Computing Normalisers in Permutation Groups

Mun See Chang

University of St Andrews

Supervised by Dr Chris Jefferson and Dr Colva Roney-Dougal

11 August 2017

Definition (Base points)

 $G \leq Sym(\Omega)$. A base of G is $B = [\beta_1, \beta_2, \dots, \beta_k] \in \Omega^k$ such that $G_{\beta_1, \beta_2, \dots, \beta_k} = 1$.

Definition (Base points)

 $G \leq Sym(\Omega)$. A base of G is $B = [\beta_1, \beta_2, \dots, \beta_k] \in \Omega^k$ such that $G_{\beta_1, \beta_2, \dots, \beta_k} = 1$.

Example

$$G = \langle (1,2,3), (4,5) \rangle$$
. $G_1 = \{(), (4,5)\}$. $G_{1,4} = \{()\}$. So $[1,4]$ is a base of G .

Definition (Base points)

 $G \leq Sym(\Omega)$. A base of G is $B = [\beta_1, \beta_2, \dots, \beta_k] \in \Omega^k$ such that $G_{\beta_1, \beta_2, \dots, \beta_k} = 1$.

Example

 $G = \langle (1,2,3), (4,5) \rangle$. $G_1 = \{(), (4,5)\}$. $G_{1,4} = \{()\}$. So [1,4] is a base of G.

Definition

 $g \in G \leq Sym(\Omega)$. The **base image** of g relative to a base B is $B^g := [\beta_1^g, \beta_2^g, \dots, \beta_{\nu}^g]$.

Definition (Base points)

 $G \leq Sym(\Omega)$. A base of G is $B = [\beta_1, \beta_2, \dots, \beta_k] \in \Omega^k$ such that $G_{\beta_1, \beta_2, \dots, \beta_k} = 1$.

Example

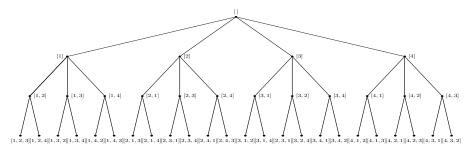
$$G = \langle (1,2,3), (4,5) \rangle$$
. $G_1 = \{(), (4,5)\}$. $G_{1,4} = \{()\}$. So [1,4] is a base of G .

Definition

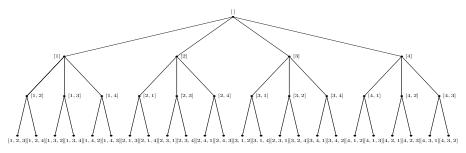
 $g \in G \leq Sym(\Omega)$. The **base image** of g relative to a base B is $B^g := [\beta_1^g, \beta_2^g, \dots, \beta_k^g]$.

Lemma (Uniqueness of base image)

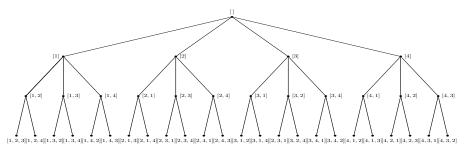
The base image B^g of g uniquely determines $g \in G$.



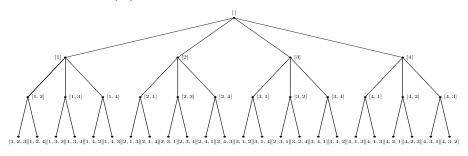
• $G, H \leq S_n$. No known polynomial time algorithm (in general) to compute $N_G(H)$: use backtrack search



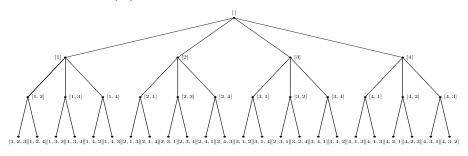
• N will become $N_G(H)$. Initialise N = H



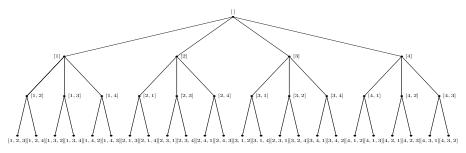
- N will become $N_G(H)$. Initialise N=H
- At each node, ask: Could there be a solution under here?



