On rational irreducible characters of finite groups

Mohammad Reza Darafsheh darafsheh@ut.ac.ir

University of Tehran School of Mathematics, Statistics and Computer Sciences

All groups are assumed to be finite. $E(p^n)$ denotes an elementary abelian p-group of order p^n , p a prime number. A : B denotes a split extention of the group A by the group B.

All groups are assumed to be finite. $E(p^n)$ denotes an elementary abelian p-group of order p^n , p a prime number. A : B denotes a split extention of the group A by the group B.

Definition

Let χ be a complex character of G. The field generated by all $\chi(x), x \in G$ is denoted by $\mathbb{Q}(\chi)$. The character χ is called rational if $\mathbb{Q}(\chi) = \mathbb{Q}$. The group G is called a \mathbb{Q} -group if every irreducible complex of G is rational.

All groups are assumed to be finite. $E(p^n)$ denotes an elementary abelian p-group of order p^n , p a prime number. A : B denotes a split extention of the group A by the group B.

Definition

Let χ be a complex character of G. The field generated by all $\chi(x), x \in G$ is denoted by $\mathbb{Q}(\chi)$. The character χ is called rational if $\mathbb{Q}(\chi) = \mathbb{Q}$. The group G is called a \mathbb{Q} -group if every irreducible complex of G is rational.

Examples

Symmetric group \mathbb{S}_n , in general the Weyl group of the complex Lie algebras.

Equivalent definition

A group G is Q-group if and only if for every $x \in G$ of order n the elements x and x^m are conjugate in G whenever (m, n) = 1. Equivalently for each $x \in G$ the isomorphism $\frac{N_G(<x>)}{C_G(<x>)} \cong Aut(<x>)$ holds. In this case x is called a rational element.

Result 1

Quotients and direct products of $\mathbb Q\text{-}\mathsf{groups}$ are $\mathbb Q\text{-}\mathsf{groups}.$

∃ >

< 行い

Result 1

Quotients and direct products of $\mathbb Q\text{-}\mathsf{groups}$ are $\mathbb Q\text{-}\mathsf{groups}.$

Result 2

If G is a solvable \mathbb{Q} -group, then $\pi(G) \subseteq \{2,3,5\}$ where $\pi(G)$ is the set of prime divisors of |G|. [R. Gow, Groups whose characters are rational valued, J. Alg. 40, 280-299 (1976).]

Result 1

Quotients and direct products of $\mathbb Q\text{-}\mathsf{groups}$ are $\mathbb Q\text{-}\mathsf{groups}.$

Result 2

If G is a solvable \mathbb{Q} -group, then $\pi(G) \subseteq \{2,3,5\}$ where $\pi(G)$ is the set of prime divisors of |G|. [R. Gow, Groups whose characters are rational valued, J. Alg. 40, 280-299 (1976).]

Result 3

Non-abelian composition factors of a Q-group are isomorphic to:

 A_n ; $n \ge 5$, $PSP_4(3)$, $SP_6(2)$, $O_8^+(2)$, $PSL_3(14)$, $PSU_4(3)$

In particular the only non-abelian simple \mathbb{Q} -groups are: $SP_6(2)$ and $O_8^+(2)$. [W. Feit and G. M. Seitz, On finite rational groups and related topics, Illinois J. Math, 33, No. 1, 103-131 (1988).]

An old conjecture

The Sylow 2-subgroups of \mathbb{Q} -groups are \mathbb{Q} -groups. The conjecture is false. [I. M. Isaacs and G. Navaro in Sylow 2-subgroups of rational solvable groups, Math. Z. 272(2012), no. 3-4, 937-945.]

An old conjecture

The Sylow 2-subgroups of \mathbb{Q} -groups are \mathbb{Q} -groups. The conjecture is false. [I. M. Isaacs and G. Navaro in Sylow 2-subgroups of rational solvable groups, Math. Z. 272(2012), no. 3-4, 937-945.]

Constructed two groups of order $2^9 \times 3 = 1536$ with all irreducible characters rational but the Sylow 2-subgroups of both groups are not rational.

An old conjecture

The Sylow 2-subgroups of \mathbb{Q} -groups are \mathbb{Q} -groups. The conjecture is false. [I. M. Isaacs and G. Navaro in Sylow 2-subgroups of rational solvable groups, Math. Z. 272(2012), no. 3-4, 937-945.]

