Fusion systems containing pearls

Valentina Grazian University of Aberdeen

Groups St Andrews 2017 Birmingham, 7th August 2017

Fusion

Let G be a finite group. Two subgroups $P,Q \leq G$ are fused in G if there exists an element $g \in G$ such that $P^g = Q$.

Fusion

Let G be a finite group. Two subgroups $P,Q \leq G$ are fused in G if there exists an element $g \in G$ such that $P^g = Q$.

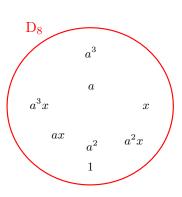
Definition

Let p be a prime and let S be a Sylow p-subgroup of G. The fusion category of G on S is the category $\mathcal{F}_S(G)$ whose objects are the subgroups of S and whose morphism sets are:

$$\operatorname{Mor}_{\mathcal{F}_S(G)}(P,Q) = \operatorname{Hom}_G(P,Q) = \{c_g|_P \colon P \to Q | g \in G, P^g \leq Q\},$$

for every $P, Q \leq S$.

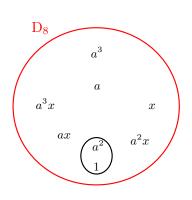
Pick a p-group S.



$$S = D_8$$

$$\mathbf{D}_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$$

Pick a p-group S. Pick a finite group G such that $S \in \mathrm{Syl}_p(G)$.

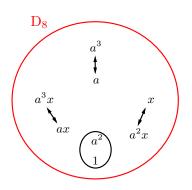


$$S=\mathrm{D}_8$$

$$\mathrm{D}_8:=\langle a,x\mid a^4=x^2=1,a^x=a^3\rangle$$

$$G = D_8$$

Pick a p-group S. Pick a finite group G such that $S \in \mathrm{Syl}_p(G)$.



$$S = D_8$$

$$D_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$$

$$G = D_8$$

Consider the conjugation maps by elements $g \in G$ that fuse some elements/subgroups of S.

fusion is determined by $\mathrm{Inn}(\mathrm{D}_8)$:

$$\mathcal{F}_{D_8}(D_8) = \langle Inn(D_8) \rangle$$

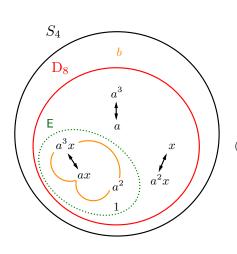
Pick a p-group S. Pick a finite group G such that $S \in \mathrm{Syl}_p(G)$.



$$S = D_8$$

 $D_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$
 $G = \text{Sym}(4) = S_4$
 $a = (1234), x = (13).$

Pick a p-group S. Pick a finite group G such that $S \in Syl_p(G)$.



$$S = D_8$$

$$D_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$$

$$G = \text{Sym}(4) = S_4$$

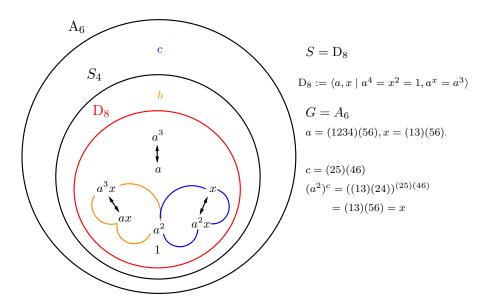
$$a = (1234), \ x = (13).$$

$$b = (123)$$

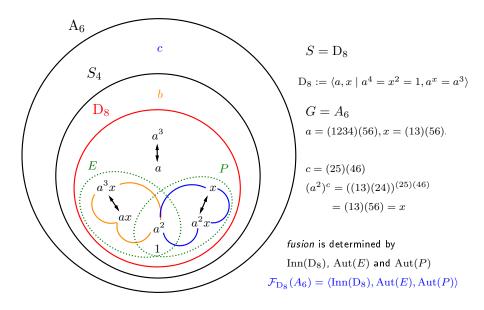
$$(a^2)^b = ((13)(24))^{(123)} = (12)(34) = ax$$

fusion is determined by $Inn(D_8) \text{ and } Aut(E) \cong SL_2(2) \cong S_3$ $\mathcal{F}_{D_8}(S_4) = \langle Inn(D_8), Aut(E) \rangle$

Pick a p-group S. Pick a finite group G such that $S \in Syl_p(G)$.