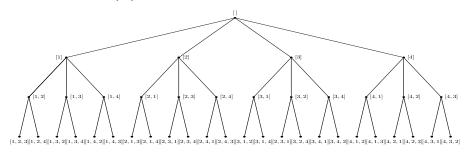
- N will become $N_G(H)$. Initialise N=H
- At each node, ask: Could there be a solution under here?
- If not, backtrack;



- N will become $N_G(H)$. Initialise N=H
- At each node, ask: Could there be a solution under here?
- If not, backtrack; if yes, descend



- N will become $N_G(H)$. Initialise N=H
- At each node, ask: Could there be a solution under here?
- If not, backtrack; if yes, descend
- If find $g \in N_G(H)$, update $N = \langle N, g \rangle$



- N will become $N_G(H)$. Initialise N=H
- At each node, ask: Could there be a solution under here?
- If not, backtrack; if yes, descend
- If find $g \in N_G(H)$, update $N = \langle N, g \rangle$
- Motto: fail early to avoid traversing bigger subtree

¹Gregory Butler. "Computing normalizers in permutation groups". In: *Journals of Algorithms* 4 (1983), pp. 163–175. DOI: https://doi.org/10.1016/0196-6774(83)90043-3.

²Heiko Theissen. "Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen". PhD thesis. RWTH Aachen, 1997. PhD thesis.

Lemma

If
$$g \in N_G(H)$$
 and $[\beta_1, \beta_2, \dots, \beta_i]^g = [\alpha_1, \alpha_2, \dots, \alpha_i]$ $(i \le k)$, then $g^{-1}H_{\beta_1, \beta_2, \dots, \beta_i}g = H_{\alpha_1, \alpha_2, \dots, \alpha_i}$.

¹Gregory Butler. "Computing normalizers in permutation groups". In: *Journals of Algorithms* 4 (1983), pp. 163–175. DOI: https://doi.org/10.1016/0196-6774(83)90043-3.

²Heiko Theissen. "Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen". PhD thesis. RWTH Aachen, 1997, PhD thesis.

Lemma

If
$$g \in N_G(H)$$
 and $[\beta_1, \beta_2, ..., \beta_i]^g = [\alpha_1, \alpha_2, ..., \alpha_i]$ $(i \le k)$, then $g^{-1}H_{\beta_1, \beta_2, ..., \beta_i}g = H_{\alpha_1, \alpha_2, ..., \alpha_i}$.

• At each node $[\alpha_1, \alpha_2, \dots, \alpha_i]$, compare $H_{\beta_1, \beta_2, \dots, \beta_i}$ and $H_{\alpha_1, \alpha_2, \dots, \alpha_i}$.

¹Gregory Butler. "Computing normalizers in permutation groups". In: *Journals of Algorithms* 4 (1983), pp. 163–175. DOI: https://doi.org/10.1016/0196-6774(83)90043-3.

²Heiko Theissen. "Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen". PhD thesis. RWTH Aachen, 1997, PhD thesis.

Lemma

If
$$g \in N_G(H)$$
 and $[\beta_1, \beta_2, \dots, \beta_i]^g = [\alpha_1, \alpha_2, \dots, \alpha_i]$ $(i \le k)$, then $g^{-1}H_{\beta_1, \beta_2, \dots, \beta_i}g = H_{\alpha_1, \alpha_2, \dots, \alpha_i}$.

- At each node $[\alpha_1, \alpha_2, \dots, \alpha_i]$, compare $H_{\beta_1, \beta_2, \dots, \beta_i}$ and $H_{\alpha_1, \alpha_2, \dots, \alpha_i}$.
- $N_G(H)$ permutes H-orbits.¹

¹Gregory Butler. "Computing normalizers in permutation groups". In: *Journals of Algorithms* 4 (1983), pp. 163–175. DOI: https://doi.org/10.1016/0196-6774(83)90043-3.

²Heiko Theissen. "Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen". PhD thesis. RWTH Aachen, 1997, PhD thesis.

Lemma

If
$$g \in N_G(H)$$
 and $[\beta_1, \beta_2, ..., \beta_i]^g = [\alpha_1, \alpha_2, ..., \alpha_i]$ $(i \le k)$, then $g^{-1}H_{\beta_1, \beta_2, ..., \beta_i}g = H_{\alpha_1, \alpha_2, ..., \alpha_i}$.

- At each node $[\alpha_1, \alpha_2, \dots, \alpha_i]$, compare $H_{\beta_1, \beta_2, \dots, \beta_i}$ and $H_{\alpha_1, \alpha_2, \dots, \alpha_i}$.
- $N_G(H)$ permutes H-orbits.¹
- $N_G(H)$ permutes orbital graphs of H^2

 $^{^1\}text{Gregory Butler.}$ "Computing normalizers in permutation groups". In: Journals of Algorithms 4 (1983), pp. 163–175. DOI: https://doi.org/10.1016/0196-6774(83)90043-3.

²Heiko Theissen. "Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen". PhD thesis. RWTH Aachen, 1997. PhD thesis.

