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Problem: Given an infinite family of p-groups {Gi}i∈I , find a
common ‘good’ group property that distinguishes them.

Question: When is a group property good?
Answer: I do not know.
Fact: If the group property is good, cohomology should not be
able to tell them apart.
That is, given an infinite family of p-groups {Gi}i≥0 with a ‘good’
common property, deduce that there are finitely many
isomorphisms types of algebras in {H∗(Gi ;Fp)}.
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Abelian p-groups
Let K ∼= Cpi1 × · · · × Cpid be an abelian p-group. Then,

H∗(K ;Fp) ∼=

{
F2[y1, . . . , yd ] if p = 2, il = 1,

Λ(y1, . . . , yd )⊗ Fp[x1, . . . , xd ] otherwise,

where |yi | = 1, |xi | = 2.

2-groups of maximal nilpotency class
Let D2n , Q2n and SD2n denote the dihedral, quaternion and semi-dihedral 2-
groups of order 2n, respectively. Then, there are isomorphisms of algebras

H∗(D2n ;F2)n≥3 ∼= F2[a, b, x ]/(ab) with |a| = |b| = 1, |x | = 2,

H∗(Q2n ;F2)n≥4 ∼= F2[a, b, y ]/(a2 + ab, y 3) with |a| = |b| = 1, |y | = 4,

H∗(SD2n ;F2)n≥5 ∼= F2[a, b, z, y ]/(a2 + ab, a3, az, z2(a2 + b2)y),
where |a| = |b| = 1, |z| = 3, |y | = 4.
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Definition (Coclass)
Let p be a prime number and let G be a p-group of order pn and
nilpotency class m. Then, G has coclass c = n −m.

Theorem (J.F. Carlson, 2005)
Let k be a field of characteristic 2 and let c be an integer. Then,
there are only finitely many isomorphism types of cohomology alge-
bras with coefficients in k for all 2-groups of coclass c.

Conjecture (J.F. Carlson, 2005)
Let p be an odd prime, let k be a field of characteristic p and let c
be an integer. Then, there are only finitely many isomorphism types
of cohomology algebras in the collection H∗(G ; k) when G runs over
the p-groups of coclass c.
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are only finitely many isomorphism types of cohomology algebras
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The result of J.F.Carlson for p = 2 is based on:

1 The classification of p-groups by their coclass (The Structure
Theorem of Leedham-Green),

2 The fact that there finitely many cohomology algebras for all
2-groups of maximal nilpotency class (explicit isomorphisms),

3 Some counting arguments for cohomology algebras using
spectral sequences.
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Our result is based on:
1 The classification of p-groups by their coclass (The Structure
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Our result is based on:
1 A reformulated classification of p-groups by their coclass (The

Structure Theorem of Leedham-Green),
2 The fact that there finitely many cohomology algebras for all

2-groups of maximal nilpotency class (explicit isomorphisms),
3 Some counting arguments for cohomology algebras using
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Our result is based on:
1 A reformulated classification of p-groups by their coclass (The

Structure Theorem of Leedham-Green),
2 Our proof that there are finitely many cohomology algebras

for all p-groups of maximal nilpotency class,
(no explicit isomorphisms)

3 Some counting arguments for cohomology algebras using
spectral sequences.
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Theorem (The Structure Theorem, Leedham-Green, 1994)
Let p be a prime number, let c be an integer and let G be a p-group
of coclass c. Then, there exist a normal subgroup N of G and a
function f (p, c) such that |N| ≤ f (p, c) and G/N is constructible.
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Example (p = 2 and c = 1)

The unique pro-2 group R of maximal nilpotency class is the exten-
sion of groups

1→ Z2 → R = Z2 o C2 → C2 → 1,

where C2 acts by inverting the elements in Z2. Its quotient 2-groups
are the dihedral 2-groups D2n+1 ∼= Z2/2nZ2 o C2 and these are
constructible. For all n ≥ 4, there exist non-trivial central extensions

1→ C2 → Q2n → D2n−1 → 1 and 1→ C2 → SD2n → D2n−1 → 1.

So, for all n ≥ 4,

D2n−1 ∼= Q2n/C2 and D2n−1 ∼= SD2n/C2.
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Uniserial p-adic space groups

Definition (Uniserial p-adic space groups)

A uniserial p-adic space group R of dimension dx = px−1(p − 1) is
a pro-p group fitting into the extension

1→ T → R → P → 1,

where T is a Zp-lattice of rank dx and P is a finite p-group acting
faithfully and uniserially on T . Here, we say that T is a translation
group and P is the point group of R.

Remark
P acting uniserially on T implies that

(uniserial filtration) for each i ≥ 0, there is a unique
P-invariant sublattice Ti of T of index pi .
R has coclass at least x.
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Constructible groups

Constructible groups are defined by taking quotients of uniserial
p-adic space groups R.

1 Non-twisted: actual quotients R:

1→ K → R/U → P → 1

where K is abelian,
2 Twisted: quotients + ‘twist’ on the group operation of K

(technical).
3 We say that a p-group of fixed coclass is non-twisted if for

some normal subgroup N ≤ G of bounded order, G/N is
constructible non-twisted. Otherwise, we say that G is
twisted.
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Constructible groups

Picture: non-twisted case
Let G be a p-group of coclass c.

K o P

N // G // G/N ∼= R/U
?�

OO

Our aim: control the number of isomorphism types for H∗(G ;Fp).

Reduces to: controlling isomorphism types of H∗(R/U;Fp)
Reduces to: controlling isomorphism types for H∗(K o P;Fp).
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Remarks

The twisted case is still open.
There are no explicit bounds in the number of isomorphism
types of such algebras.
Are there any other ‘good’ group invariants?
(D.-G.-G.) Let p be a prime number, let d be an integer and
let G be a d-generated p-group of nilpotency class smaller
than p. Then, the number of possibilities for H∗(G ;Fp) is
bounded by a function depending on p and d .
Current work: delete the condition on the nilpotency class
(being smaller than p).
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THANK YOU FOR YOUR ATTENTION!
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