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Digression: Base

Definition (Base points)

G ≤ Sym(Ω). A base of G is B = [β1, β2, . . . , βk ] ∈ Ωk such that
Gβ1,β2,...,βk = 1.

Example

G = 〈(1, 2, 3), (4, 5)〉. G1 = {(), (4, 5)}. G1,4 = {()}. So [1, 4] is a base of
G .

Definition

g ∈ G ≤ Sym(Ω).The base image of g relative to a base B is
Bg := [βg1 , β

g
2 , . . . β

g
k ].

Lemma (Uniqueness of base image)

The base image Bg of g uniquely determines g ∈ G.
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Finding Normalisers by Backtrack search

G ,H ≤ Sn. No known polynomial time algorithm (in general) to
compute NG (H): use backtrack search

[ ]

[1]

[1, 2]

[1, 2, 3][1, 2, 4]

[1, 3]

[1, 3, 2][1, 3, 4]

[1, 4]

[1, 4, 2][1, 4, 3]

[2]

[2, 1]

[2, 1, 3][2, 1, 4]

[2, 3]

[2, 3, 1][2, 3, 4]

[2, 4]

[2, 4, 1][2, 4, 3]

[3]

[3, 1]

[3, 1, 2][3, 1, 4]

[3, 2]

[2, 3, 1][3, 2, 4]

[3, 4]

[3, 4, 1][3, 4, 2]

[4]

[4, 1]

[4, 1, 2][4, 1, 3]

[4, 2]

[4, 2, 1][4, 2, 3]

[4, 3]

[4, 3, 1][4, 3, 2]

N will become NG (H). Initialise N = H

At each node, ask: Could there be a solution under here?

If not, backtrack; if yes, descend

If find g ∈ NG (H), update N = 〈N, g〉
Motto: fail early to avoid traversing bigger subtree
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Current tests

Lemma

If g ∈ NG (H) and [β1, β2, . . . , βi ]
g = [α1, α2, . . . , αi ] (i ≤ k), then

g−1Hβ1,β2,...,βig = Hα1,α2,...,αi .

At each node [α1, α2, . . . , αi ], compare Hβ1,β2,...βi and Hα1,α2,...,αi .

NG (H) permutes H-orbits.1

NG (H) permutes orbital graphs of H.2

1Gregory Butler. “Computing normalizers in permutation groups”. In: Journals of
Algorithms 4 (1983), pp. 163–175. doi:
https://doi.org/10.1016/0196-6774(83)90043-3.

2Heiko Theissen. “Eine Methode zur Normalisatorberechnung in
Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen”.
PhD thesis. RWTH Aachen, 1997. PhD thesis.
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Our groups

V permutation isomorphic to 〈(1, 2), . . . , (2m − 1, 2m)〉 ≤ S2m, (n = 2m)
H ≤ V , generated by ∼ m/2 elements
It is conjectured that a random subgroup of Sn is ’close’ to this
Current tests don’t do much

Example

H = 〈(1, 7)(2, 8)(5, 11), (1, 7)(2, 8)(3, 9)(6, 12), (2, 8)(3, 9)(4, 10)〉 ≤ S12

M =

1,7 2,8 3,9 4,10 5,11 6,12[ ]1 1 0 0 1 0
1 1 1 0 0 1
0 1 1 1 0 0

reduced(M) =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


Both M and reduced(M) represent H.
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It is conjectured that a random subgroup of Sn is ’close’ to this
Current tests don’t do much

Example

H = 〈(1, 7)(2, 8)(5, 11), (1, 7)(2, 8)(3, 9)(6, 12), (2, 8)(3, 9)(4, 10)〉 ≤ S12

M =

1,7 2,8 3,9 4,10 5,11 6,12[ ]1 1 0 0 1 0
1 1 1 0 0 1
0 1 1 1 0 0

reduced(M) =
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Normalisers in vector spaces

Lemma

Let M be a matrix over GF (2) representing H and let g ∈ Sn. Let M
′ be the

matrix representing Hg . Then g ∈ NSn(H) ⇐⇒ row(M) = row(M ′).

Elements of NG (H) that fix each H-orbit: easy. Only search for those that
permutes the orbits
The image of a point determines the image of the H-orbit

Example

M =

1,7 2,8 3,9 4,10 5,11 6,12[ ]1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

K ∼= S6 acts on the columns of M, base of K = [1, 2, 3, 4, 5].
σ ∈ K , then M ′ = Mσ.

Centralisers are determined identical columns - assume none
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Limiting the depth of the search tree

If H-base images under g is known, then sg is known ∀generator s of
H.

Example (Extending from base H)

Base of H = [1, 2, 3].
Base of K = [1, 2, 3, 4, 5].

M =

1 2 3 4 5 6[ ]1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

Partial base image = [3, 2, 1].

Mσ =

3 2 1

5 4 6

[ ]0 0 1

0 1 1

0 1 0

1 1 1

1 0 0

1 0 1

Columns of Mσ must be columns of M. Extend to base image [3, 2, 1, 5, 4]

.

If pass, we can extend the partial base image to full base image, add
the corresponding group element to N; else: backtrack

So only check up to depth length of base of H - which is n/4
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Tests

Lemma

If σ ∈ NK (H) s.t. [β1, β2, . . . , βi ]
σ = [α1, α2, . . . , αi ] then

row(M(Hβ1,β2,...,βi )
σ) = row(M(Hα1,α2,...,αi ))

Example

M =

1 2 3 4 5 6[ ]1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

Base of H = [1, 2, 3].Try partial base image := [1, 3].

M(H1,2) =
[
0 0 1 0 1 1

]
M(H1,3) =

[
0 1 0 1 1 1

]
Matrix has three 1’s. Matrix has four 1’s =⇒ Backtrack!
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Tests

Lemma

σ ∈ K.If L is a set of linearly dependent columns of M and σ ∈ NK (H),
then Lσ is also a set of linearly dependent columns of Mσ.

Example

1 2 3 4 5 6[ ]1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1
c1 c2 c3 c4 c5 c6

c

σ

1 + c

σ

2 + c

σ

4 = [0, 0, 0]

c

σ

2 + c

σ

3 + c

σ

5 = [0, 0, 0]

c

σ

1 + c

σ

2 + c

σ

3 + c

σ

6 = [0, 0, 0]

Base of H = [1, 2, 3]
Try partial base image := [1, 3]

cσ1 + cσ2 + cσ4 = [0, 0, 0]

c1 + c3 + cσ4 = [0, 0, 0]

cσ4 = [1, 0, 1]

This is not a column in M,
=⇒ Backtrack!
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cσ4 = [1, 0, 1]

This is not a column in M,
=⇒ Backtrack!
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Tests

Lemma
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Test results

Tested on 500 random groups on 20 points in GAP
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Red: Log(time taken by the original algorithm of GAP, in milliseconds);
Blue: Log(time taken by new algorithm)
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