How many composition factors of order p are there in a completely reducible subgroup of $GL(d, p^f)$?

(joint work with M. Giudici, C. H. Li and G. Verret)

Stephen Glasby

University of Western Australia 2017.08.06

Groups St. Andrews 2017 in Birmingham

Outline

- Motivation from digraphs
- 2 Examples show bounds are best possible
- 3 Dynkin-Aschbacher classification
- 4 Proof of the main theorem (Thm 4)
- **5** Future work

Motivation

- Permutation group $G \leqslant \operatorname{Sym}(\Omega) \rightsquigarrow \operatorname{digraph} \Gamma$.
- $(\alpha, \beta) \in \Omega \times \Omega$; Arcs of $\Gamma = (\alpha, \beta)^G \leadsto \Gamma$ is G-arc transitive.
- neighbours $\Gamma^{\varepsilon} := \Gamma^{\varepsilon}(\beta)$; local actions $L_{\varepsilon} := (G_{\beta})^{\Gamma^{\varepsilon}}$

• Theorem [Knapp 1973] If $L_{-} \leq \operatorname{Sym}(\Gamma^{-})$ and $L_{+} \leq \operatorname{Sym}(\Gamma^{+})$ are quasiprimitive, then L_{+} is an epimorphic image of L_{-} , or conversely.

Motivation

- Permutation group $G \leqslant \operatorname{Sym}(\Omega) \leadsto \operatorname{digraph} \Gamma$.
- $(\alpha, \beta) \in \Omega \times \Omega$; Arcs of $\Gamma = (\alpha, \beta)^G \leadsto \Gamma$ is G-arc transitive.
- neighbours $\Gamma^{\varepsilon} := \Gamma^{\varepsilon}(\beta)$; local actions $L_{\varepsilon} := (G_{\beta})^{\Gamma^{\varepsilon}}$

- Theorem [Knapp 1973] If $L_{-} \leq \operatorname{Sym}(\Gamma^{-})$ and $L_{+} \leq \operatorname{Sym}(\Gamma^{+})$ are quasiprimitive, then L_{+} is an epimorphic image of L_{-} , or conversely.
- Suppose $L_+ = L_-/N$, $N \neq 1$. There are 8^2 possible types for the pair (L_-, L_+) of q.p. groups. Only (HS, AS) and (HC, TW) arise. To eliminate the possibility (HA, HA) it seemed desirable to prove:
- Theorem [us] If $G \leq GL(d, p)$ is irreducible, then the number of composition factors of G of order p is at most d-1.

- Definition. If G is a finite group, then let $c_p(G)$ denote the number of composition factors of G that have order p.
- Ex 1. If G = Sym(4), then $c_2(G) = 3$ and $c_3(G) = 1$.
- Ex 2. $c_p(G) \le \log_p |G|_p$ equality iff G is p-solvable.
- Ex 3. If $G \leq GL(d, p^f)$, then $c_p(G) \leq \log_p |GL(d, p^f)|_p = {d \choose 2} f$.
- Ex 4. If $G \leq \operatorname{Sym}(n)$, then $c_p(G) \leq (n-1)/(p-1)$.

- Want. If $G \leq GL(d, p)$ is irreducible, then $c_p(G) \leq d 1$.
- We generalize to completely reducible (c.r.) groups. Set $q = p^f$.

- Want. If $G \leq GL(d, p)$ is irreducible, then $c_p(G) \leq d 1$.
- We generalize to completely reducible (c.r.) groups. Set $q = p^f$.
- Thm 1. If $G \leqslant GL(d,q)$ is c.r., then $c_p(G) \leqslant (d-1)f$.
- Thm 2. If $G \leq GL(d,q)$ is c.r., then $c_p(G) \leq (d-1)f/(p-1)$.
- Thm 3. If $G \leqslant \operatorname{GL}(d,q)$ is c.r., then $c_p(G) \leqslant (\frac{3d}{2}-1)/(p-1)$.
- Thm 4. If $G \leqslant \operatorname{GL}(d,q)$ is c.r., then $c_p(G) \leqslant (\varepsilon_q d 1)/(p 1)$ where $\varepsilon_q = \begin{cases} 4/3 & \text{if } p = 2 \text{ and } f \text{ is even (so } q = 4^{f/2}), \\ p/(p-1) & \text{if } q = p \text{ is a Fermat prime,} \\ 1 & \text{otherwise.} \end{cases}$