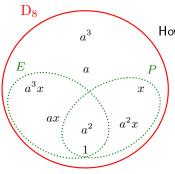
Pick a p-group S. Pick a finite group G such that $S \in Syl_p(G)$.



Pick a p-group S.

$$S = D_8$$

 $D_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$



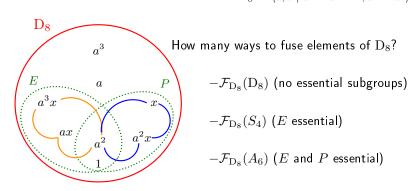
How many ways to fuse elements of D_8 ?

- $-\mathcal{F}_{\mathrm{D}_8}(\mathrm{D}_8)$ (no essential subgroups)
- $-\mathcal{F}_{\mathrm{D}_8}(S_4)$ (E essential)
- $-\mathcal{F}_{\mathrm{D}_{8}}(A_{6})$ (E and P essential)

Pick a p-group S.

$$S = D_8$$

 $D_8 := \langle a, x \mid a^4 = x^2 = 1, a^x = a^3 \rangle$



Definition (Fusion System)

A Fusion system \mathcal{F} on S is a category whose objects are the subgroups of S and with morphism sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)\subseteq\operatorname{Inj}(P,Q)$ such that

- ② each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ is the composition of an isomorphism $\alpha \in \operatorname{Mor}(\mathcal{F})$ and an inclusion $\beta \in \operatorname{Mor}(\mathcal{F})$.

Definition (Fusion System)

A Fusion system $\mathcal F$ on S is a category whose objects are the subgroups of S and with morphism sets $\operatorname{Hom}_{\mathcal F}(P,Q)\subseteq\operatorname{Inj}(P,Q)$ such that

- ② each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ is the composition of an isomorphism $\alpha \in \operatorname{Mor}(\mathcal{F})$ and an inclusion $\beta \in \operatorname{Mor}(\mathcal{F})$.

A Fusion system is Saturated if it satisfies certain extra properties (Sylow and extension properties).

Definition (Fusion System)

A Fusion system $\mathcal F$ on S is a category whose objects are the subgroups of S and with morphism sets $\operatorname{Hom}_{\mathcal F}(P,Q)\subseteq\operatorname{Inj}(P,Q)$ such that

- each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ is the composition of an isomorphism $\alpha \in \operatorname{Mor}(\mathcal{F})$ and an inclusion $\beta \in \operatorname{Mor}(\mathcal{F})$.

A Fusion system is Saturated if it satisfies certain extra properties (Sylow and extension properties).

If $S \in \operatorname{Syl}_p(G)$ then the fusion category $\mathcal{F}_S(G)$ is a saturated fusion system on S.

Definition (Fusion System)

A Fusion system $\mathcal F$ on S is a category whose objects are the subgroups of S and with morphism sets $\operatorname{Hom}_{\mathcal F}(P,Q)\subseteq\operatorname{Inj}(P,Q)$ such that

- ② each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ is the composition of an isomorphism $\alpha \in \operatorname{Mor}(\mathcal{F})$ and an inclusion $\beta \in \operatorname{Mor}(\mathcal{F})$.

A Fusion system is Saturated if it satisfies certain extra properties (Sylow and extension properties).

If $S \in \operatorname{Syl}_p(G)$ then the fusion category $\mathcal{F}_S(G)$ is a saturated fusion system on S.

If \mathcal{F} is a saturated fusion system on S and there is no finite group G such that $S \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_S(G)$, then \mathcal{F} is called **exotic**.