• V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)\rangle \leq S_{2m}, (n=2m)$

- ullet V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)
 angle \leq \mathcal{S}_{2m},\ (n=2m)$
- ullet $H \leq V$, generated by $\sim m/2$ elements

- ullet V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)
 angle \leq \mathcal{S}_{2m}, \ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this

- ullet V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)
 angle \leq \mathcal{S}_{2m},\ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this
- Current tests don't do much

- ullet V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)
 angle \leq \mathcal{S}_{2m},\ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this
- Current tests don't do much

Example

 $H = \langle (1,7)(2,8)(5,11), (1,7)(2,8)(3,9)(6,12), (2,8)(3,9)(4,10) \rangle \leq S_{12}$

- V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)\rangle \leq S_{2m},\ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this
- Current tests don't do much

Example

$$H = \langle (1,7)(2,8)(5,11), (1,7)(2,8)(3,9)(6,12), (2,8)(3,9)(4,10) \rangle \leq S_{12}$$

$$M = \begin{bmatrix} 1.7 & 2.8 & 3.9 & 4.10 & 5.11 & 6.12 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

- ullet V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)
 angle \leq \mathcal{S}_{2m},\ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this
- Current tests don't do much

Example

$$H = \langle (1,7)(2,8)(5,11), (1,7)(2,8)(3,9)(6,12), (2,8)(3,9)(4,10) \rangle \leq S_{12}$$

$$M = \begin{bmatrix} 1.7 & 2.8 & 3.9 & 4.10 & 5.11 & 6.12 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$reduced(M) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- V permutation isomorphic to $\langle (1,2),\ldots,(2m-1,2m)\rangle \leq S_{2m},\ (n=2m)$
- $H \leq V$, generated by $\sim m/2$ elements
- It is conjectured that a random subgroup of S_n is 'close' to this
- Current tests don't do much

Example

$$H = \langle (1,7)(2,8)(5,11), (1,7)(2,8)(3,9)(6,12), (2,8)(3,9)(4,10) \rangle \leq S_{12}$$

$$M = \begin{bmatrix} 1.7 & 2.8 & 3.9 & 4.10 & 5.11 & 6.12 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$reduced(M) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Both M and reduced(M) represent H.

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

• Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

- ullet Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits
- The image of a point determines the image of the H-orbit

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

- Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits
- The image of a point determines the image of the H-orbit

Example

$$M = \begin{bmatrix} 1,7 & 2,8 & 3,9 & 4,10 & 5,11 & 6,12 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

- Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits
- The image of a point determines the image of the H-orbit

Example

$$M = \begin{bmatrix} 1,7 & 2,8 & 3,9 & 4,10 & 5,11 & 6,12 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

 $K \cong S_6$ acts on the columns of M, base of K = [1, 2, 3, 4, 5].

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

- Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits
- The image of a point determines the image of the H-orbit

Example

$$M = \begin{bmatrix} 1,7 & 2,8 & 3,9 & 4,10 & 5,11 & 6,12 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

 $K \cong S_6$ acts on the columns of M, base of K = [1, 2, 3, 4, 5]. $\sigma \in K$, then $M' = M^{\sigma}$.

Lemma

Let M be a matrix over GF(2) representing H and let $g \in S_n$. Let M' be the matrix representing H^g . Then $g \in N_{S_n}(H) \iff row(M) = row(M')$.

- Elements of $N_G(H)$ that fix each H-orbit: easy. Only search for those that permutes the orbits
- The image of a point determines the image of the H-orbit

Example

$$M = \begin{bmatrix} 1,7 & 2,8 & 3,9 & 4,10 & 5,11 & 6,12 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

 $K \cong S_6$ acts on the columns of M, base of K = [1, 2, 3, 4, 5]. $\sigma \in K$, then $M' = M^{\sigma}$.

• Centralisers are determined identical columns - assume none

Limiting the depth of the search tree

• If H-base images under g is known, then s^g is known \forall generator s of H.

Limiting the depth of the search tree

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

$$M^{\sigma} = egin{bmatrix} 3 & 2 & 1 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ \end{pmatrix}$$

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

$$M^{\sigma} = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & & & & \\ 1 & 0 & 0 & & & & \end{bmatrix}$$

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

$$M^{\sigma} = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Columns of M^{σ} must be columns of M.

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

$$M^{\sigma} = \begin{bmatrix} 3 & 2 & 1 & 5 & 4 & 6 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Columns of M^{σ} must be columns of M. Extend to base image [3,2,1,5,4].

• If H-base images under g is known, then s^g is known \forall generator s of Η.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.
Base of $K = [1, 2, 3, 4, 5]$.

