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Motivation

e Permutation group G < Sym(f2) ~~ digraph T.
o (,B) € Qx Q; Arcs of T = (o, 8)¢ ~~ T is G-arc transitive.
e neighbours I'® := ¥(3); local actions L. := (Gg)""

« Y
G
L= (Gp)" ; Ly =(Gs)"™

e Theorem [Knapp 1973] If L_ < Sym(['~) and Ly < Sym(I'") are
quasiprimitive, then L is an epimorphic image of L_, or conversely.
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Motivation
e Permutation group G < Sym(f2) ~~ digraph T.
o (a,) € QxQ; Arcs of T = (a, B)¢ ~» T is G-arc transitive.
e neighbours I'® := ¥(3); local actions L. := (Gg)""

« Y
G
L =(Gp)" ; Ly =(Gs)"™

e Theorem [Knapp 1973] If L_ < Sym(['~) and Ly < Sym(I'") are
quasiprimitive, then L is an epimorphic image of L_, or conversely.

e Suppose L, = L_/N, N # 1. There are 82 possible types for the pair
(L_,Ly) of g.p. groups. Only (HS,AS) and (HC, TW) arise. To
eliminate the possibility (HA, HA) it seemed desirable to prove:

e Theorem [us] If G < GL(d, p) is irreducible, then the number of
composition factors of G of order p is at most d — 1.
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e Definition. If G is a finite group, then let c,(G) denote the number of
composition factors of G that have order p.

e Ex 1. If G =Sym(4), then cz(G) =3 and c3(G) = 1.

e Ex 2. ¢5(G) < log, |G|y equality iff G is p-solvable.

o Ex 3. If G < GL(d,p"), then c;(G) < log, |GL(d, p’)|, = ().
e Ex 4. If G < Sym(n), then ¢,(G) < (n—1)/(p—1).
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e Want. If G < GL(d, p) is irreducible, then ¢,(G) < d — 1.

o We generalize to completely reducible (c.r.) groups. Set g = p.

Stephen Glasby (UWA/UC) Composition factors of c.r. groups



e Want. If G < GL(d, p) is irreducible, then ¢,(G) < d — 1.

o We generalize to completely reducible (c.r.) groups. Set g = p.

e Thm 1. If G < GL(d, q) is c.r., then ¢,(G) < (d — 1)f.

e Thm 2. If G < GL(d,q) is c.r., then ¢,(G) < (d —1f/(p—1).
o Thm 3. If G < GL(d,q) is c.r., then ¢,(G) < (3¢ —1)/(p - 1).
e Thm 4. If G < GL(d,q) is c.r., then ¢,(G) < (e4d —1)/(p — 1)

4/3 if p=2and f is even (so q = 4//?),
where e = ¢ p/(p— 1) if g = pis a Fermat prime,

1 otherwise.
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Examples show bounds are best possible

e Examples ~» bounds are tight infinitely often.

e Fix 'y < GL(k, g) and form imprimitive wreath products:
M :=T11C, < GL(kp,q), T =Tn_11Cp < GL(kp" L, q) for n > 1.
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Examples show bounds are best possible

e Examples ~» bounds are tight infinitely often.

e Fix 'y < GL(k, g) and form imprimitive wreath products:
Mo :=T11Cp < GL(kp,q), T =Tp_12Cp < GL(kp" 1, q) for n > 1.

e Genericeg = 1. Let g = p’ and 'y = Cpo_q1 x C, < GL(p, p), s0
k =p. Then I', < GL(p", p) < GL(p", q) and
o(Fn) =(p"=1)/(p—1)=(d=1)/(p—1).

e cq=p/(p—1). If p=qg=2"+1is a Fermat prime and I'; is Sylow
p-subgroup of GO™(2m,2). If I'1 < GL(2™, p) = GL(p — 1, p), then
[n < GL(dp, p) is irreducible ¢,(I',) = (eds — 1)/(p — 1) where
dp=(p—1)p" tand e =p/(p—1)< 3/2.

o £, =14/3. Take p=2, ¢ =22, and ', = GU(3,2) < GL(3,4). Then
[, < GL(d,, 4) where d, = 3-2"1 is irreducible and
c2(G) =21 — 1, 50 ¢,(G) = (edy — 1)/(p — 1) where e = 4/3.
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Dynkin-Aschbacher classification

Dynkin-Aschbacher Theorem. Every completely reducible subgroup G of
GL(d, q) lies in at least on of the following classes.

e C1 (reducible subgps) V = V4 & Vo, G < GL(V4) x GL(V,).

e Cy (imprimitive subgps) V=Vi & ---® V,, G < GL(d/r,q)Sym(r).

C3 (ext field subgps) V = (Fgr)9/", and G < GL(d/r,q") x C,.

e Cy (tensor reducible subgps) V = V4 ® Vo and G < GL(V;) ® GL(V2).
Cs (proper subfield subgps) G < GL(d, qo) 0 Z(GL(d, q)), g = q3.

e Cg (symplectic type r-groups) d = r™, R <1 G < Ngi(q,q)(R) where
R/Z(R) = C?™ is elementary, and ®(R) < Z(R).

e C7 (tensor reducible subgps) V=V, ®---® V, and
G < GL(dY", q) 1 Sym(r).

e (g (classical groups) preserves symplectic, unitary, or orthogonal form
and contains Sp(V)’, SU(V), or Q%(V) resp., where ¢ € {£,0}.

e Cq (nearly simple) Z :=Z(G), socle(G/Z) = N/Z is almost simple
and absolutely irreducible.
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Proof of the main theorem (Thm 4)

e Induction on (d, q) ordered lexicographically
(dl,ql) < (dz,qz) if dy < dpord;=drand g1 < .

e Simple cases:
e C;. Then G < GL(d1,q) x GL(d2,q), so G < G; x Gy and

é‘dl—]. <€d2—1
(6) < 6p(G1) + 6p(Go) < T+ =0

_€q(d1+d2)—2<€qd—1
N p—1 p—1"

¢ Cy. Then V=Vi@&---®V,, and G < GL(d/r, q) 1 Sym(r), so
G < GGy and
r(eqd/r—1) r—1 eqd—1

() < rep(Gr) + p(Gr) < L Lo — STl
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Proof of the main theorem (Thm 4)

e (3. compare g4 and 4.

e C4. Like Cy1; C7 like Ca; Cs induction.

e (g. Easy.

e Cp. Harder case. Number theory |G| small ~ ¢,(G) small.

e Cy. Hardest case. T = N/Z simple, |G/N| divides |Out(T)],
cp(G) = log, |G/N|, < log,, [Out(T)|,. Most difficulties when
T = L(q') simple of Lie-type and ¢’ = p’".
Example: Suppose N = SL(k, q) < GL(d, q) where d = (12‘) Why
doesn’t the normalizer G of N in GL(d, q) include many field
automorphisms? Recall g = p. What if

log, () > (eqd —1)/(p —1)7
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Future work

o Are the given examples the only examples matching the bounds?

e Are there smaller bounds for c,(G) for completely reducible
subgroups of symplectic, unitary, orthogonal groups?

e What about bounds for c7(G) when T is a simple group? (Small
progress.)

e What if the prime p # char(Fq)? If G < GL(d, q) is completely
reducible, then find sharp upper bounds for c,(G). (Partially solved.)

Application. Limit the local symmetries of digraphs, and construct new
highly symmetric examples.
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Research Associate/Fellow position at UWA
For details see Cheryl Praeger, me, or

http://external. jobs.uwa.edu.au/cw/en/job/499094/
The CMSC and Western Australia are remarkable places!
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