Definition (Fusion System)

A Fusion system \mathcal{F} on S is a category whose objects are the subgroups of S and with morphism sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)\subseteq\operatorname{Inj}(P,Q)$ such that

- $\bullet \operatorname{Hom}_{S}(P,Q) \subseteq \operatorname{Hom}_{\mathcal{F}}(P,Q),$
- ② each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ is the composition of an isomorphism $\alpha \in \operatorname{Mor}(\mathcal{F})$ and an inclusion $\beta \in \operatorname{Mor}(\mathcal{F})$.

A Fusion system is Saturated if it satisfies certain extra properties (Sylow and extension properties).

If $S \in \mathrm{Syl}_p(G)$ then the fusion category $\mathcal{F}_S(G)$ is a saturated fusion system on S.

If \mathcal{F} is a saturated fusion system on S and there is no finite group G such that $S \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_S(G)$, then \mathcal{F} is called **exotic**.

Question (suggested by Oliver)

Try to better understand how exotic fusion systems arise at odd primes.

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

A p-group S has sectional rank k if every elementary abelian section P/Q of S has order at most p^k (equivalently if every subgroup of S can be generated by k elements).

• Oliver, 2016 (Memoir of the AMS): p=2, sectional rank at most 4;

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

- Oliver, 2016 (Memoir of the AMS): p=2, sectional rank at most 4;
- Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

- Oliver, 2016 (Memoir of the AMS): p=2, sectional rank at most 4;
- Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;
- G., 2017 (PhD thesis): $p \ge 5$, sectional rank 3.

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

- Oliver, 2016 (Memoir of the AMS): p=2, sectional rank at most 4;
- Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;
- G., 2017 (PhD thesis): $p \ge 5$, sectional rank 3.

Given a class of p-groups, can we determine all the *simple* fusion systems on them?

An interesting class to study is the class of p-groups having small sectional rank.

A p-group S has sectional rank k if every elementary abelian section P/Q of S has order at most p^k (equivalently if every subgroup of S can be generated by k elements).

- Oliver, 2016 (Memoir of the AMS): p=2, sectional rank at most 4;
- Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;
- G., 2017 (PhD thesis): $p \ge 5$, sectional rank 3.

Theorem 1 (G., 2016)

Let $p \geq 5$ be a prime and let $\mathcal F$ be a saturated fusion system on the p-group S. If S has sectional rank 3 and $O_p(\mathcal F)=1$ then there exists an essential subgroup E of S such that either $E\cong \mathcal C_p\times \mathcal C_p$ or $E\cong p_+^{1+2}$.

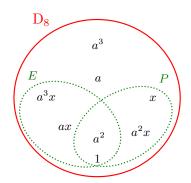
Theorem 1 (G., 2016)

Let $p\geq 5$ be a prime and let $\mathcal F$ be a saturated fusion system on the p-group S. If S has sectional rank 3 and $O_p(\mathcal F)=1$ then there exists an essential subgroup E of S such that either $E\cong \mathcal C_p\times \mathcal C_p$ or $E\cong p_+^{1+2}$.

Theorem 1 (G., 2016)

Let $p\geq 5$ be a prime and let $\mathcal F$ be a saturated fusion system on the p-group S. If S has sectional rank 3 and $O_p(\mathcal F)=1$ then there exists an essential subgroup E of S such that either $E\cong \mathbf C_p\times \mathbf C_p$ or $E\cong p_+^{1+2}$.

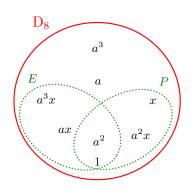
Let $S=\mathrm{D}_8.$ E and P are the only subgroups of S that can be essential and $E\cong P\cong \mathrm{C}_2\times \mathrm{C}_2.$



Theorem 1 (G., 2016)

Let $p\geq 5$ be a prime and let $\mathcal F$ be a saturated fusion system on the p-group S. If S has sectional rank 3 and $O_p(\mathcal F)=1$ then there exists an essential subgroup E of S such that either $E\cong \mathbf C_p\times \mathbf C_p$ or $E\cong p_+^{1+2}$.