Constructed two groups of order $2^9 \times 3 = 1536$ with all irreducible characters rational but the Sylow 2-subgroups of both groups are not rational.

In the groups of order $2^9 \times 3$ constructed above a Sylow 2-subgroup has nilpotency class 3. It is interesting to look at rational groups with a Sylow 2- subgroup of nilpotency class 2.

Let G be a solvable rational group and $P \in Syl_2(G)$ with $cl(P) \leq 2$ and $K \in Syl_3(G)$. If G' is nilpotent, then G is a 2,3-group and $G \cong K \rtimes P$ and we have the following:

Let G be a solvable rational group and $P \in Syl_2(G)$ with $cl(P) \leq 2$ and $K \in Syl_3(G)$. If G' is nilpotent, then G is a 2,3-group and $G \cong K \rtimes P$ and we have the following:

а

If G' is abelian, then $G \cong E(3^k) \rtimes P$ for some k, and G contains a normal elementary abelian 2-subgroup H such that $\frac{G}{H} \cong E(3^m) \rtimes E(2^n)$, for some $m, n \ge 0$.

Let G be a solvable rational group and $P \in Syl_2(G)$ with $cl(P) \leq 2$ and $K \in Syl_3(G)$. If G' is nilpotent, then G is a 2,3-group and $G \cong K \rtimes P$ and we have the following:

а

If G' is abelian, then $G \cong E(3^k) \rtimes P$ for some k, and G contains a normal elementary abelian 2-subgroup H such that $\frac{G}{H} \cong E(3^m) \rtimes E(2^n)$, for some $m, n \ge 0$.

b

If G' is nonabelian and $K \in Syl_3(G)$, then K is nonabelian. moreover if cl(P) = 2 and $H \in Syl_2(G')$, then H is abelian.

If G' is not nilpotent, we have:

Mohammad Reza Darafshehdarafsheh@ut.ac.iOn rational irreducible characters of finite gro

э

э

- 一司

If G' is not nilpotent, we have:

С

If G is a
$$\{2,5\}$$
-group, then $\frac{G}{O_2(G)} \cong \prod_{i=1}^k M_i$, where $M_i \cong E(5^2) : \mathbb{Q}_8$.

э

< 4 ► >

If G' is not nilpotent, we have:

If G is a
$$\{2,5\}$$
-group, then $\frac{G}{O_2(G)} \cong \prod_{i=1}^k M_i$, where $M_i \cong E(5^2) : \mathbb{Q}_8$.

d

If G is a $\{2,5\}$ -group, $K \in Syl_3(G')$, $H \in Syl_2(G')$ and $H \leq P$ then $K \leq G'$ if and only if P' = H.

If G is a non-solvable rational group, $P \in Syl_2(G)$, $cl(P) \leq 2$.then every non-abelian composition factor of G is isomorphic to \mathbb{A}_n for n = 5, 6, 7. [S. Jafari and H. Sharifi, On rational groups with Sylow 2-subgroups of nilpotency class at most two]

A Frobenius group G is a group with a subgroup H such that $1 \neq H < G$ and $H \cap H^{\times} = 1$ for all $x \in G - H$. The subgroup H is called Frobenius complement. It is well-known that G has a normal subgroup K, Frobenius kernel, such that G = HK, $H \cap K = 1$.

If G if a Frobenius \mathbb{Q} -group, then exactly one of the following occurs: (1). $G \cong E(3^n) : \mathbb{Z}_2, n \ge 1$, where \mathbb{Z}_2 acts on $E(3^n)$ by inversing each non-identity element. (2). $G \cong E(3^{2m}) : \mathbb{Q}_8, m \ge 1$. where \mathbb{Q}_8 is the quaternion group of order 8. (3). $G \cong E(5^2) : \mathbb{Q}_8$. [M. R. Darafsheh and H. Sharifi, Frobenius Q-groups, Arch. Math. 83 (2004) 102-105]

A finite group G is called a 2-Frobenius group if it has a normal series $1 \leq H \leq K \leq G$ such that $\frac{G}{H}$ and K are Frobenius groups with kernels $\frac{K}{H}$ and H respectively.

A finite group G is called a 2-Frobenius group if it has a normal series $1 \leq H \leq K \leq G$ such that $\frac{G}{H}$ and K are Frobenius groups with kernels $\frac{K}{H}$ and H respectively.

