▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cohomology of finite *p*-groups and coclass theory

Oihana Garaialde Ocaña University of Düsseldorf

Joint work with: Antonio Díaz Ramos and Jon González Sánchez

> Groups St. Andrews in Birmingham August 11, 2017

Structure Theorem and Constructible groups $_{\rm OOOOO}$

Final remarks

Layout

2 The Structure Theorem and Constructible groups

- Uniserial *p*-adic space groups
- Constructible groups

3 Final remarks

Problem: Given an *infinite family* of *p*-groups $\{G_i\}_{i \in I}$, find a common 'good' group property that distinguishes them.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Problem: Given an *infinite family* of *p*-groups $\{G_i\}_{i \in I}$, find a common 'good' group property that distinguishes them. **Question:** When is a group property good?

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Problem: Given an *infinite family* of *p*-groups $\{G_i\}_{i \in I}$, find a common 'good' group property that distinguishes them. **Question:** When is a group property good? **Answer:** I do not know.

Structure Theorem and Constructible groups $_{\rm OOOOO}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem: Given an *infinite family* of *p*-groups $\{G_i\}_{i \in I}$, find a common 'good' group property that distinguishes them. **Question:** When is a group property good? **Answer:** I do not know.

Fact: If the group property is good, cohomology should not be able to tell them apart.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem: Given an *infinite family* of *p*-groups $\{G_i\}_{i \in I}$, find a common 'good' group property that distinguishes them. **Question:** When is a group property good?

Answer: I do not know.

Fact: If the group property is good, cohomology should not be able to tell them apart.

That is, given an infinite family of *p*-groups $\{G_i\}_{i\geq 0}$ with a 'good' common property, deduce that there are finitely many isomorphisms types of algebras in $\{H^*(G_i; \mathbb{F}_p)\}$.

Structure Theorem and Constructible groups $_{\rm OOOOO}$

Abelian *p*-groups

Let $K \cong C_{p^{i_1}} \times \cdots \times C_{p^{i_d}}$ be an abelian *p*-group. Then,

$$H^*(K; \mathbb{F}_p) \cong \begin{cases} \mathbb{F}_2[y_1, \dots, y_d] & \text{if } p = 2, i_l = 1 \\ \Lambda(y_1, \dots, y_d) \otimes \mathbb{F}_p[x_1, \dots, x_d] & \text{otherwise}, \end{cases}$$

where $|y_i| = 1$, $|x_i| = 2$.

Abelian *p*-groups

Let $K \cong C_{p^{i_1}} imes \cdots imes C_{p^{i_d}}$ be an abelian p-group. Then,

$$H^*(K; \mathbb{F}_p) \cong \begin{cases} \mathbb{F}_2[y_1, \dots, y_d] & \text{if } p = 2, i_l = 1 \\ \Lambda(y_1, \dots, y_d) \otimes \mathbb{F}_p[x_1, \dots, x_d] & \text{otherwise}, \end{cases}$$

where
$$|y_i| = 1, |x_i| = 2.$$

2-groups of maximal nilpotency class

Let D_{2^n} , Q_{2^n} and SD_{2^n} denote the dihedral, quaternion and semi-dihedral 2groups of order 2^n , respectively. Then, there are isomorphisms of algebras

Abelian *p*-groups

Let $K \cong C_{p^{i_1}} imes \cdots imes C_{p^{i_d}}$ be an abelian *p*-group. Then,

$$H^*(K; \mathbb{F}_p) \cong \begin{cases} \mathbb{F}_2[y_1, \dots, y_d] & \text{if } p = 2, i_l = 1 \\ \Lambda(y_1, \dots, y_d) \otimes \mathbb{F}_p[x_1, \dots, x_d] & \text{otherwise}, \end{cases}$$

where
$$|y_i| = 1, |x_i| = 2.$$

2-groups of maximal nilpotency class

Let D_{2^n} , Q_{2^n} and SD_{2^n} denote the dihedral, quaternion and semi-dihedral 2groups of order 2^n , respectively. Then, there are isomorphisms of algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Coclass)

Let p be a prime number and let G be a p-group of order p^n and nilpotency class m. Then, G has coclass c = n - m.

Definition (Coclass)

Let p be a prime number and let G be a p-group of order p^n and nilpotency class m. Then, G has coclass c = n - m.

Theorem (J.F. Carlson, 2005)

Let k be a field of characteristic 2 and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras with coefficients in k for all 2-groups of coclass c. Structure Theorem and Constructible groups 00000

Definition (Coclass)

Let p be a prime number and let G be a p-group of order p^n and nilpotency class m. Then, G has coclass c = n - m.