Let $S=\mathrm{D}_8.$ E and P are the only subgroups of S that can be essential and $E\cong P\cong \mathrm{C}_2\times \mathrm{C}_2.$



Can we characterize saturated fusion systems containing an essential subgroup that is either elementary abelian of order p^2 or non-abelian of order p^3 and exponent p?

Let $\mathcal F$ be a saturated fusion system on the p-group S.

A pearl is an essential subgroup E of S that is either elementary abelian of order p^2 ($E \cong C_p \times C_p$) or non-abelian of order p^3 and exponent p (if p is odd then $E \cong p_+^{1+2}$).

Let $\mathcal F$ be a saturated fusion system on the p-group S.

A pearl is an essential subgroup E of S that is either elementary abelian of order p^2 ($E \cong C_p \times C_p$) or non-abelian of order p^3 and exponent p (if p is odd then $E \cong p_+^{1+2}$).

Property 1: Essential subgroups of S are self-centralizing in S.

Let $\mathcal F$ be a saturated fusion system on the p-group S.

A pearl is an essential subgroup E of S that is either elementary abelian of order p^2 ($E \cong C_p \times C_p$) or non-abelian of order p^3 and exponent p (if p is odd then $E \cong p_+^{1+2}$).

Property 1: Essential subgroups of S are self-centralizing in S.

Theorem (Suzuki): If a p-group S contains a subgroup E of order p^2 such that $C_S(E)=E$ then S has maximal nilpotency class.

Let $\mathcal F$ be a saturated fusion system on the p-group S.

A pearl is an essential subgroup E of S that is either elementary abelian of order p^2 ($E \cong C_p \times C_p$) or non-abelian of order p^3 and exponent p (if p is odd then $E \cong p_+^{1+2}$).

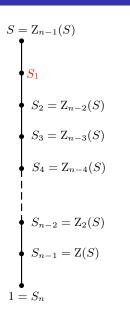
Property 1: Essential subgroups of S are self-centralizing in S.

Theorem (Suzuki): If a p-group S contains a subgroup E of order p^2 such that $C_S(E)=E$ then S has maximal nilpotency class.

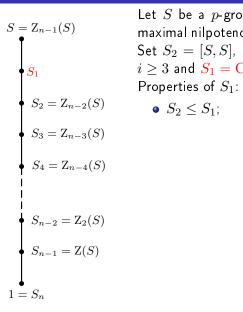
Theorem

If $\mathcal F$ contains a pearl then S has maximal nilpotency class.

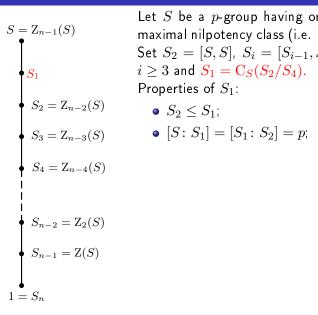
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1).



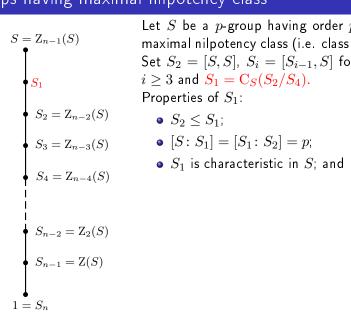
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2=[S,S],\ S_i=[S_{i-1},S]$ for every $i\geq 3$ and $S_1=\mathbb{C}_S(S_2/S_4)$.



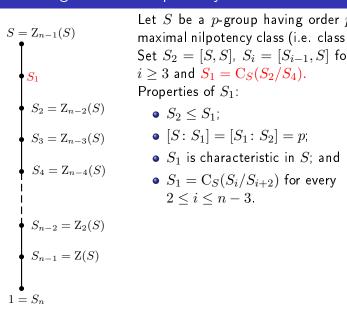
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every $i \geq 3$ and $S_1 = C_S(S_2/S_4)$.