A 2-Frobenius group is a solvable group. We proved that if G is a 2-Frobenius \mathbb{Q} -group, then there is a normal subgroup N of G such that $\frac{G}{N} \cong \mathbb{S}_4$. [M. R. Darafsheh, A. Iranmanesh and S. A. Moosavi, 2-Frobenius Q-group, Indian J. pure appl. Math., 40(1), 2009]

Let G be a finite group. An element $g \in G$ is called semi-rational if there exists a positive integer m such that every generator of $\langle x \rangle$ is conjugate in G to either x or x^m . In the case m = -1, x is called inverse semi-rational. G is called semi-rational (or inverse semi-rational) if every element of G is semi-rational(or inverse semi-rational).

Let G be a finite group. An element $g \in G$ is called semi-rational if there exists a positive integer m such that every generator of $\langle x \rangle$ is conjugate in G to either x or x^m . In the case m = -1, x is called inverse semi-rational. G is called semi-rational (or inverse semi-rational) if every element of G is semi-rational(or inverse semi-rational).

Theorem 3

Let G be a finite semi-rational solvable group, then:

$$\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$$

and if G is inverse semi-rational then $17 \notin \pi(G)$. [D. Chillag and S. Dolfi, Semi-rational solvable groups, J. Group theory]

two papers follow the above generalization:

Mohammad Reza Darafshehdarafsheh@ut.ac.iOn rational irreducible characters of finite gro

э

- 一司

Suppose G = HK is a semi-rational Frobenius group with complement H and kernel K. then:

Suppose G = HK is a semi-rational Frobenius group with complement H and kernel K. then:

а

If |H| is even, then H and K have given structure.

Suppose G = HK is a semi-rational Frobenius group with complement H and kernel K. then:

а

If |H| is even, then H and K have given structure.

b

if |H| is odd, then $H \cong \mathbb{Z}_3$ and $|K| = 2^a \times 7^b > 1$ with $a, b \ge 0$, if $b \ge 1$ then K is not semi-rational.

Suppose G = HK is a semi-rational Frobenius group with complement H and kernel K. then:

а

If |H| is even, then H and K have given structure.

b

if |H| is odd, then $H \cong \mathbb{Z}_3$ and $|K| = 2^a \times 7^b > 1$ with $a, b \ge 0$, if $b \ge 1$ then K is not semi-rational.

С

$|\pi(G)| \leq 5.$

[S. H. Alavi, A. Daneshkhah and M. R. Darafsheh, On semi-rational Frobenius groups, J. Alg. and its Application, Vol. 15, No. 2 (2016)]

If G is a semi-rational simple group, then G has a known structure. If G is not an alternating group, then $|\pi(G)| \le 5$ and if G is a group of Lie type, then $|\pi(G)| \le 8$. [S. H. Alavi and A. Daneshkhah, On semi-rational finite simple groups, Monatsh Math]

A finite group G is called a \mathbb{Q}_1 -group if all of its non-linear characters are rational valued. obviously every \mathbb{Q} -group is a \mathbb{Q}_1 -group and every abelian group is a \mathbb{Q}_1 -group.

A finite group G is called a \mathbb{Q}_1 -group if all of its non-linear characters are rational valued. obviously every \mathbb{Q} -group is a \mathbb{Q}_1 -group and every abelian group is a \mathbb{Q}_1 -group.

Definition

A \mathbb{Q}_1 -group which is not a \mathbb{Q} -group is called a \mathbb{Q}'_1 -group.

A finite group G is called a \mathbb{Q}_1 -group if all of its non-linear characters are rational valued. obviously every \mathbb{Q} -group is a \mathbb{Q}_1 -group and every abelian group is a \mathbb{Q}_1 -group.

Definition

A \mathbb{Q}_1 -group which is not a \mathbb{Q} -group is called a \mathbb{Q}'_1 -group.

Examples

 \mathbb{A}_4 , The $\mathbb{Z}S$ -metacyclic group of order 12.

If G is a \mathbb{Q}_1 -group and $N \leq G$, then $\frac{G}{H}$ is a \mathbb{Q}_1 -group.

æ

-∢∃>

< 67 ▶

If G is a \mathbb{Q}_1 -group and $N \leq G$, then $\frac{G}{H}$ is a \mathbb{Q}_1 -group.

