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Prelude: what are the obstructions to understanding 
Baumslag-Solitar groups?

First issue for group theorists is the mix of positive and 
negative curvature. 

Second issue is number theory. In BS(p, q) the relationship 
between p and q matters. For p = 1 the group is solvable. For 
p = q the group is automatic. When p divides q, there is still a 
semblance of order. Chaos reigns when 𝒑𝒑 ∤ 𝒒𝒒.



This is a (partial) Cayley 2-complex for the 2,6 Baumslag-
Solitar group. Topologically it is a tree cross a line. The 

main line is called the horocyclic subgroup.



The growth series for a group G with respect to a specific 
finite generating set is a formal generating function

Summing over n ≥ 0,   let  S(z) = ∑σ(n) zn

where σ(n) denotes the number of group elements whose 
word metric length is n. 

The exponent of growth is  ωS = 𝒍𝒍𝒍𝒍𝒍𝒍
𝒏𝒏→∞

𝒏𝒏 σ(n) , where the limit 
exists by Fekete’s Lemma.

ωS is the reciprocal of the radius of convergence for S(z).



If a group G is the direct product of finitely generated 
subgroups T, B then in terms of generating functions:

S(z) = ∑σ(n) zn = T(z)B(z)

the usual product of generating functions
where σ(n) can be written as the convolution sum

σ(n)= ∑ τ(k)b(n-k) 

with the sum index going from 0 to n. 

And evidently (barring miraculous cancellations) the exponent 
of growth ωS coincides with the that of the larger of the two 

factors.



Although topologically the 2-complex is tree ✕ line, the 
group is not an algebraic product T ✕ Z as evidenced by the 

distortion of the horocyclic cosets*

*growth of the horocyclic subgroup was the topic of my GSA 2005 presentation



So the growth function of the group is not a product of two
subgroup growth functions. But it can be viewed as a
modified convolution product….



Project the Cayley graph so the line components vanish. 
This gives a rooted tree (the Bass-Serre tree) with edge 

weights. If we know all the weights, we can compute the 
growth of the tree. 



The growth series for the Bass-Serre tree is another formal 
generating function*

Summing over n ≥ 0,   let  T(z) = ∑τ(n) zn

where τ(n) denotes the number of tree nodes whose 
(weighted) distance from the root is n. Note that sequence 
τ(n) is increasing, so by Pringsheim’s Theorem, the 
dominant singularity for T(z) is positive and equals its 
radius of convergence.

The exponent of growth for the tree is  ωT = 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝒏𝒏>𝟎𝟎

𝒏𝒏 τ(n)

which is the reciprocal of the radius of convergence for T(z).

* the growth series for the tree was the topic of my GSA 2013 presentation



At GSA 2005, we conjectured the equality ωS = ωT
for all Baumslag-Solitar groups

Already true in the solvable and automatic cases, which have 
rational growth series with readily apparent tree factor in 
the overall generating function.

Numerical estimates suggested the conjecture holds in 
BS(2,3), BS(2,4), and BS(3,6).

But in the course of proving the conjecture for BS(2,4) we saw 
it was false in general…. 



Levels in the Bass-Serre tree of BS(p, q)

Our earlier picture showed distortion in horocyclic cosets. 

Quasi-isometry arguments show a horizontal dilation in such
cosets by a factor of   𝒒𝒒

𝒑𝒑
for each downward tree edge.

Combinatorial arguments verify this for relative growth on each
particular horocyclic coset. However, combinatorial 
compression ceases after a certain relative height in the tree.

Partition the tree into equivalence classes based on these
distortions. Label such classes as levels.



Levels in the Bass-Serre tree of BS(2, 4)
If level n > 0, then moving up, down changes to level n-1, n+1.

If level n = 0, then moving up, down changes to level 0, 1.



Using levels in a modified convolution for BS(2, 4)

Define the horocyclic subgroup growth series by

B(z) = ∑b(n) zn

Then a level l coset has growth series

2lB(z) = ∑2l b(n) zn

where in this case 2 = 𝒒𝒒
𝒑𝒑

. Define χ(n,l ) as the number of level l
nodes in the tree whose distance to the root is n. Evidently

τ(n)= ∑ χ(n,l )

where the sum is over all levels from 0 to n.



Using levels in a modified convolution for BS(2, 4)

So instead of a direct product convolution

σ(n)= ∑ τ(k)b(n-k) , where 0 ≤ k ≤ n

we break the sum into levels and magnify the horocyclic count

σ(n) = ∑ ∑ χ(n,l ) 2l b(n-k) .

