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Primitive groups and Maximal subgroups

Primitive permutation actions = "atoms" of permutation actions
G y X (transitive) is primitive ⇔ point stabilizers are maximal.

General question

Given a group (not as permutation group), what are its primitive
permutation representations? i.e. What are its maximal subgroups?

If G is �nitely generated, every proper subgroup is contained in a
maximal one.

First basic questions

Does a given �nitely generated group contain maximal subgroups of
in�nite index? i.e. Can the group act primitively on an in�nite set? Is
this action faithful?
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Some known results

Let IP denote the class of f.g. groups with some maximal subgroup of
in�nite index.

/∈ IP
� nilpotent groups (normaliser
condition)

� virtually soluble linear groups
[Margulis+Soifer, '81]

∈ IP
� free groups [McDonough, '77]
� not v.s. linear groups
[Margulis+Soifer, '81]

� mapping class groups,
hyperbolic groups, other
"geometric" groups (with
appropriate caveats)
[Gelander+Glasner, '07]
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Big and small groups: word growth

De�nition
The growth function γG (n) of G w.r.t �nite generating set S gives the
number of elements of G of S-length ≤ n.
Up to equivalence relation, γG (n) does not depend on S .

Types of growth (up to equivalence):
� γG (n) ≈ na, a ∈ N ⇔ virtually nilpotent [Wolf,Bass,Guivarch;
Gromov]

� γG (n) ≈ exp(n) e.g. free groups, not v.s. linear groups [Tits
alternative, '72]

� γG (n) is super-polynomial and sub-exponential: intermediate
growth [�rst examples by Grigorchuk, '85]

All known examples of groups ∈ IP are of exponential growth.

Question (Cornulier, '06)

Are there groups of intermediate growth in IP?
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Action of D∞ on binary rooted tree

Let T =rooted, in�nite binary tree, AutT=its group of
automorphisms. Consider D∞ = 〈a, b〉 ≤ AutT :

a ="swap" on level 1 b = (a, b)

...
...

...
...

a

a

a

a

a

b
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Fragmentations of D∞

Two subgroups of AutT

G1 = 〈a, β, γ, δ〉 G2 = 〈a, b, c , d〉
β = (a, γ) b = (a, b)
γ = (a, δ) c = (a, d)
δ = (1, β) d = (1, c)
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Properties of these two examples

G1 = 〈a, β, γ, δ〉
� "Grigorchuk group"

� intermediate growth
[Grigorchuk, '85]

� torsion, 2-group
� /∈ IP [Pervova , '00]

G2 = 〈a, b, c , d〉
� "Grigorchuk�Erschler group"

� intermediate growth
[Grigorchuk, '85]

� not torsion, 〈a, b〉 ∼= D∞
� ∈ IP [F+G, '16]

Actually, we prove this for a larger family of "siblings of Grigorchuk's
group" de�ned by �uni¢. They are all self-similar fragmentations of
D∞ ≤ AutT and are of intermediate growth.
We show that the non-torsion ones (=those containing D∞) are in
IP, by �nding their maximal subgroups.
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Main results [Francoeur + G, '16]

Theorem 1
Let G2 = 〈a, b, c , d〉 be as above (or one of its non-torsion "siblings").
Its maximal subgroups are:

� of index 2 (7 of them);
� H(q) = 〈(ab)q, b, c, d〉 for q odd prime, of in�nite index (ℵ0 of
them);

� ('17+) conjugates of H(q) in G .

N.B. 〈(ab)q, b〉 is a maximal subgroup of D∞ for each odd prime q.

Additional fact: Each H(q) is conjugate to G2 in AutT .
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H(q) = 〈(ab)q, b, c , d〉 )

�uni¢ also de�ned odd-prime siblings of Grigorchuk's group, they act
on the p-regular tree, where p is an odd prime, and have a similar
de�nition to the one we saw.

Theorem 2
All groups in �uni¢'s family (for all primes) are just in�nite (all proper
quotients are �nite).

Corollary

G2 is a primitive permutation group and has trivial Frattini subgroup
(Cfr. G1 has Frattini subgroup of �nite index).
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When does a maximal subgroup have in�nite index?

De�nition
The pro�nite topology of a group G has {N C G | |G : N| <∞} as
base of neighbourhoods of the identity.

H ≤ G is dense if HN = G for every N C G with |G : N| <∞.

Fact
A maximal subgroup is of in�nite index if and only if it is dense in the
pro�nite topology.
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Pro�nite vs AutT topology

Step 1: Show that H(q) ≤ G2 is dense in the pro�nite topology.

Problem: This means knowing ALL �nite index subgroups. How can
we get a hold of them? Obvious candidates: level stabilizers
{StG2(n) | n ∈ N}.

De�nition
A group G ≤ AutT has the congruence subgroup property if every
�nite index subgroup of G contains some level stabilizer StG (n).

Theorem (Francoeur+G, '16)

All �uni¢ groups (and G2 in particular) have the congruence subgroup
property.
In fact, every normal subgroup contains a level stabilizer.
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Dense subgroups in AutT

Step 1a: H(q) ≤ G2 satis�es H(q) StG2(n) = G2 for each n ∈ N.

Since q is odd (coprime with 2), taking a power of (ab)q produces the
same action as ab on the nth level of the tree (Euclidean algorithm).

Corollary

Let q be an odd integer, then H(q) = 〈(ab)q, b, c , d〉 is a dense
subgroup of G2 for the pro�nite topology.
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H(q) is proper

Step 2: Show that H(q) is a proper subgroup (indeed, taking the
same de�nition in G1 yields H(q) = G1).

Look at actions of H(q) and G2 on boundary of tree T . Su�ces to
consider orbit of ξ =rightmost ray. Thanks to copy of dihedral group
〈a, b〉, the orbit of ξ under G2 is isomorphic to Z. But the orbit under
H(q) is strictly smaller (corresponds to qZ):

. . .
ξ

a
c

b

a
d

b

a
c

b

a

b, c, d d d c c d d c
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Maximal subgroups are conjugate to H(q)

Steps 3+4: Some technical work, using techniques similar to those of
Pervova to show

Theorem
Let q be an odd prime, then H(q) is maximal and of in�nite index in
G2.

Theorem
All maximal subgroups of in�nite index in G2 are conjugates of some
H(q).

Questions

� Is G2 oligomorphic? It's not of �nite sub-degree [follows from
Wesolek, '16]

� A more conceptual proof of maximality and `uniqueness 'of H(q)?
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Thank you!

15 / 15


	Maximal subgroups of infinite groups
	Proof ideas

