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Characteristically Simple Groups

Definition
A finite group G is characteristically simple if there exists a
simple group S such that G = Sk for some positive integer k .

e.g.

I Any simple group

I Any elementary abelian p-group

I E8(27)1320, L101(101101)101, HS244823040, . . .
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2-generated Characteristically Simple Groups

Definition
Let S be a simple group. We write h(S) for the largest integer k
such that Sk is 2-generated.

We say that two generating pairs (x , y), (x ′, y ′) ∈ S2 are
equivalent of there is an automorphism α ∈ Aut S such that
xα = x ′ and yα = y ′. Hall showed that if S is simple, then h(S) is
the number of equivalence classes under this relation.

Theorem (Dixon; Kantor; Liebeck and Shalev)

h(S) ∼ |S |/|Out(S)|

Theorem (Morgan, Roney-Dougal ’15)
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A theorem

Theorem (F. ’17+)

If S is a simple group and k ≤ h(S), then there exists a generating
pair of Sk , x , y ∈ Sk such that there exists an automorphism
φ ∈ Aut Sk such that

xφ = x−1 and yφ = y−1.

“Proof”: We’ll assume k = h(S) for now. Let X = (x1, x2, . . .) and
Y = (y1, y2, . . .) generate Sh(S). For a given i ...

I If there is an α ∈ Aut S such that xαi = x−1i and yαi = y−1i ,
then define φ in such a way that it applies α to the i th

coordinates. (A ‘simply invertible pair’.)
I If there is no such α, then (xi , yi ) is not equivalent to

(x−1i , y−1i ). (A ‘Non-simply invertible pair’.) Note also that if
(xi , yi ) generate S , then so do (x−1i , y−1i ). It follows that there
is some j 6= i such that (xj , yj) is equivalent to (x−1i , y−1i ).
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If S is a simple group and k ≤ h(S), then there exists a generating
pair of Sk , x , y ∈ Sk such that there exists an automorphism
φ ∈ Aut Sk such that

xφ = x−1 and yφ = y−1.

If we replace (xj , yj) with (x−1i , y−1i ) then we can define φ in such
a way that it simply swaps the i th and j th coordinate.

Smaller k? We can come down an even number of steps by
neglecting non-simply invertible pairs (or pairs of simply invertible
pairs). We can come down an odd number of steps if there exists
at least one simply invertible pair. It can be shown that such pairs
always exist. �
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Beauville I: Definition

Definition (Catanese ’00)

Let G be a finite group.

For g , h ∈ G let

Σ(g , h) :=
⋃
γ∈G

|G |⋃
i=1

{(g i )γ , (hi )γ , ((gh)i )γ}.

A Beauville structure for the group G is a set of pairs of
elements {{g1, h1}, {g2, h2}} ⊂ G × G with the property that
〈g1, h1〉 = 〈g2, h2〉 = G such that

Σ(g1, h1) ∩ Σ(g2, h2) = {e}.
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Beauville II: Examples

Theorem (Garion, Larson, Lubotzky; Guralnick, Malle; F.,
Magaard & Parker, ’10-’13)

Every non-abelian finite simple group apart from A5 is a Beauville
group.

Theorem (Jones ’15)

Let S be a simple group that is either an alternating group; L2(q);
L3(q); U3(q); 2B2(22n+1); 2G2(32n+1) or a sporadic group. Then
Sk is a Beavuille group if and only if it is 2-generated and
(S , k) 6= (A5, 1).
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Beauville III: Motivation

I Beauville structures give us ‘Beauville surfaces’ which have
really nice properties like. . .

I Easy to work with fundamental groups and automorphism
groups; rigidity; they’re of general type etc.

I Consequently, they’re useful e.g.. . .
I Cheap counterexamples to the Friedman-Morgan conjecture

(don’t ask).
I More recently they featured in work of González-Diez &

Jaikin-Zapirain concerning the (faithful!) action of GalQ/Q on
regular dessins.

(There are speculative links to the theory of buildings thanks
to the work of Cartwright and Steger (and Howie?).)
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Beauville IV: A Further Definition

Definition (Bauer, Catanese, Grunewald ’04)

A Beauville structure {{g1, h1}, {g2, h2}} ⊂ G × G and its
corresponding Beauville group G are strongly real if there exist
automorphisms φ1, φ2 ∈ AutG and elements z1, z2 ∈ G such that
for i = 1, 2

ziφi (gi )z−1i = g−1i and

ziφi (hi )z−1i = h−1i .

(Basically the Beauville surface has even nicer properties if the
structure has this extra property. There are also links to symmetric
Riemann surfaces and Klein surfaces.)
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Some more definitions

Definition
Let X := (x1, x2, x3, . . . , xk) ∈ Sk for some k ≤ h(S) and let p be
a prime dividing |S |.