Theorem (J.F. Carlson, 2005)

Let k be a field of characteristic 2 and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras with coefficients in k for all 2-groups of coclass c.

Conjecture (J.F. Carlson, 2005)

Let p be an odd prime, let k be a field of characteristic p and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras in the collection $H^*(G; k)$ when G runs over the p-groups of coclass c.

Conjecture (J.F. Carlson, 2005)

Let p be an odd prime, let k be a field of characteristic p and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras in the collection $H^*(G; k)$ when G runs over the p-groups of coclass c.

Theorem (A. Díaz, G., J. González, 2016)

Let p be a prime number and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras $H^*(G; \mathbb{F}_p)$ when G runs over the non-twisted p-groups of coclass c.

Conjecture (J.F. Carlson, 2005)

Let p be an odd prime, let k be a field of characteristic p and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras in the collection $H^*(G; k)$ when G runs over the p-groups of coclass c.

Theorem (A. Díaz, G., J. González, 2016)

Let p be a prime number and let c be an integer. Then, there are only finitely many isomorphism types of cohomology algebras $H^*(G; \mathbb{F}_p)$ when G runs over the non-twisted p-groups of coclass c.

For instance, all 2-groups of fixed coclass are non-twisted.

Structure Theorem and Constructible groups $_{\rm OOOOO}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The result of J.F.Carlson for p = 2 is based on:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The result of J.F.Carlson for p = 2 is based on:

The classification of *p*-groups by their coclass (*The Structure Theorem* of Leedham-Green),

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The result of J.F.Carlson for p = 2 is based on:

- The classification of *p*-groups by their coclass (*The Structure Theorem* of Leedham-Green),
- The fact that there finitely many cohomology algebras for all 2-groups of maximal nilpotency class (explicit isomorphisms),

The result of J.F.Carlson for p = 2 is based on:

- The classification of *p*-groups by their coclass (*The Structure Theorem* of Leedham-Green),
- The fact that there finitely many cohomology algebras for all 2-groups of maximal nilpotency class (explicit isomorphisms),
- Some counting arguments for cohomology algebras using spectral sequences.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The classification of *p*-groups by their coclass (*The Structure Theorem* of Leedham-Green),
- The fact that there finitely many cohomology algebras for all 2-groups of maximal nilpotency class (explicit isomorphisms),
- Some counting arguments for cohomology algebras using spectral sequences.

- A reformulated classification of p-groups by their coclass (The Structure Theorem of Leedham-Green),
- The fact that there finitely many cohomology algebras for all 2-groups of maximal nilpotency class (explicit isomorphisms),
- Some counting arguments for cohomology algebras using spectral sequences.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A reformulated classification of p-groups by their coclass (The Structure Theorem of Leedham-Green),
- Our proof that there are finitely many cohomology algebras for all *p*-groups of maximal nilpotency class, (no explicit isomorphisms)
- Some counting arguments for cohomology algebras using spectral sequences.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A reformulated classification of p-groups by their coclass (The Structure Theorem of Leedham-Green),
- Our proof that there are finitely many cohomology algebras for all *p*-groups of maximal nilpotency class, (no explicit isomorphisms)
- Refined counting arguments for cohomology algebras using spectral sequences.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Layout

2 The Structure Theorem and Constructible groups

- Uniserial *p*-adic space groups
- Constructible groups

3 Final remarks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (The Structure Theorem, Leedham-Green, 1994)

Let p be a prime number, let c be an integer and let G be a p-group of coclass c. Then, there exist a normal subgroup N of G and a function f(p,c) such that $|N| \le f(p,c)$ and G/N is constructible. Introduction

Structure Theorem and Constructible groups ${\circ}{\circ}{\circ}{\circ}{\circ}{\circ}$

Final remarks

Example (p = 2 and c = 1)

Example (p = 2 and c = 1)

The unique pro-2 group R of maximal nilpotency class is the extension of groups

$$1 \to \mathbb{Z}_2 \to R = \mathbb{Z}_2 \rtimes C_2 \to C_2 \to 1,$$

where C_2 acts by inverting the elements in \mathbb{Z}_2 .

Example (p = 2 and c = 1)

The unique pro-2 group R of maximal nilpotency class is the extension of groups

$$1 \to \mathbb{Z}_2 \to R = \mathbb{Z}_2 \rtimes C_2 \to C_2 \to 1,$$

where C_2 acts by inverting the elements in \mathbb{Z}_2 . Its quotient 2-groups are the dihedral 2-groups $D_{2^{n+1}} \cong \mathbb{Z}_2/2^n \mathbb{Z}_2 \rtimes C_2$ and these are constructible.

