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A partial linear space (P, L) consists of a (finite) set P of points
and a collection L of subsets of P called lines such that:

(i) any two distinct points lie on at most one line, and
(ii) every line contains at least two points.
For example:

@ nxn grid:

@ AGp,(q) where L={(v)+w:ve Vy,(q)\{0},we Vn(q)}
@ Linear space: any two distinct points lie on exactly one line.
@ Graph: every line contains exactly two points.

A partial linear space is proper if it is not a linear space or a graph.
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What do we know about linear spaces with symmetry?
e Kantor (1985): Classified linear spaces with a 2-transitive
group of automorphisms.

o BDDKLS (1990): Classified linear spaces with a flag-transitive
group of automorphisms G (except for the case G < Al'L1(q)).

Problem A: Classify the partial linear spaces for which
@ Any ordered pair of distinct collinear points can be mapped by
an automorphism to any other such pair.
@ Any ordered pair of distinct non-collinear points can be
mapped by an automorphism to any other such pair.

Such partial linear spaces are:

@ point-transitive, line-transitive, flag-transitive




Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q x Q.



Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.



Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.




Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.

1]

—— ——
For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.




Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.

1]

~—— —

For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.

Great news: Primitive rank 3 groups known.



Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.

1]

—— ——
For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.

Great news: Primitive rank 3 groups known.

Graphs whose automorphism groups are transitive of rank 3 can be
enumerated using the classification of the primitive rank 3 groups.



Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.

1]

~—— —

For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.

Great news: Primitive rank 3 groups known.

Graphs whose automorphism groups are transitive of rank 3 can be
enumerated using the classification of the primitive rank 3 groups.

N.B. A graph with an imprimitive rank 3 group of automorphisms
is either K or n- Ko,



Let G be a group acting transitively on Q. The rank is the number
of orbits of G on Q2 x Q.

For a € Q, the rank equals the number of orbits of G, on €.
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For PLSs with collinear and non-collinear pairs of points, Problem
A is equivalent to classifying those with a rank 3 group.

Great news: Primitive rank 3 groups known.

Graphs whose automorphism groups are transitive of rank 3 can be
enumerated using the classification of the primitive rank 3 groups.

N.B. A graph with an imprimitive rank 3 group of automorphisms
is either K[ or n- K. No such result for a proper PLS!
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Problem B: Classify the proper partial linear spaces with a
primitive automorphism group of rank 3.

@ Primtive permutation groups of rank 3 come in three flavours:
almost simple, grid, affine.

@ Devillers (2005,2008): complete answer for Problem B in the
almost simple and grid cases.

@ Focus on the affine case.
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Let G be a rank 3 permutation group on a set P. TFAE:

(i) There is a linear space S on P such that G < Aut(S) and G
has two orbits on lines.

(i) There are 2 partial linear spaces S; and S> on P with different
collinearity relations such that G < Aut(S;).

e Biliotti-Montinaro-Francot (2015): classified 2-(v, k,1)
designs with a primitive rank 3 affine group on points that has
two orbits on lines (except for certain groups).
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@ p" x p" grid with V = V,(p)® V,(p) and Gy = GL,(p) C.

@ V =Vp,(q) and Gy < TL,(g) has two orbits A, I on P(V).
Typical line: translation of x where x € A.

@ V =V2(q)® Vh(q) and Go = GL2(q) ® GL,(q) : Aut(Fy).
Typical line: translation of u® V,(q) where u € V(q)\ {0}.

@ V= V(q)® V,(q) and Go = GL2(q) ® GLh(q) : Aut(Fg).
Typical line: translation of Va(q) ® u where u € V,(q)\ {0}.
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Theorem (Bamberg, Devillers, F., Praeger)

Let S be a proper partial linear space and G < Aut(S) a rank 3
primitive permutation group with socle VV = V4(p). Then
(i) S lies in one of the 4 infinite families just discussed, or
(ii) S lies in a (known) finite list, or
(iii) one of the following holds:
(a) Gp <TLy(p9), or

(b) V =V,(p)® Va(p) and Gy < TL1(p")2 Gy where d =2n, or
(c) V = Vo(t3) and SLy(t) < Gy where p? = t5.

Open problem

Classify the rank 3 proper PLSs in (iii). Especially (c).
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a line of a proper PLS with automorphism group G where 0 € 4. J

Let X be the orbit of Gy containing ¢\ {0}.

@ XU{0} is not a subspace of Vy(p).
@ If x,y € £\ {0} and x # y, then y —x € X.
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An outline of the proof of the theorem:

Let G be a primitive group of rank 3 with socle Vy(p). Let ¢ be a
line of a proper PLS with aut group G where 0 € . Let x € ¢\ {0}.

Liebeck (1987) = Gp and its orbits are known.
(e.g. Q5.(g) < Go; singular and non-singular vectors)

Typically Go < TLm(q) where p? = g™ and (x)r, C x©o.
If £ C (x)F,, then Kantor's classification of 2-transitive linear

spaces = { = (x)p, for some subfield F, of Fq, and
Example (2) holds.

Otherwise, there exists y € £\ (x)r,. Now yCox C 4.

Repeat this process until you find examples or some
u# v e l\{0} such that u—v ¢ x® a contradiction.
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Fact: if S lies in one of the 4 infinite families, then the lines of S
are affine Fp-subspaces of V. But this is not true in general! J

Let V = V4(3). Suppose that either
@ d =5 and Gy = My; with subdegrees 132 and 110, or
@ d=4and Gy = Mg~ As.2~Q,(3).2.

Then there is a partial linear space S with Aut(S) =V : Gp.
@ Each point lies on 12 lines.
@ The former has 243 = |V/| lines and line size 12.
@ The latter has 162 = 2|V/| lines and line size 6.



