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Word maps: Definition and examples

Definition 1

Let d ∈ N, w ∈ F(X1, . . . ,Xd) a (reduced) word, G a group. The
word map over G with respect to w is the function wG : Gd → G
mapping (g1, . . . , gd) 7→ w(g1, . . . , gd).

Examples

1 d = 1, w = X e
1 , e ∈ Z. Then wG : G → G is the e-th power

function on G .

2 d = 2, w = X1X2. Then wG : G 2 → G is the group
multiplication of G .

3 d = 2, w = [X1,X2] = X1X2X
−1
1 X−1

2 . Then wG : G 2 → G is
the commutator map of G .
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Word maps: Some notable results

In recent years: Intense interest in word maps, particularly on
nonabelian finite simple groups and particularly in their images
and fibers (preimages of one-element sets). Examples:

1 For every nonabelian finite simple group S , the commutator
map S2 → S is surjective (the celebrated Ore Conjecture,
posed in 1951); Liebeck, O’Brien, Shalev, Tiep (2010), see [8,
Theorem 1].

2 For each w ∈ F(X1, . . . ,Xd) \ {1}, there is a constant
N(w) > 0 such that for all nonabelian finite simple groups S
with |S | ≥ N, every element of S can be written as a product
of two values of the word map wS (a result similar to Waring’s
theorem from number theory); Larsen, Shalev, Tiep (2011),
see [7, Corollary 1.1.2].
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Word maps: Some notable results cont.

3 For each w ∈ F(X1, . . . ,Xd) \ {1}, there are constants
N(w), η(w) > 0 such that for all nonabelian finite simple
groups S with |S | ≥ N, the largest fiber size of wS is at most
|S |d−η. In particular, for fixed w , the largest fiber of size of
wS is o(|S |d) for |S | → ∞; Larsen, Shalev (2012), see [5,
Theorem 1.2]. For a recent, much stronger result, see [6,
Theorem 1.1].

Equivalent reformulation of the above “In particular”: For all
w ∈ F(X1, . . . ,Xd) \ {1} and all ρ ∈ (0, 1], the order of a
nonabelian finite simple group S such that wS has a fiber of size at
least ρ|S |d (i.e., of proportion at least ρ) is bounded in terms of ρ.

Question

What can one say in general about a finite group G under the
assumption that wG has a fiber of proportion at least ρ?
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Large nonabelian composition factors

Theorem 1 (B., 2016+), [1, Theorem 1.1.2]

Let w ∈ F(X1, . . . ,Xd) \ {1}, ρ ∈ (0, 1]. There are constants
C1(w , ρ),C2(w , ρ) > 0 such that the following hold for any finite
group G where wG has a fiber of proportion at least ρ:

1 No finite alternating group of degree greater than C1(w , ρ) is
a composition factor of G .

2 No finite simple group of Lie type of untwisted Lie rank
greater than C2(w , ρ) is a composition factor of G .

What about simple Lie type groups of bounded rank?
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Large nonabelian composition factors cont.

Theorem 2 (Larsen and Shalev, 2017+), cf. [6, Theorem 1.7]

Let w ∈ F(X1, . . . ,Xd) \ {1}, r ∈ N, ρ ∈ (0, 1]. There are
constants N(w , ρ), ε(w , ρ) > 0 such that for any finite group G
where wG has a fiber of proportion at least ρ, no finite simple
group of Lie type of rank at most r and order greater than N is a
composition factor of G .

By combining Theorems 1 and 2 (or referring to [6, Theorem 1.1]),
we get:

Corollary

Let w ∈ F(X1, . . . ,Xd) \ {1}, ρ ∈ (0, 1]. There is a constant
C (w , ρ) > 0 such that a finite group G where wG has a fiber of
proportion at least ρ has no nonabelian composition factors of
order greater than C (w , ρ).
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Small nonabelian composition factors

What about nonabelian composition factors of small order?

Definition 2

Let w ∈ F(X1, . . . ,Xd).

1 We call w multiplicity-bounding if and only if for each
nonabelian finite simple group S and each ρ ∈ (0, 1], there is
a constant m(w , S , ρ) > 0 such that for every finite group G
where wG has a fiber of proportion at least ρ, the multiplicity
of S as a composition factor of G is at most m(w , S , ρ).

