
Partial linear spaces with a primitive rank 3
automorphism group of affine type

Joanna B. Fawcett

DPMMS, University of Cambridge

Joint work with John Bamberg, Alice Devillers, and Cheryl Praeger



A partial linear space (P,L) consists of a (finite) set P of points
and a collection L of subsets of P called lines such that:

(i) any two distinct points lie on at most one line, and

(ii) every line contains at least two points.

For example:

n×n grid:

AGm(q) where L= {⟨v⟩+w : v ∈ Vm(q)\{0},w ∈ Vm(q)}
Linear space: any two distinct points lie on exactly one line.

Graph: every line contains exactly two points.

A partial linear space is proper if it is not a linear space or a graph.
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What do we know about linear spaces with symmetry?

Kantor (1985): Classified linear spaces with a 2-transitive
group of automorphisms.

BDDKLS (1990): Classified linear spaces with a flag-transitive
group of automorphisms G (except for the case G ⩽ AΓL1(q)).

Problem A: Classify the partial linear spaces for which

1 Any ordered pair of distinct collinear points can be mapped by
an automorphism to any other such pair.

2 Any ordered pair of distinct non-collinear points can be
mapped by an automorphism to any other such pair.

Such partial linear spaces are:

point-transitive, line-transitive, flag-transitive
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Let G be a group acting transitively on Ω. The rank is the number
of orbits of G on Ω×Ω.

For α ∈ Ω, the rank equals the number of orbits of Gα on Ω.

For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.

Great news: Primitive rank 3 groups known.

Graphs whose automorphism groups are transitive of rank 3 can be
enumerated using the classification of the primitive rank 3 groups.

N.B. A graph with an imprimitive rank 3 group of automorphisms
is either Kn[m] or n ·Km. No such result for a proper PLS!
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Problem B: Classify the proper partial linear spaces with a
primitive automorphism group of rank 3.

Primtive permutation groups of rank 3 come in three flavours:
almost simple, grid, affine.

Devillers (2005,2008): complete answer for Problem B in the
almost simple and grid cases.

Focus on the affine case.



Problem B: Classify the proper partial linear spaces with a
primitive automorphism group of rank 3.

Primtive permutation groups of rank 3 come in three flavours:
almost simple, grid, affine.

Devillers (2005,2008): complete answer for Problem B in the
almost simple and grid cases.

Focus on the affine case.



Problem B: Classify the proper partial linear spaces with a
primitive automorphism group of rank 3.

Primtive permutation groups of rank 3 come in three flavours:
almost simple, grid, affine.

Devillers (2005,2008): complete answer for Problem B in the
almost simple and grid cases.

Focus on the affine case.



Problem B: Classify the proper partial linear spaces with a
primitive automorphism group of rank 3.

Primtive permutation groups of rank 3 come in three flavours:
almost simple, grid, affine.

Devillers (2005,2008): complete answer for Problem B in the
almost simple and grid cases.

Focus on the affine case.



+=

Let G be a rank 3 permutation group on a set P. TFAE:

(i) There is a linear space S on P such that G ⩽ Aut(S) and G
has two orbits on lines.

(ii) There are 2 partial linear spaces S1 and S2 on P with different
collinearity relations such that G ⩽ Aut(Si ).

Biliotti-Montinaro-Francot (2015): classified 2-(v ,k,1)
designs with a primitive rank 3 affine group on points that has
two orbits on lines (except for certain groups).
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Affine groups: G = V : G0 for G0 ⩽ GLd(p) acting on V = Vd(p)
where p is prime and V is irreducible FpG0-module.

Examples of proper PLSs with point set V and rank 3 group G :

1 pn×pn grid with V = Vn(p)⊕Vn(p) and G0 = GLn(p) ≀C2.

2 V = Vm(q) and G0 ⩽ ΓLm(q) has two orbits ∆, Γ on P(V ).
Typical line: translation of x where x ∈∆.

3 V = V2(q)⊗Vn(q) and G0 = GL2(q)⊗GLn(q) : Aut(Fq).
Typical line: translation of u⊗Vn(q) where u ∈ V2(q)\{0}.

4 V = V2(q)⊗Vn(q) and G0 = GL2(q)⊗GLn(q) : Aut(Fq).
Typical line: translation of V2(q)⊗u where u ∈ Vn(q)\{0}.
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Theorem (Bamberg, Devillers, F., Praeger)

Let S be a proper partial linear space and G ⩽ Aut(S) a rank 3
primitive permutation group with socle V = Vd(p). Then

(i) S lies in one of the 4 infinite families just discussed, or

(ii) S lies in a (known) finite list, or

(iii) one of the following holds:

(a) G0 ⩽ ΓL1(p
d), or

(b) V = Vn(p)⊕Vn(p) and G0 ⩽ ΓL1(p
n) ≀C2 where d = 2n, or

(c) V = V2(t
3) and SL2(t)⊴G0 where pd = t6.

Open problem

Classify the rank 3 proper PLSs in (iii). Especially (c).
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Let G be a primitive group of rank 3 with socle Vd(p), and let ℓ be
a line of a proper PLS with automorphism group G where 0 ∈ ℓ.

Let X be the orbit of G0 containing ℓ\{0}.
1 X ∪{0} is not a subspace of Vd(p).

2 If x ,y ∈ ℓ\{0} and x ̸= y , then y −x ∈ X .
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An outline of the proof of the theorem:

Let G be a primitive group of rank 3 with socle Vd(p). Let ℓ be a
line of a proper PLS with aut group G where 0 ∈ ℓ. Let x ∈ ℓ\{0}.

Liebeck (1987) =⇒ G0 and its orbits are known.
(e.g. Ω±

2n(q)⊴G0; singular and non-singular vectors)

Typically G0 ⩽ ΓLm(q) where pd = qm and ⟨x⟩Fq ⊆ xG0 .

If ℓ⊆ ⟨x⟩Fq , then Kantor’s classification of 2-transitive linear
spaces =⇒ ℓ= ⟨x⟩Fr for some subfield Fr of Fq, and
Example (2) holds.

Otherwise, there exists y ∈ ℓ\ ⟨x⟩Fq . Now yG0,x ⊆ ℓ.

Repeat this process until you find examples or some
u ̸= v ∈ ℓ\{0} such that u−v /∈ xG0 a contradiction.
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If ℓ⊆ ⟨x⟩Fq , then Kantor’s classification of 2-transitive linear
spaces =⇒ ℓ= ⟨x⟩Fr for some subfield Fr of Fq, and
Example (2) holds.

Otherwise, there exists y ∈ ℓ\ ⟨x⟩Fq . Now yG0,x ⊆ ℓ.

Repeat this process until you find examples or some
u ̸= v ∈ ℓ\{0} such that u−v /∈ xG0 a contradiction.
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Fact: if S lies in one of the 4 infinite families, then the lines of S
are affine Fp-subspaces of V .

But this is not true in general!

Let V = Vd(3). Suppose that either

1 d = 5 and G0 =M11 with subdegrees 132 and 110, or

2 d = 4 and G0 =M10 ≃ A6.2≃ Ω−
4 (3).2.

Then there is a partial linear space S with Aut(S) = V : G0.

Each point lies on 12 lines.

The former has 243 = |V | lines and line size 12.

The latter has 162 = 2|V | lines and line size 6.
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