference 2017

Alexander Bors

Dept. of Mathematics, University of Salzburg

August 10, 2017

Definition 1

Let $d \in \mathbb{N}$, $w \in F(X_1, \ldots, X_d)$ a (reduced) word, G a group. The word map over G with respect to w is the function $w_G : G^d \to G$ mapping $(g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d)$.

Examples

- 1 d = 1, $w = X_1^e$, $e \in \mathbb{Z}$. Then $w_G : G \to G$ is the *e*-th power function on G.
- 2 $d = 2, w = X_1X_2$. Then $w_G : G^2 \to G$ is the group multiplication of G.
- 3 $d = 2, w = [X_1, X_2] = X_1 X_2 X_1^{-1} X_2^{-1}$. Then $w_G : G^2 \to G$ is the commutator map of G.

・ロト ・同ト ・ヨト ・ヨト

In recent years: Intense interest in word maps, particularly on **nonabelian finite simple groups** and particularly in their **images** and **fibers** (preimages of one-element sets). Examples:

- For every nonabelian finite simple group S, the commutator map S² → S is surjective (the celebrated Ore Conjecture, posed in 1951); Liebeck, O'Brien, Shalev, Tiep (2010), see [8, Theorem 1].
- 2 For each $w \in F(X_1, \ldots, X_d) \setminus \{1\}$, there is a constant N(w) > 0 such that for all nonabelian finite simple groups S with $|S| \ge N$, every element of S can be written as a product of two values of the word map w_S (a result similar to Waring's theorem from number theory); Larsen, Shalev, Tiep (2011), see [7, Corollary 1.1.2].

Word maps: Some notable results cont.

Solution Solution F(X₁,...,X_d) \ {1}, there are constants N(w), η(w) > 0 such that for all nonabelian finite simple groups S with |S| ≥ N, the largest fiber size of w_S is at most |S|^{d-η}. In particular, for fixed w, the largest fiber of size of w_S is o(|S|^d) for |S| → ∞; Larsen, Shalev (2012), see [5, Theorem 1.2]. For a recent, much stronger result, see [6, Theorem 1.1].

Equivalent reformulation of the above "In particular": For all $w \in F(X_1, \ldots, X_d) \setminus \{1\}$ and all $\rho \in (0, 1]$, the order of a nonabelian finite simple group S such that w_S has a fiber of size at least $\rho|S|^d$ (i.e., of **proportion** at least ρ) is bounded in terms of ρ .

Question

What can one say in general about a finite group G under the assumption that w_G has a fiber of proportion at least ρ ?

Theorem 1 (B., 2016+), [1, Theorem 1.1.2]

Let $w \in F(X_1, ..., X_d) \setminus \{1\}$, $\rho \in (0, 1]$. There are constants $C_1(w, \rho), C_2(w, \rho) > 0$ such that the following hold for any finite group G where w_G has a fiber of proportion at least ρ :

- **1** No finite alternating group of degree greater than $C_1(w, \rho)$ is a composition factor of G.
- 2 No finite simple group of Lie type of untwisted Lie rank greater than $C_2(w, \rho)$ is a composition factor of G.

What about simple Lie type groups of bounded rank?

Theorem 2 (Larsen and Shalev, 2017+), cf. [6, Theorem 1.7]

Let $w \in F(X_1, ..., X_d) \setminus \{1\}$, $r \in \mathbb{N}$, $\rho \in (0, 1]$. There are constants $N(w, \rho)$, $\epsilon(w, \rho) > 0$ such that for any finite group Gwhere w_G has a fiber of proportion at least ρ , no finite simple group of Lie type of rank at most r and order greater than N is a composition factor of G.

By combining Theorems 1 and 2 (or referring to [6, Theorem 1.1]), we get:

Corollary

Let $w \in F(X_1, ..., X_d) \setminus \{1\}$, $\rho \in (0, 1]$. There is a constant $C(w, \rho) > 0$ such that a finite group G where w_G has a fiber of proportion at least ρ has no nonabelian composition factors of order greater than $C(w, \rho)$.

Small nonabelian composition factors

What about nonabelian composition factors of small order?

Definition 2

Let $w \in F(X_1, \ldots, X_d)$.

■ We call *w* multiplicity-bounding if and only if for each nonabelian finite simple group *S* and each $\rho \in (0, 1]$, there is a constant $m(w, S, \rho) > 0$ such that for every finite group *G* where w_G has a fiber of proportion at least ρ , the multiplicity of *S* as a composition factor of *G* is at most $m(w, S, \rho)$.

We call w index-bounding if and only if for each ρ ∈ (0, 1], there is a constant I(w, ρ) ∈ (0, 1] such that for every finite group G where w_G has a fiber of proportion at least ρ, we have [G : Rad(G)] ≤ I(w, ρ), where Rad(G) denotes the solvable radical of G.

- 4 同 6 4 日 6 4 日 6

Remarks

- As Larsen and Shalev observe in [6, proof of Theorem 1.10], the above Corollary implies (via a short argument) that the word properties of being multiplicity-bounding resp. index-bounding are equivalent.
- 2 Not every nonempty reduced word is multiplicity-bounding. For example, for $w = X_1^{30}$, w_G is constant for $G = \mathcal{A}_5^n$ for all $n \in \mathbb{N}$.

Our next result lists some interesting examples of index-bounding words. We give it in its original form (asserting that those words are multiplicity-bounding, not index-bounding).

Small nonabelian composition factors cont.