Examples show bounds are best possible

- Examples → bounds are tight infinitely often.
- Fix $\Gamma_1 \leqslant \operatorname{GL}(k,q)$ and form imprimitive wreath products: $\Gamma_2 := \Gamma_1 \wr C_p \leqslant \operatorname{GL}(kp,q), \ \Gamma_n = \Gamma_{n-1} \wr C_p \leqslant \operatorname{GL}(kp^{n-1},q) \ \text{for} \ n > 1.$

Examples show bounds are best possible

- Examples → bounds are tight infinitely often.
- Fix $\Gamma_1 \leqslant \operatorname{GL}(k,q)$ and form imprimitive wreath products: $\Gamma_2 := \Gamma_1 \wr C_p \leqslant \operatorname{GL}(kp,q), \ \Gamma_n = \Gamma_{n-1} \wr C_p \leqslant \operatorname{GL}(kp^{n-1},q) \ \text{for} \ n > 1.$
- Generic $\varepsilon_q = 1$. Let $q = p^f$ and $\Gamma_1 = C_{p^p-1} \rtimes C_p \leqslant GL(p,p)$, so k = p. Then $\Gamma_n \leqslant GL(p^n,p) \leqslant GL(p^n,q)$ and $c_p(\Gamma_n) = (p^n-1)/(p-1) = (d-1)/(p-1)$.
- $\varepsilon_q = p/(p-1)$. If $p=q=2^m+1$ is a Fermat prime and Γ_1 is Sylow p-subgroup of $\mathrm{GO}^-(2m,2)$. If $\Gamma_1 \leqslant \mathrm{GL}(2^m,p) = \mathrm{GL}(p-1,p)$, then $\Gamma_n \leqslant \mathrm{GL}(d_n,p)$ is irreducible $c_p(\Gamma_n) = (\varepsilon d_n-1)/(p-1)$ where $d_n = (p-1)p^{n-1}$ and $\varepsilon = p/(p-1) \leqslant 3/2$.
- $\varepsilon_q = 4/3$. Take p = 2, $q = 2^2$, and $\Gamma_1 = \operatorname{GU}(3,2) \leqslant \operatorname{GL}(3,4)$. Then $\Gamma_n \leqslant \operatorname{GL}(d_n,4)$ where $d_n = 3 \cdot 2^{n-1}$ is irreducible and $c_2(G) = 2^{n+1} 1$, so $c_p(G) = (\varepsilon d_n 1)/(p-1)$ where $\varepsilon = 4/3$.

Dynkin-Aschbacher classification

Dynkin-Aschbacher Theorem. Every completely reducible subgroup G of GL(d,q) lies in at least on of the following classes.

- C_1 (reducible subgps) $V = V_1 \oplus V_2$, $G \leqslant GL(V_1) \times GL(V_2)$.
- C_2 (imprimitive subgps) $V = V_1 \oplus \cdots \oplus V_r$, $G \leqslant GL(d/r,q) \wr Sym(r)$.
- \mathcal{C}_3 (ext field subgps) $V = (\mathbb{F}_{q^r})^{d/r}$, and $G \leqslant \operatorname{GL}(d/r, q^r) \rtimes \operatorname{C}_r$.
- C_4 (tensor reducible subgps) $V = V_1 \otimes V_2$ and $G \leqslant \operatorname{GL}(V_1) \otimes \operatorname{GL}(V_2)$.
- C_5 (proper subfield subgps) $G \leqslant \mathsf{GL}(d,q_0) \circ \mathsf{Z}(\mathsf{GL}(d,q)), \ q = q_0^r$.
- C_6 (symplectic type r-groups) $d = r^m$, $R \triangleleft G \leqslant N_{GL(d,q)}(R)$ where $R/Z(R) \cong C_r^{2m}$ is elementary, and $\Phi(R) \leqslant Z(R)$.
- C_7 (tensor reducible subgps) $V = V_1 \otimes \cdots \otimes V_r$ and $G \leq GL(d^{1/r}, q) \wr Sym(r)$.
- C_8 (classical groups) preserves symplectic, unitary, or orthogonal form and contains Sp(V)', SU(V), or $\Omega^{\varepsilon}(V)$ resp., where $\varepsilon \in \{\pm, \circ\}$.
- C_9 (nearly simple) Z := Z(G), socle(G/Z) = N/Z is almost simple and absolutely irreducible.