Lemma 2

If a non-abelian p-group is a \mathbb{Q}_1 -group, then p = 2.

If G is a \mathbb{Q}_1 -group and $N \leq G$, then $\frac{G}{H}$ is a \mathbb{Q}_1 -group.

Lemma 2

If a non-abelian p-group is a \mathbb{Q}_1 -group, then p = 2.

Lemma 3

If G is a non-abelian \mathbb{Q}_1 -group, then Z(G) is elementary abelian2-group and |G| is even.

If G is a \mathbb{Q}_1 -group and $N \leq G$, then $\frac{G}{H}$ is a \mathbb{Q}_1 -group.

Lemma 2

If a non-abelian p-group is a \mathbb{Q}_1 -group, then p = 2.

Lemma 3

If G is a non-abelian \mathbb{Q}_1 -group, then Z(G) is elementary abelian2-group and |G| is even.

Lemma 4

If G is a
$$\mathbb{Q}'_1$$
-group, then $\exists x \in G$ such that $|\frac{G}{G'}| = |C_G(x)|$.

An element $a \in G$ is called anticentral if $|C_G(a)| = [G : G']$.

æ

イロト イヨト イヨト イヨト

An element $a \in G$ is called anticentral if $|C_G(a)| = [G : G']$.

Theorem 6

Every finite group containing anticentral elements is solvable.

[F. Ladish, Groups with anticentral elements, Communications in algebra, 36 : 2883-2894 (2008)]

An element $a \in G$ is called anticentral if $|C_G(a)| = [G : G']$.

Theorem 6

Every finite group containing anticentral elements is solvable.

[F. Ladish, Groups with anticentral elements, Communications in algebra, 36 : 2883-2894 (2008)]

Every Q'_1 -group is solvable.

An element $a \in G$ is called anticentral if $|C_G(a)| = [G : G']$.

Theorem 6

Every finite group containing anticentral elements is solvable.

[F. Ladish, Groups with anticentral elements, Communications in algebra, 36 : 2883-2894 (2008)]

Every Q'_1 -group is solvable.

Theorem 7

Let G be a non-abelian Q'_1 -group such that $\frac{G}{G'}$ is a cyclic p-group of odd order. Then $|C_G(x)| = |\frac{G}{G'}|$ for $x \in G - G'$. [M. R. Darafsheh, A. Iranmanesh and S. A. Moosavi, A rational property of the irreducible characters of a finite group, LMS LN no. 387, pp. 224-227 ed. by C.M. Campbell et al.]

A non-abelian group G is called a Camina group if the conjugacy class of every element $g \in G - G'$ is gG'.

A non-abelian group G is called a Camina group if the conjugacy class of every element $g \in G - G'$ is gG'.

By a result of Lewis the above condition is equivalent to

$$|C_G(g)| = [G:G']$$

[M. L. Lewis, Generalizing Camina groups and their character tables, J. Group Theory, 12(2009), 209-218]

A non-abelian group G is called a Camina group if the conjugacy class of every element $g \in G - G'$ is gG'.

By a result of Lewis the above condition is equivalent to

 $|C_G(g)| = [G:G']$

[M. L. Lewis, Generalizing Camina groups and their character tables, J. Group Theory, 12(2009), 209-218]

A group satisfying the conditions of the theorem is a Camina group.

By [A. S. Muktibodh and S. H. Ghate, On Camina group and its generalizations, Math. Bechik, 65. 2 (2013) 250-260] One of the following possibilities holds:

(a) G is a p-group.

(b) G is a Frobenius with kernel G'.

(c) G is Frobenius with complement isomorphic to \mathbb{Q}_8 .

Only the second possibility above holds.

Theorem 8

Let G be a non-abelian solvable Q'_1 -group. Then there is a normal subgroup K of G and the following hold: (1) $\frac{G}{K}$ is a non-abelian 2-group. (2) $\frac{G}{K}$ is a Frobenius group with cyclic complement. [M. R. Darafsheh, A. Iranmanesh and S. A. Moosavi, Groups whose non-linear irreducible characters are rational valued, Arch. Math.]