Example (p = 2 and c = 1)

The unique pro-2 group R of maximal nilpotency class is the extension of groups

$$1 \to \mathbb{Z}_2 \to R = \mathbb{Z}_2 \rtimes C_2 \to C_2 \to 1,$$

where C_2 acts by inverting the elements in \mathbb{Z}_2 . Its quotient 2-groups are the dihedral 2-groups $D_{2^{n+1}} \cong \mathbb{Z}_2/2^n \mathbb{Z}_2 \rtimes C_2$ and these are constructible. For all $n \ge 4$, there exist non-trivial central extensions

$$1 \rightarrow \textit{C}_2 \rightarrow \textit{Q}_{2^n} \rightarrow \textit{D}_{2^{n-1}} \rightarrow 1 \text{ and } 1 \rightarrow \textit{C}_2 \rightarrow \textit{SD}_{2^n} \rightarrow \textit{D}_{2^{n-1}} \rightarrow 1.$$

Example (p = 2 and c = 1)

The unique pro-2 group R of maximal nilpotency class is the extension of groups

$$1 \to \mathbb{Z}_2 \to R = \mathbb{Z}_2 \rtimes C_2 \to C_2 \to 1,$$

where C_2 acts by inverting the elements in \mathbb{Z}_2 . Its quotient 2-groups are the dihedral 2-groups $D_{2^{n+1}} \cong \mathbb{Z}_2/2^n \mathbb{Z}_2 \rtimes C_2$ and these are constructible. For all $n \ge 4$, there exist non-trivial central extensions

$$1 \rightarrow \mathit{C}_2 \rightarrow \mathit{Q}_{2^n} \rightarrow \mathit{D}_{2^{n-1}} \rightarrow 1 \text{ and } 1 \rightarrow \mathit{C}_2 \rightarrow \mathit{SD}_{2^n} \rightarrow \mathit{D}_{2^{n-1}} \rightarrow 1.$$

So, for all $n \ge 4$,

$$D_{2^{n-1}} \cong Q_{2^n}/C_2$$
 and $D_{2^{n-1}} \cong SD_{2^n}/C_2$.

Introduction	Structure Theorem and Constructible groups $\bullet \circ \circ \circ \circ$	Final remarks
Uniserial <i>p</i> -adic space groups		
Layout		

2 The Structure Theorem and Constructible groups

- Uniserial *p*-adic space groups
- Constructible groups

3 Final remarks

Definition (Uniserial *p*-adic space groups)

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Uniserial p-adic space groups

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

Uniserial p-adic space groups

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

where T is a \mathbb{Z}_p -lattice of rank d_x and P is a finite p-group acting *faithfully* and *uniserially* on T.

Uniserial p-adic space groups

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

where T is a \mathbb{Z}_p -lattice of rank d_x and P is a finite p-group acting faithfully and uniserially on T. Here, we say that T is a translation group and P is the point group of R.

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

where T is a \mathbb{Z}_p -lattice of rank d_x and P is a finite p-group acting faithfully and uniserially on T. Here, we say that T is a translation group and P is the point group of R.

Remark

P acting uniserially on T implies that

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

where T is a \mathbb{Z}_p -lattice of rank d_x and P is a finite p-group acting faithfully and uniserially on T. Here, we say that T is a translation group and P is the point group of R.

Remark

P acting uniserially on T implies that

 (uniserial filtration) for each i ≥ 0, there is a unique P-invariant sublattice T_i of T of index pⁱ.

Definition (Uniserial *p*-adic space groups)

A uniserial p-adic space group R of dimension $d_x = p^{x-1}(p-1)$ is a pro-p group fitting into the extension

$$1 \rightarrow T \rightarrow R \rightarrow P \rightarrow 1,$$

where T is a \mathbb{Z}_p -lattice of rank d_x and P is a finite p-group acting faithfully and uniserially on T. Here, we say that T is a translation group and P is the point group of R.

- P acting uniserially on T implies that
 - (uniserial filtration) for each i ≥ 0, there is a unique P-invariant sublattice T_i of T of index pⁱ.
 - R has coclass at least x.

Introduction Structure Theorem and Constructible groups		Final remarks		
Constructible groups				
Layout				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Structure Theorem and Constructible groups Uniserial *p*-adic space groups

• Constructible groups

3 Final remarks

tκ			÷		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Constructible groups

Constructible groups are defined by taking quotients of uniserial *p*-adic space groups *R*.