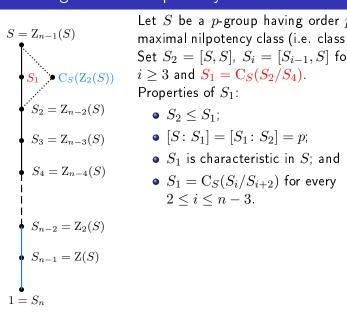
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every



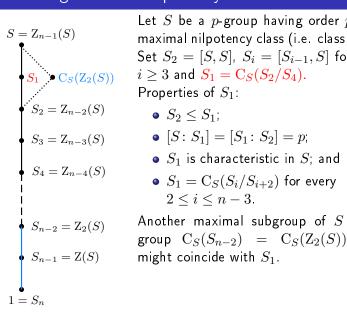
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every



Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every

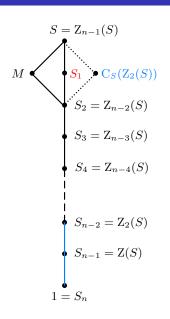


Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every



Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2 = [S, S], S_i = [S_{i-1}, S]$ for every

Another maximal subgroup of S is the group $C_S(S_{n-2}) = C_S(Z_2(S))$, that



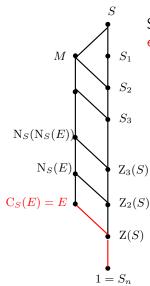
Let S be a p-group having order p^n and maximal nilpotency class (i.e. class n-1). Set $S_2=[S,S],\ S_i=[S_{i-1},S]$ for every $i\geq 3$ and $S_1=\mathbb{C}_S(S_2/S_4)$.

Properties of S_1 :

- $S_2 \leq S_1$;
- $[S \colon S_1] = [S_1 \colon S_2] = p;$
 - ullet S_1 is characteristic in S; and
 - $S_1 = C_S(S_i/S_{i+2})$ for every $2 \le i \le n-3$.

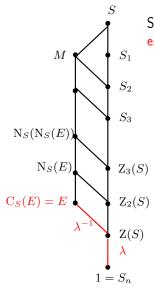
Another maximal subgroup of S is the group $\mathrm{C}_S(S_{n-2})=\mathrm{C}_S(\mathrm{Z}_2(S))$, that might coincide with S_1 .

Every other maximal subgroup of S has maximal nilpotency class.



Suppose p is odd and $E \cong C_p \times C_p$ is an essential subgroup of the p-group S. Then:

• Property 1: $C_S(E) = E$;

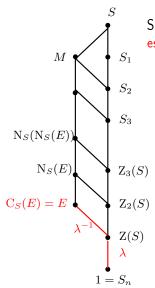


Suppose p is odd and $E \cong C_p \times C_p$ is an essential subgroup of the p-group S. Then:

- Property 1: $C_S(E) = E$;
- Property 2: there exists a non-trivial automorphism φ of S ($\varphi \in \operatorname{Aut}_{\mathcal{F}}(S)$)) normalizing E such that

$$\varphi|_E = \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix},$$

for some $\lambda \in GF(p)$ having order p-1.



Suppose p is odd and $E \cong C_p \times C_p$ is an essential subgroup of the p-group S. Then:

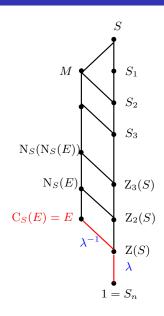
- Property 1: $C_S(E) = E$;
- Property 2: there exists a non-trivial automorphism φ of S ($\varphi \in \operatorname{Aut}_{\mathcal{F}}(S)$)) normalizing E such that

$$\varphi|_E = \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix},$$

for some $\lambda \in \mathrm{GF}(p)$ having order p-1.