If G is a Frobenius Q'_1 -group, then one of the following occurs:

æ

< 67 ▶

-∢∃>

If G is a Frobenius Q'_1 -group, then one of the following occurs:

(1) $G \cong E(p^n) : \mathbb{Z}_t$, where p is an odd prime, $n \ge 1$ and $t \ge 1$ is even.

(2) $G \cong G' : \mathbb{Z}_t$, where G' is a rational 2-group and $t \ge 1$ is odd.

(3) $G \cong E(5^2)$: \mathbb{Q}_8 or $G \cong E(3^{2m})$: \mathbb{Q}_8 , where $m \ge 1$.

(4) $G \cong E(p^n)$: *H*, where p is a Fermat prime, $n \ge 1$ and H is a metacyclic group of order $2^m q$, for some Fermat prime q and $m \ge 1$.

[M. Nooz-Abadian and H. Sharifi, Frobenius Q_1 -groups, Arch. Math, 105 (2015), 509-517]

イロト 不得下 イヨト イヨト

\mathbb{Q}_1 -groups with exactly one or two non-linear irreducible character.

[G. M. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc., 19 (1968), 459-461]

Theorem 10

Suppose that G has only the character of degree 1 with multiplicity m, and one irreducible character of degree n, then: (a) G is an extra-special 2-group, $|G| = 2^{2k+1}$, $m = 2^{2k}$, $n = 2^k$. (b) |G| = q(q-1), |G'| = q, m = n = q - 1, $q = p^2$, p prime.

\mathbb{Q}_1 -groups with exactly one or two non-linear irreducible character.

[G. M. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc., 19 (1968), 459-461]

Theorem 10

Suppose that G has only the character of degree 1 with multiplicity m, and one irreducible character of degree n, then: (a) G is an extra-special 2-group, $|G| = 2^{2k+1}$, $m = 2^{2k}$, $n = 2^k$. (b) |G| = q(q-1), |G'| = q, m = n = q - 1, $q = p^2$, p prime.

The groups in (a) are Q-groups. But the group in (b) is isomorphic to the one dimensional affine group $Af_1(q) = G$, $\frac{G}{G'} \cong \mathbb{Z}_{q-1}$, hence if q > 3 the group $Af_1(q)$ is a \mathbb{Q}'_1 -group.

3

<ロ> (日) (日) (日) (日) (日)

$\mathbb{Q}_1\text{-}\mathsf{groups}$ with exactly one or two non-linear irreducible character.

Finite groups with exactly 2 irreducible characters of degree greater than 1.

\mathbb{Q}_1 -groups with exactly one or two non-linear irreducible character.

Finite groups with exactly 2 irreducible characters of degree greater than 1.

If the degrees of these two characters are diffrent, then:

- (1) G extra-special 2-group.
- (2) $G \cong Af_1(q)$, q prime power.
- (3) $G \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Q}_8.$

[Y. Berkovich, D. Chillag and M. Herzog, Finite groups in which the degrees of the non-linear irreducible characters are distinct, Proc. Amer. Math. Soc. , Vol. 115 , No. 4 (1992)]

\mathbb{Q}_1 -groups with exactly one or two non-linear irreducible character.

Finite groups with exactly 2 irreducible characters of degree greater than 1.

If the degrees of these two characters are diffrent, then:

- (1) G extra-special 2-group.
- (2) $G \cong Af_1(q)$, q prime power.
- (3) $G \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Q}_8.$

[Y. Berkovich, D. Chillag and M. Herzog, Finite groups in which the degrees of the non-linear irreducible characters are distinct, Proc. Amer. Math. Soc., Vol. 115, No. 4 (1992)]

The groups in (1) and (3) are \mathbb{Q} -groups, and the group in (2) has only one non-linear irreducible character.

Let [G : G'] = k. Then the number of irreducible characters of G is k+2, which must be equal to the number of conjugacy classes of G.

$$G = g_1 G' \cup g_2 G' \cup \cdots \cup g_k G'$$

 $\{g_1 = 1, g_2, \cdots, g_k\}$ a set of left transversals of G' in G. Each $g_i G'$ is a union of conjugacy classes of G. The following cases arise:

Case1. G' is the union of 3 conjugacy classes of G.

Mohammad Reza Darafshehdarafsheh@ut.ac.iOn rational irreducible characters of finite gro

In this case each g_iG' , $i \ge 2$, is a conjugacy class of G, therefore G is a Camina group. Hence G is 3-Camina group.