2 We call w index-bounding if and only if for each ρ ∈ (0, 1],
there is a constant I (w , ρ) ∈ (0, 1] such that for every finite
group G where wG has a fiber of proportion at least ρ, we
have [G : Rad(G )] ≤ I (w , ρ), where Rad(G ) denotes the
solvable radical of G .
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Small nonabelian composition factors cont.

Remarks

1 As Larsen and Shalev observe in [6, proof of Theorem 1.10],
the above Corollary implies (via a short argument) that the
word properties of being multiplicity-bounding
resp. index-bounding are equivalent.

2 Not every nonempty reduced word is multiplicity-bounding.
For example, for w = X 30

1 , wG is constant for G = An
5 for all

n ∈ N.

Our next result lists some interesting examples of index-bounding
words. We give it in its original form (asserting that those words
are multiplicity-bounding, not index-bounding).
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Small nonabelian composition factors cont.

Theorem 3 (B., 2017+), [2, Theorem 1.1.2]

The following reduced words are multiplicity-bounding:

1 X e
1 for e ∈ (2Z + 1) ∪ {±2,±4,±6,±10,±14,±20,±22}.

Moreover, X e
1 with e ∈ {±8,±12,±16,±18,±24,±30} is not

multiplicity-bounding.

2 The words γd(X1, . . . ,Xd), defined recursively via γ1 := X1

and γd+1 := [Xd+1, γd ].

3 All nonempty reduced words of length at most 8 except for
X±8
i .

Moreover, there is an algorithm, implemented by the author in
GAP [4], which on input e ∈ Z decides whether X e

1 is
multiplicity-bounding [2, Theorem 5.1]. Whether there is such a
decision algorithm for reduced words in general is open.
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Application: Approximability of word maps by
homomorphisms

Various authors have studied finite groups G having an
automorphism α mapping certain minimum proportions of
elements of G to their e-th power, for a fixed e ∈ {−1, 2, 3}.
For example: A finite group G with an automorphism
inverting more than 3

4 |G | (resp. 4
15 |G |) elements of G is

abelian (resp. solvable), folklore due to Miller (1929) [10, first
paragraph] (resp. Potter (1988) [11, Corollary 3.2]).

Recently, Mann proposed a general approach for tackling such
problems, working for all e ∈ Z and even when replacing the
word “automorphism” by the weaker “endomorphism”. It
consists in rewriting the assumption on G into a lower bound
on the proportion of solutions of a certain word equation over
G .
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Application: Approximability of word maps by
homomorphisms cont.

Theorem 4 (Mann, 2017+), [9, Theorem 9]

Let ρ ∈ (0, 1]. There is a constant η(ρ) ∈ (0, 1] such that for all
e ∈ Z and all finite groups G having an endomorphism ϕ with
ϕ(x) = xe for at least ρ|G | many x ∈ G , the following word
equation over G in three variables x , y , z has at least η|G |3 many
solutions: (xyz)e = xey eze .

One can generalize this further. Fix w ∈ F(X1, . . . ,Xd) and a
number ρ ∈ (0, 1], and consider the condition on a finite group G
that there is a homomorphism ϕ : Gd → G such that

|{~g ∈ Gd | wG (~g) = ϕ(~g)}| ≥ ρ|G |d .
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Application: Approximability of word maps by
homomorphisms cont.

Theorem 5 (B., 2017+), [3, Theorem 1.2]

There is an explicit function f : (0, 1]→ (0, 1] such that the
following holds for all w ∈ F(X1, . . . ,Xd), all ρ ∈ (0, 1] and all
finite groups G : If there is a homomorphism ϕ : Gd → G agreeing
with wG on at least ρ|G |d many arguments, then the following
word equation in 3d pairwise distinct variables si , ti , ui ,
i = 1, . . . , d , has at least f (ρ)|G |3d many solutions in G 3d :

w(s−1
1 t1u1, . . . , s

−1
d tdud) =

w(s1, . . . , sd)−1w(t1, . . . , td)w(u1, . . . , ud).
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Application: Approximability of word maps by
homomorphisms cont.

Corollary (B., 2017+), [3, Corollary 3.1]

A finite group G for which the group multiplication G 2 → G
agrees with some homomorphism G 2 → G on at least ρ|G |2 many
pairs has its commuting probability explicitly bounded away from 0
in terms of ρ.
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