The profile of X is

r(X ) := (o(x1), o(x2), . . . , o(xk)) ∈ Nk .

The p-summit of of X is

rp(X ) := {i ∈ [k] | pn divides o(xi ) & no elements have order pn+1}.

Given a generating pair X ,Y ∈ Sk let T := (X ,Y ,XY ). The
p-summit of T is

rp(T ) := {rp(X ), rp(Y ), rp(XY )}.
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Lemmas

Lemma (easy)

Let Xi = (xi1, xi2, . . . , xik) and Yi = (yi1, yi2, . . . , yik) for i = 1, 2
be generating pairs for Sk

and let Ti = (Xi ,Yi ,XiYi ) for i = 1, 2.
If rp(T1) ∩ rp(T2) = ∅ for every prime p dividing |S |, then
{T1,T2} is a Beauville structure for Sk .
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Lemmas

Lemma (less easy)

Let Ti for i = 1, 2 be as in the previous lemma and

suppose that
this is in fact a strongly real Beauville structure, that is, Sk is a
strongly real Beauville group. Further suppose that there exists a
simply invertible generating pair (x , y) ∈ S2 not equivalent to
(xij , yij) for i = 1, 2. Then Sk+l is a strongly real Beauvillle group
for every l such that 0 ≤ l ≤ h(S)− k.
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Example: L2(q)k where (k , q) 6= (1, 4), (1, 5)

Theorem
The characteristically simple group L2(q)k is a strongly Beauville
group if and only if L2(q)k is 2-generated and
(k , q) 6= (1, 4), (1, 5).

“Proof” An old theorem of Murray Macbeath tells us that every
generating pair of L2(q) is simply invertible. We can easily obtain
generating pairs of types (p, (q + 1)(/2), (q + 1)(/2)) and
((q + 1)(/2), p, p) which inverted by ‘the non-trivial permutation
matrix’ and from their orders they are obviously inequivalent.
Similarly can obtain two inequivalent generating triples of types
((q − 1)(/2), (q − 1)(/2), (q − 1)(/2)) (q = 5 goes a bit wrong,
but don’t worry!) inverted by the same automorphism. This shows
that L2(q)4 (and smaller powers) is a strongly real Beauville group.
A generating pair of type ((q − 1)(/2), (q + 1)(/2), p) can easily
be constructed. �
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Idiot I: H × H



Idiot II: The Moron paper



Idiot III: h(A7)
A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×A7×
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A916
7

X1 := (1, 2, 3, 4, 5, 6, 7)(8, 14, 11)(9, 13)(10, 12)(15, 16, 17, 18, 19, 20, 21)
(22,23,27,28)(24,26)(30,34,33,32,31)(36,42,37,39,41)

Y1 := (1, 4, 7)(2, 6)(3, 5)(8, 14, 13, 12, 11, 10, 9)(15, 19, 17, 21, 16, 18, 20)
(23, 24, 25, 26, 27)(29, 35, 34, 30)(31, 33)(37, 38, 40, 41, 39)

X2 := (1, 2, 6, 7)(3, 5)(9, 13, 12, 11, 10)(15, 21, 16, 18, 20)
(22, 23, 24, 25, 26, 27, 28)(29, 35, 32)(30, 34)(31, 33)(36, 37, 38, 39, 40, 41, 42)

Y2 := (2, 3, 4, 5, 6)(8, 14, 13, 9)(10, 12)(16, 17, 19, 20, 18)
(22, 25, 28)(23, 27)(24, 26)(29, 35, 34, 33, 32, 31, 30)(36, 40, 38, 42, 37, 39, 41)

φ := (1, 7)(2, 6)(3, 5)(8, 14)(9, 13)(10, 12)(15, 21)(16, 20)
(17, 19)(22, 28)(23, 27)(24, 26)(29, 35)(30, 34)(31, 33)(36, 42)(37, 41)(38, 40)

z1 := e
z2 := e

A further simply invertible generating pair for A7 is given by
(1,2,3,4,5,6,7), (2,3,4,5,6) which is inverted by conjugation by
(17)(26)(35).



Some conjectures

Conjecture (The Weak Strongly Real Conjecture
Bauer, Catanese, Grunewald ’05)

All but finitely many of the non-abelian finite simple groups are
strongly real Beauville groups.

Conjecture (The Strong Strongly Real Conjecture, F. ’15)

If S is a finite non-abelian simple group, then S is a strongly real
Beauville group unless S is one of A5, M11 or M23.

Conjecture (The Strongly Strong Strongly Real Conjecture,
F. ’17)

A finite non-abelian characteristically simple group G is a strongly
real Beauville group if and only if G is 2-generated and not one of
A5, M11 or M23.
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Conclusion

Figure: An idiot.



Thanks for Listening!