The left sum has index 0 ≤ k ≤ n while the right sum is over 
levels 0 ≤ l ≤ n . Let’s rewrite that formula as a convolution.

σ(n) = ∑  ( 𝟏𝟏
τ(n)∑ χ(n,l ) 2l ) τ(n)b(n-k)



The modified convolution for BS(2, 4)

In the modified convolution

σ(n) = ∑  ( 𝟏𝟏
τ(n)∑ χ(n,l ) 2l ) τ(n)b(n-k)

call the middle parenthetical term φ(n), and note that it is a 
positive correction factor > 1 for almost all n.

In terms of growth series we obtain

S(z) = ∑σ(n) zn = (Φ(z)○T(z))B(z)

where Φ(z) = ∑φ(n) zn and  “○” is the Hadamard product. 



The growth rate for BS(2, 4)

From the product relationship

S(z) = ∑σ(n) zn = (Φ(z)○T(z))B(z)

we can examine dominant singularities to see that the radius 
of convergence for the group satisfies

𝟏𝟏
ωS

= min{ 𝟏𝟏
ωΦ

� 𝟏𝟏
ωT

, 𝟏𝟏
ωB

}
or in terms of exponents of growth

ωS = max{ωΦωT , ωB}



The growth rate for BS(2, 4)

We have bounds for the constituents of
ωS = max{ωΦωT , ωB}

namely,
ωB = 1.30216… 

ωT > 2.4784

ωΦ ≥ 1 

therefore,     ωS = ωΦωT



The growth rate for BS(2, 4)

In the equality ωS = ωΦωT

can we sharpen our bound   ωΦ ≥ 1 ?

Recall our correction factor 
φ(n) = 𝟏𝟏

τ(n)∑ χ(n,l ) 2l 

where we sum over levels 0 ≤ l ≤ n . 

Evidently  χ(n,l ) cannot grow strictly faster than τ(n) but

we know*  χ(n,l ) = Θ(ξn-l-1) for some fixed base 2 < ξ ≤ ωT

*derived via long, involved estimates using recursions



The growth rate for BS(2, 4)

Thus our correction factor becomes 
φ(n) = 𝟏𝟏

τ(n)∑ Θ(ξn-l-1) 2l

and we can compute ωΦ by ignoring sub-exponential terms:

ωΦ =𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝒏𝒏>𝟎𝟎

𝒏𝒏 𝟏𝟏
τ(n)∑l=𝟎𝟎

𝒏𝒏 ξn−1−l 2l

= 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝒏𝒏>𝟎𝟎

𝒏𝒏 ξ𝒏𝒏
τ(n) �

𝒏𝒏 𝟏𝟏
ξ �

𝒏𝒏 ∑l=𝟎𝟎
𝒏𝒏 2l

ξl

= ξωT
� 1�1 ≤ 1, but a priori, ωΦ ≥ 1

so ωS = ωΦωT = 1 � ωT

the growth rates of the tree and group are the same



Generalizations to BS(p, q)  where p|q
Our methods extend, with a few modifications, to BS(n, 2n). In 

particular the modified convolution

σ(n) = ∑  ( 𝟏𝟏
τ(n)∑ χ(n,l ) 2l ) τ(n)b(n-k)

remains valid, and our asymptotic estimates easily generalize. 
The group and Bass-Serre tree grow at the same rate.

On the other hand, for BS(n, kn) with k ≥ 3, the horocyclic
dilation factor of k exceeds the growth rate of BS(n, kn).

Our earlier computation shows that the nth root of
( 𝟏𝟏
τ(n)∑ χ(n,l ) kl )

tends towards   𝒌𝒌ωS
> 1. So the group grows faster than the tree.



Generalizations to BS(p, q)  where p∤q

What works when p fails to divide q? Levels and the dilation of 
horocycles by  𝒒𝒒

𝒑𝒑
based on level remains valid, being a 

result of quasi-isometry. So a modified convolution idea 
appears valid.

But nothing else works! There are apparently no verifiable 
recursions for counting or estimating χ(n,l ) . The number-
theoretic difficulties seem insurmountable.

Nevertheless, we conjecture that 

ωS = ωT

remains valid for BS(p, q) whenever q < 2p .



Aspects of Growth in Baumslag-Solitar
Groups

Thank you!
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