Introduction	Structure Theorem and Constructible groups
	00000

Constructible groups

Constructible groups are defined by taking quotients of uniserial p-adic space groups R.

On-twisted: actual quotients R:

$$1 \rightarrow K \rightarrow R/U \rightarrow P \rightarrow 1$$

where K is abelian,

Introduction	Structure Theorem and Constructible groups
	00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Constructible groups

Constructible groups are defined by taking quotients of uniserial p-adic space groups R.

On-twisted: actual quotients R:

$$1 \rightarrow K \rightarrow R/U \rightarrow P \rightarrow 1$$

where K is abelian,

Twisted: quotients + 'twist' on the group operation of K (technical).

h								
	nt		d		CT			
s	110	10	u	u	~	9	••	

Constructible groups

Constructible groups are defined by taking quotients of uniserial p-adic space groups R.

On-twisted: actual quotients R:

$$1 \rightarrow K \rightarrow R/U \rightarrow P \rightarrow 1$$

where K is abelian,

- Twisted: quotients + 'twist' on the group operation of K (technical).
- Solution We say that a *p*-group of fixed coclass is *non-twisted* if for some normal subgroup N ≤ G of bounded order, G/N is constructible non-twisted. Otherwise, we say that G is *twisted*.

Introduction	Structure Theorem and Constructible groups
	00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructible groups

Picture: non-twisted case

Let G be a p-group of coclass c.

$$\begin{array}{c} K \rtimes P \\ & \swarrow \\ N \longrightarrow G \longrightarrow G/N \cong R/U \end{array}$$

Introduction	Structure Theorem and Constructible groups $\circ \circ \circ \circ \bullet$	Final remarks
Constructible groups		

Picture: non-twisted case

Let G be a p-group of coclass c.

$$\begin{array}{c} K \rtimes P \\ & \uparrow \\ N \longrightarrow G \longrightarrow G/N \cong R/U \end{array}$$

Our aim: control the number of isomorphism types for $H^*(G; \mathbb{F}_p)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let G be a p-group of coclass c.

Our aim: control the number of isomorphism types for $H^*(G; \mathbb{F}_p)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Structure Theorem and Constructible groups ○○○○●	Final remarks
Constructible groups		

Let G be a p-group of coclass c.

Our aim: control the number of isomorphism types for $H^*(G; \mathbb{F}_p)$. Reduces to: controlling isomorphism types of $H^*(R/U; \mathbb{F}_p)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our aim: control the number of isomorphism types for $H^*(G; \mathbb{F}_p)$. Reduces to: controlling isomorphism types of $H^*(R/U; \mathbb{F}_p)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our aim: control the number of isomorphism types for $H^*(G; \mathbb{F}_p)$. Reduces to: controlling isomorphism types of $H^*(R/U; \mathbb{F}_p)$ Reduces to: controlling isomorphism types for $H^*(K \rtimes P; \mathbb{F}_p)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Layout

2 The Structure Theorem and Constructible groups

- Uniserial *p*-adic space groups
- Constructible groups

3 Final remarks

- * ロ > * 母 > * 目 > * 目 > 「目 - の < @

Introduction

Structure Theorem and Constructible groups $_{\rm OOOOO}$

Final remarks

Remarks

Introduction

Structure Theorem and Constructible groups $_{\rm OOOOO}$

Final remarks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remarks

• The twisted case is still open.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- The twisted case is still open.
- There are no explicit bounds in the number of isomorphism types of such algebras.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The twisted case is still open.
- There are no explicit bounds in the number of isomorphism types of such algebras.
- Are there any other 'good' group invariants?

- The twisted case is still open.
- There are no explicit bounds in the number of isomorphism types of such algebras.
- Are there any other 'good' group invariants?
- (D.-G.-G.) Let p be a prime number, let d be an integer and let G be a d-generated p-group of nilpotency class smaller than p. Then, the number of possibilities for H^{*}(G; 𝔽_p) is bounded by a function depending on p and d.

- The twisted case is still open.
- There are no explicit bounds in the number of isomorphism types of such algebras.
- Are there any other 'good' group invariants?
- (D.-G.-G.) Let p be a prime number, let d be an integer and let G be a d-generated p-group of nilpotency class smaller than p. Then, the number of possibilities for H^{*}(G; 𝔽_p) is bounded by a function depending on p and d.
- Current work: delete the condition on the nilpotency class (being smaller than *p*).

Introduction

Structure Theorem and Constructible groups $_{\rm OOOOO}$

Final remarks

THANK YOU FOR YOUR ATTENTION!