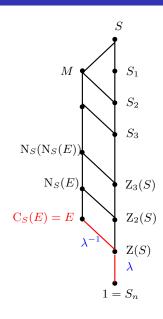
So if
$$E=\langle e \rangle \times \langle z \rangle$$
, with $z\in {\rm Z}(S)$, then

$$e\varphi=e^{\lambda^{-1}}$$
 and $z\varphi=z^{\lambda}.$



We can prove that

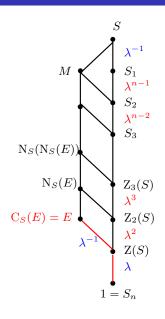
$$E \nleq S_1$$
 and $E \nleq C_S(Z_2(S))$.



We can prove that

$$E \nleq S_1$$
 and $E \nleq C_S(Z_2(S))$.

In particular, recalling that $S_1 = C_S(S_i/S_{i+2})$ for every $2 \le i \le n-3$, we get that $[E,S_i] \nleq S_{i+2}$ for every $i \ge 1$.



We can prove that

$$E \nleq S_1$$
 and $E \nleq C_S(Z_2(S))$.

In particular, recalling that $S_1 = \mathrm{C}_S(S_i/S_{i+2})$ for every $2 \leq i \leq n-3$, we get that $[E,S_i] \nleq S_{i+2}$ for every $i \geq 1$.

This fact and properties of commutators enable us to determine the action of φ on every quotient S_i/S_{i+1} .

Let p be an odd prime and let $\mathcal F$ be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \ge p^4$.

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

• $|S| = p^{k+1}$, S_1 is elementary abelian and \mathcal{F} , if reduced, is known (Craven, Oliver, Semeraro);

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

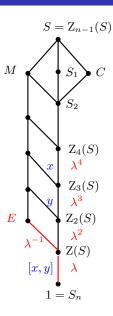
- $|S| = p^{k+1}$, S_1 is elementary abelian and \mathcal{F} , if reduced, is known (Craven, Oliver, Semeraro);
- k = p 1 and $|S| \ge p^{p+1}$;

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

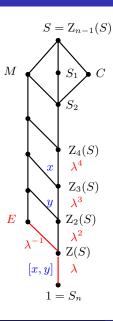
Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \ge p^4$. Then $p \ge k \ge 2$ and one of the following holds:

- $|S| = p^{k+1}$, S_1 is elementary abelian and \mathcal{F} , if reduced, is known (Craven, Oliver, Semeraro);
- k = p 1 and $|S| \ge p^{p+1}$;
- $k \ge 3$, $k+3 \le p \le 2k+1$, S has exponent p and $|S| \le p^{p-1}$.

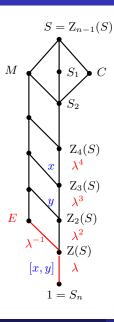


Note that the group $Z_3(S)$ is always abelian (it centralizes $Z_2(S)$).



Note that the group $Z_3(S)$ is always abelian (it centralizes $Z_2(S)$).

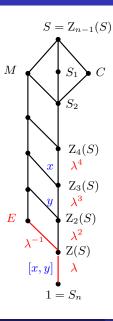
Suppose $\mathrm{Z}_4(S)$ is NOT abelian.



Note that the group $Z_3(S)$ is always abelian (it centralizes $Z_2(S)$).

Suppose $\mathrm{Z}_4(S)$ is NOT abelian.

Then $|S| \leq p^7$ and $[\mathrm{Z}_4(S),\mathrm{Z}_3(S)] = \mathrm{Z}(S).$

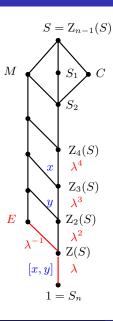


Note that the group $Z_3(S)$ is always abelian (it centralizes $Z_2(S)$).

Suppose $Z_4(S)$ is NOT abelian.