Base of
$$K = [1, 2, 3, 4, 5]$$
.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image
$$= [3, 2, 1]$$
.

$$M^{\sigma} = \begin{bmatrix} 3 & 2 & 1 & 5 & 4 & 6 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Columns of M^{σ} must be columns of M. Extend to base image [3, 2, 1, 5, 4].

 If pass, we can extend the partial base image to full base image, add the corresponding group element to N; else: backtrack

• If H-base images under g is known, then s^g is known \forall generator s of H.

Example (Extending from base H)

Base of
$$H = [1, 2, 3]$$
.

Base of
$$K = [1, 2, 3, 4, 5]$$
.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Partial base image = [3, 2, 1].

$$M^{\sigma} = \begin{bmatrix} 3 & 2 & 1 & 5 & 4 & 6 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Columns of M^{σ} must be columns of M. Extend to base image [3,2,1,5,4].

- If pass, we can extend the partial base image to full base image, add the corresponding group element to N; else: backtrack
- So only check up to depth length of base of H which is n/4

Lemma

If $\sigma \in N_K(H)$ s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3].

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3]. Try partial base image := [1, 3].

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3]. Try partial base image := [1, 3].

$$M(H_{1,2}) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3]. Try partial base image := [1, 3].

$$M(H_{1,2}) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
 $M(H_{1,3}) = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3]. Try partial base image := [1, 3].

$$M(H_{1,2}) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
 $M(H_{1,3}) = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

Matrix has three 1's.

Lemma

If
$$\sigma \in N_K(H)$$
 s.t. $[\beta_1, \beta_2, \dots, \beta_i]^{\sigma} = [\alpha_1, \alpha_2, \dots, \alpha_i]$ then $row(M(H_{\beta_1, \beta_2, \dots, \beta_i})^{\sigma}) = row(M(H_{\alpha_1, \alpha_2, \dots, \alpha_i}))$

Example

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Base of H = [1, 2, 3]. Try partial base image := [1, 3].

$$M(H_{1,2}) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
 $M(H_{1,3}) = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

Matrix has three 1's.

Matrix has four 1's ⇒ Backtrack!

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

$$c_1 + c_2 + c_4 = [0,0,0]$$

 $c_2 + c_3 + c_5 = [0,0,0]$
 $c_1 + c_2 + c_3 + c_6 = [0,0,0]$

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$$

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

Base of
$$H = [1, 2, 3]$$

Try partial base image $:= [1, 3]$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$$

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$$

Base of
$$H = [1, 2, 3]$$

Try partial base image $:= [1, 3]$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$$

Base of
$$H = [1, 2, 3]$$

Try partial base image := $[1, 3]$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

 $c_1 + c_3 + c_4^{\sigma} = [0, 0, 0]$

Lemma

 $\sigma \in K.$ If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$$

Base of
$$H = [1, 2, 3]$$

Try partial base image := $[1, 3]$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_1 + c_3 + c_4^{\sigma} = [0, 0, 0]$$

$$c_4^{\sigma} = [1, 0, 1]$$

Lemma

 $\sigma \in K$. If L is a set of linearly dependent columns of M and $\sigma \in N_K(H)$, then L^{σ} is also a set of linearly dependent columns of M^{σ} .

Example

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \\ c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\ \end{bmatrix}$$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

$$c_2^{\sigma} + c_3^{\sigma} + c_5^{\sigma} = [0, 0, 0]$$

$$c_3^{\sigma} + c_3^{\sigma} + c_3^{\sigma} + c_3^{\sigma} = [0, 0, 0]$$

$$c_2 + c_3 + c_5 = [0, 0, 0]$$

 $c_1^{\sigma} + c_2^{\sigma} + c_3^{\sigma} + c_6^{\sigma} = [0, 0, 0]$

Base of
$$H = [1, 2, 3]$$

Try partial base image := $[1, 3]$

$$c_1^{\sigma} + c_2^{\sigma} + c_4^{\sigma} = [0, 0, 0]$$

 $c_1 + c_3 + c_4^{\sigma} = [0, 0, 0]$
 $c_4^{\sigma} = [1, 0, 1]$

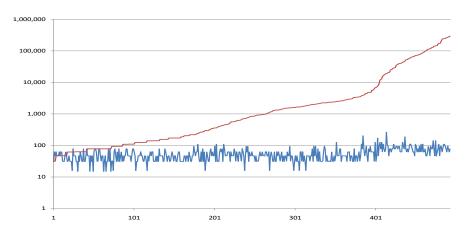
This is not a column in M, ⇒ Backtrack!

Test results

Tested on 500 random groups on 20 points in GAP

Test results

Tested on 500 random groups on 20 points in GAP



- Red: Log(time taken by the original algorithm of GAP, in milliseconds);
- Blue: Log(time taken by new algorithm)