In this case each g_iG' , $i \ge 2$, is a conjugacy class of G, therefore G is a Camina group. Hence G is 3-Camina group.

Theorem 11

G is a Camina 3-group iff (1) $G \cong \mathbb{Z}_p^r : \mathbb{Z}_{\frac{p^r-1}{2}}$ Frobenius group, p odd prime. (2) $G \cong$ extra special 3-group. (3) $G \cong \mathbb{Z}_3^2 : Q_8$, Frobenius group. In this case each g_iG' , $i \ge 2$, is a conjugacy class of G, therefore G is a Camina group. Hence G is 3-Camina group.

Theorem 11

G is a Camina 3-group iff (1) $G \cong \mathbb{Z}_p^r : \mathbb{Z}_{\frac{p^r-1}{2}}$ Frobenius group, p odd prime. (2) $G \cong$ extra special 3-group. (3) $G \cong \mathbb{Z}_3^2 : Q_8$, Frobenius group.

Only the group in (1) is a \mathbb{Q}_1 -group with 2 non-linear irreducible character.

If Z(G) = 1, G has exactly one non-linear irreducible character. [M. Shahriari and M. A. Shahabi, Subgroups which are the union of two conjugacy classes, Bull. Iranian Math. Soc. , Vol. 25, No. 1, 59-71 (1999)] If Z(G) = 1, G has exactly one non-linear irreducible character. [M. Shahriari and M. A. Shahabi, Subgroups which are the union of two conjugacy classes, Bull. Iranian Math. Soc. , Vol. 25, No. 1, 59-71 (1999)]

Let $Z(G) \neq 1$, and G has 2 non-linear irreducible characters of degree n. If $1 \neq z \in Z(G)$ and χ is a non-linear irreducible character, then

$$\chi|_{Z(G)(z)} = \lambda(z)\chi(1)$$

where λ is an irreducible character of Z(G). But Z(G) is elementary abelian 2-group, therefore

$$\lambda(z) = \pm 1$$
 and $\chi|_{Z(G)} = \pm \chi(1) = \pm n$

The character table of G looks like:

The character table of G looks like:

	1		<i>z</i> 0	G - Z(G)
$\frac{G}{G'}$				
χ	n	n	п	а
θ	n	- <i>n</i>	- <i>n</i>	b = -a

The character table of G looks like:

	1		<i>z</i> 0	G - Z(G)
$\frac{G}{G'}$				
χ	n	n	п	а
θ	n	— <i>n</i>	<i>-n</i>	b = -a

Orthogonality of columns: $na + nb = 0 \Rightarrow b = -a$ Orthogonality of rows: $n^2 \cdots - n^2 - a^2 - \cdots = 0$ Therefore |Z(G)| = 2 and $a = \cdots = 0$. Each irreducible character outside Z(G) is zero.

A finite group G is called a $\mathbb{V}\mathbb{Z}\text{-}\mathsf{group}$ if all non-linear irreducible characters of G vanish off the center of G.

[M. L. Lewis, character tables of groups where all non-linear irreducible characters vanish off the center, lschia Group Theory 2008, Edited by M. Bianchi, P. Longobardi, M. Maj and C. M. Scoppola, World Scientific, 2009, 174-182.]

A finite group G is called a \mathbb{VZ} -group if all non-linear irreducible characters of G vanish off the center of G.

[M. L. Lewis, character tables of groups where all non-linear irreducible characters vanish off the center, lschia Group Theory 2008, Edited by M. Bianchi, P. Longobardi, M. Maj and C. M. Scoppola, World Scientific, 2009, 174-182.]

Let G be a \mathbb{VZ} -group, then $G' \leq Z(G)$, G is nilpotent of class 2. Therefore G is a 2-group with $G' = Z(G) \cong \mathbb{Z}_2$, implying G is extra-special, a contradiction. Let G be a \mathbb{Q}_1 -group with exactly two non-linear irreducible characters. Then: (1) $G \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) : \mathbb{Q}_8$. (2) $G \cong \mathbb{Z}_p^r : \mathbb{Z}_{\frac{p^r-1}{2}}$ Frobenius group, p odd prime.

Thank You!

Mohammad Reza Darafshehdarafsheh@ut.ac.iOn rational irreducible characters of finite gro

æ

(日) (同) (三) (三)