Proof of the main theorem (Thm 4)

• Induction on (d, q) ordered lexicographically

$$(d_1, q_1) < (d_2, q_2)$$
 if $d_1 < d_2$ or $d_1 = d_2$ and $q_1 < q_2$.

- Simple cases:
- C_1 . Then $G \leqslant \operatorname{GL}(d_1,q) \times \operatorname{GL}(d_2,q)$, so $G \leqslant G_1 \times G_2$ and

$$c_{p}(G) \leqslant c_{p}(G_{1}) + c_{p}(G_{2}) \leqslant \frac{\varepsilon_{q}d_{1} - 1}{p - 1} + \frac{\varepsilon_{q}d_{2} - 1}{p - 1}$$
$$= \frac{\varepsilon_{q}(d_{1} + d_{2}) - 2}{p - 1} < \frac{\varepsilon_{q}d - 1}{p - 1}.$$

• C_2 . Then $V = V_1 \oplus \cdots \oplus V_r$, and $G \leqslant GL(d/r, q) \wr Sym(r)$, so $G \leqslant G_1 \wr G_2$ and

$$c_p(G)\leqslant rc_p(G_1)+c_p(G_2)\leqslant \frac{r(\varepsilon_qd/r-1)}{p-1}+\frac{r-1}{p-1}=\frac{\varepsilon_qd-1}{p-1}.$$

Proof of the main theorem (Thm 4)

- \mathcal{C}_3 . compare ε_q and ε_{q^r} .
- \mathcal{C}_4 . Like \mathcal{C}_1 ; \mathcal{C}_7 like \mathcal{C}_2 ; \mathcal{C}_5 induction.
- *C*₈. Easy.
- C_6 . Harder case. Number theory |G| small $\rightsquigarrow c_p(G)$ small.
- C_9 . Hardest case. T = N/Z simple, |G/N| divides $|\operatorname{Out}(T)|$, $c_p(G) = \log_p |G/N|_p \leqslant \log_p |\operatorname{Out}(T)|_p$. Most difficulties when T = L(q') simple of Lie-type and $q' = p^{f'}$. Example: Suppose $N = \operatorname{SL}(k,q) \leqslant \operatorname{GL}(d,q)$ where $d = \binom{k}{2}$. Why doesn't the normalizer G of N in $\operatorname{GL}(d,q)$ include many field automorphisms? Recall $q = p^f$. What if $\log_p(f_p) > (\varepsilon_q d 1)/(p 1)$?

Future work

- Are the given examples the only examples matching the bounds?
- Are there smaller bounds for $c_p(G)$ for completely reducible subgroups of symplectic, unitary, orthogonal groups?
- What about bounds for $c_T(G)$ when T is a simple group? (Small progress.)
- What if the prime $p \neq \text{char}(\mathbb{F}_q)$? If $G \leqslant \text{GL}(d,q)$ is completely reducible, then find *sharp* upper bounds for $c_p(G)$. (Partially solved.)

Application. Limit the local symmetries of digraphs, and construct new highly symmetric examples.

Research Associate/Fellow position at UWA

For details see Cheryl Praeger, me, or http://external.jobs.uwa.edu.au/cw/en/job/499094/
The CMSC and Western Australia are remarkable places!