Theorem 3 (B., 2017+), [2, Theorem 1.1.2]

The following reduced words are multiplicity-bounding:

- **1** X_1^e for $e \in (2\mathbb{Z} + 1) \cup \{\pm 2, \pm 4, \pm 6, \pm 10, \pm 14, \pm 20, \pm 22\}$. Moreover, X_1^e with $e \in \{\pm 8, \pm 12, \pm 16, \pm 18, \pm 24, \pm 30\}$ is not multiplicity-bounding.
- 2 The words γ_d(X₁,...,X_d), defined recursively via γ₁ := X₁ and γ_{d+1} := [X_{d+1}, γ_d].
- 3 All nonempty reduced words of length at most 8 except for $X_i^{\pm 8}$.

Moreover, there is an algorithm, implemented by the author in GAP [4], which on input $e \in \mathbb{Z}$ decides whether X_1^e is multiplicity-bounding [2, Theorem 5.1]. Whether there is such a decision algorithm for reduced words in general is open.

Application: Approximability of word maps by homomorphisms

- Various authors have studied finite groups *G* having an automorphism α mapping certain minimum proportions of elements of *G* to their *e*-th power, for a fixed $e \in \{-1, 2, 3\}$.
- For example: A finite group G with an automorphism inverting more than ³/₄|G| (resp. ⁴/₁₅|G|) elements of G is abelian (resp. solvable), folklore due to Miller (1929) [10, first paragraph] (resp. Potter (1988) [11, Corollary 3.2]).
- Recently, Mann proposed a general approach for tackling such problems, working for all $e \in \mathbb{Z}$ and even when replacing the word "automorphism" by the weaker "endomorphism". It consists in rewriting the assumption on *G* into a lower bound on the proportion of solutions of a certain word equation over *G*.

Application: Approximability of word maps by homomorphisms cont.

Theorem 4 (Mann, 2017+), [9, Theorem 9]

Let $\rho \in (0,1]$. There is a constant $\eta(\rho) \in (0,1]$ such that for all $e \in \mathbb{Z}$ and all finite groups G having an endomorphism φ with $\varphi(x) = x^e$ for at least $\rho|G|$ many $x \in G$, the following word equation over G in three variables x, y, z has at least $\eta|G|^3$ many solutions: $(xyz)^e = x^e y^e z^e$.

One can generalize this further. Fix $w \in F(X_1, ..., X_d)$ and a number $\rho \in (0, 1]$, and consider the condition on a finite group G that there is a homomorphism $\varphi : G^d \to G$ such that

$$|\{\vec{g}\in G^d\mid w_G(\vec{g})=arphi(\vec{g})\}|\geq
ho|G|^d.$$

Application: Approximability of word maps by homomorphisms cont.

Theorem 5 (B., 2017+), [3, Theorem 1.2]

There is an explicit function $f: (0,1] \to (0,1]$ such that the following holds for all $w \in F(X_1, \ldots, X_d)$, all $\rho \in (0,1]$ and all finite groups G: If there is a homomorphism $\varphi: G^d \to G$ agreeing with w_G on at least $\rho|G|^d$ many arguments, then the following word equation in 3*d* pairwise distinct variables s_i, t_i, u_i , $i = 1, \ldots, d$, has at least $f(\rho)|G|^{3d}$ many solutions in G^{3d} :

$$w(s_1^{-1}t_1u_1,\ldots,s_d^{-1}t_du_d) = w(s_1,\ldots,s_d)^{-1}w(t_1,\ldots,t_d)w(u_1,\ldots,u_d).$$

Application: Approximability of word maps by homomorphisms cont.

Corollary (B., 2017+), [3, Corollary 3.1]

A finite group G for which the group multiplication $G^2 \rightarrow G$ agrees with some homomorphism $G^2 \rightarrow G$ on at least $\rho |G|^2$ many pairs has its commuting probability explicitly bounded away from 0 in terms of ρ .

References

- A. Bors, Fibers of automorphic word maps and an application to composition factors, to appear in *J. Group Theory*, https://doi.org/10.1515/jgth-2017-0024.
- A. Bors, Fibers of word maps and the multiplicities of nonabelian composition factors, submitted (2017), preprint available on arXiv, https://arxiv.org/abs/1703.00408.
- 3 A. Bors, Approximability of word maps by homomorphisms, preprint (2017), https://arxiv.org/abs/1708.00477.
- 4 The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.8.6 (2016), http://www.gap-system.org.
- **5** M. Larsen and A. Shalev, Fibers of word maps and some applications, *J. Algebra* **354** (2012), 36–48.

References cont.

- M. Larsen and A. Shalev, Words, Hausdorff dimension and randomly free groups, preprint (2017), https://arxiv.org/abs/1706.08226.
- 7 M. Larsen, A. Shalev and P.H. Tiep, The Waring problem for finite simple groups, Ann. Math. 174 (2011), 1885–1950.
- 8 M.W. Liebeck, E.A. O'Brien, A. Shalev and P.H. Tiep, The Ore conjecture, *J. Eur. Math. Soc.* **12** (2010), 939–1008.
- A. Mann, Groups satisfying identities with high probability, Int. J. Alg. Comp. (B.I. Plotkin issue), to appear.
- G.A. Miller, Groups which admit automorphisms in which exactly three-fourths of the operators correspond to their inverses, *Proc. Nat. Acad. Sci. USA* 15(2) (1929), 89–91.
- W.M. Potter, Nonsolvable groups with an automorphism inverting many elements, Arch. Math. (Basel) 50(4) (1988), 292–299.