Then $|S| \leq p^7$ and $[\mathrm{Z}_4(S),\mathrm{Z}_3(S)] = \mathrm{Z}(S).$

So there exists $x\in {\rm Z}_4(S)$ and $y\in {\rm Z}_3(S)$ such that $1\neq [x,y]\in {\rm Z}(S)$.



Note that the group $Z_3(S)$ is always abelian (it centralizes $Z_2(S)$).

Suppose $Z_4(S)$ is NOT abelian.

Then $|S| \leq p^7$ and $[\mathrm{Z}_4(S),\mathrm{Z}_3(S)] = \mathrm{Z}(S).$

So there exists $x\in {\rm Z}_4(S)$ and $y\in {\rm Z}_3(S)$ such that $1\neq [x,y]\in {\rm Z}(S).$ Thus

$$[x, y]^{\lambda} = [x, y]\varphi = [x^{\lambda^4}, y^{\lambda^3}] = [x, y]^{\lambda^7}.$$

Since λ has order p-1, this implies

$$p=3$$
 or $p=7$.

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

- $|S| = p^{k+1}$ and S_1 is elementary abelian;
- k = p 1 and $|S| \ge p^{p+1}$;
- $k \geq 3$, $k+3 \leq p \leq 2k+1$, S has exponent p and $|S| \leq p^{p-1}$.

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

- $|S| = p^{k+1}$ and S_1 is elementary abelian;
- k = p 1 and $|S| \ge p^{p+1}$;
- $k \ge 3$, $k+3 \le p \le 2k+1$, S has exponent p and $|S| \le p^{p-1}$.

Corollary

Suppose that S has sectional rank k=3. Then one of the following holds:

• $|S| = p^4$ and $S \in \operatorname{Syl}_p(\operatorname{Sp}_4(p));$

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

- $|S| = p^{k+1}$ and S_1 is elementary abelian;
- k = p 1 and $|S| \ge p^{p+1}$;
- $k \geq 3$, $k+3 \leq p \leq 2k+1$, S has exponent p and $|S| < p^{p-1}$.

Corollary

Suppose that S has sectional rank k = 3. Then one of the following holds:

- $|S| = p^4$ and $S \in \operatorname{Syl}_p(\operatorname{Sp}_4(p));$
- 3 = p 1 (impossible);

Let p be an odd prime and let \mathcal{F} be a saturated fusion system on the p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order $|S| \geq p^4$. Then $p \geq k \geq 2$ and one of the following holds:

- $|S| = p^{k+1}$ and S_1 is elementary abelian;
- k = p 1 and $|S| \ge p^{p+1}$;
- $k \ge 3$, $k+3 \le p \le 2k+1$, S has exponent p and $|S| < p^{p-1}$.

Corollary

Suppose that S has sectional rank k = 3. Then one of the following holds:

- $|S| = p^4$ and $S \in \operatorname{Syl}_p(\operatorname{Sp}_4(p));$
- 3 = p 1 (impossible);
- p=7 and $S\cong {\tt SmallGroup}(7^5,37)$ (has order 7^5 and exponent 7).

Theorem 3 (G., 2017)

Let $p \geq 5$ be a prime, let \mathcal{F} be a saturated fusion system on the p-group S. Suppose that $O_p(\mathcal{F}) = 1$ and S has sectional rank 3.

Then \mathcal{F} contains a pearl and so one of the following holds:

- $|S| = p^4$ and $S \in \mathrm{Syl}_p(\mathrm{Sp}_4(p))$;
- $p=7, S\cong SmallGroup(7^5,37)$ (has order 7^5 and exponent 7), $\mathcal{F}=\langle \operatorname{Aut}_{\mathcal{F}}(S), \operatorname{Aut}_{\mathcal{F}}(E) \rangle$, where $E\cong \operatorname{C}_7\times\operatorname{C}_7$ is an abelian pearl, and \mathcal{F} is simple and exotic.

Thank you.