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Fusion

Let G be a �nite group. Two subgroups P,Q ≤ G are fused in G if there

exists an element g ∈ G such that P g = Q.

De�nition

Let p be a prime and let S be a Sylow p-subgroup of G. The fusion

category of G on S is the category FS(G) whose objects are the subgroups

of S and whose morphism sets are:

MorFS(G)(P,Q) = HomG(P,Q) = {cg|P : P → Q|g ∈ G,P g ≤ Q},

for every P,Q ≤ S.
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Pick a p-group S.

Pick a �nite group G such that S ∈ Sylp(G).

D8

a3x

ax
a2

x

a2x

a

a3

1

S = D8

D8 := 〈a, x | a4 = x2 = 1, ax = a3〉

Consider the conjugation maps

by elements g ∈ G that fuse

some elements/subgroups of S.

fusion is determined by Inn(D8) :

FD8 (D8) = 〈Inn(D8)〉

G = D8G = Sym(4) = S4

a = (1234), x = (13).

b = (123)

(a2)b = ((13)(24))(123) = (12)(34) = ax

S4

b

E

fusion is determined by

Inn(D8) and Aut(E) ∼= SL2(2) ∼= S3

FD8 (S4) = 〈Inn(D8),Aut(E)〉

G = A6

a = (1234)(56), x = (13)(56).

c = (25)(46)

A6

c

(a2)c = ((13)(24))(25)(46)

= (13)(56) = x

fusion is determined by

Inn(D8), Aut(E) and Aut(P )

FD8
(A6) = 〈Inn(D8),Aut(E),Aut(P )〉

E P

How many ways to fuse elements of D8?

−FD8
(D8) (no essential subgroups)

−FD8
(S4) (E essential)

−FD8(A6) (E and P essential)
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Let p be a prime and let S be a p-group. Choose a collection of morphisms

between subgroups of S that "behave" as conjugation maps.

De�nition (Fusion System)

A Fusion system F on S is a category whose objects are the subgroups of

S and with morphism sets HomF (P,Q) ⊆ Inj(P,Q) such that

1 HomS(P,Q) ⊆ HomF (P,Q),

2 each ϕ ∈ HomF (P,Q) is the composition of an isomorphism

α ∈ Mor(F) and an inclusion β ∈ Mor(F).

A Fusion system is Saturated if it satis�es certain extra properties (Sylow and
extension properties).

If S ∈ Sylp(G) then the fusion category FS(G) is a saturated fusion system on S.

If F is a saturated fusion system on S and there is no �nite group G such that
S ∈ Sylp(G) and F = FS(G), then F is called exotic.

Question (suggested by Oliver)

Try to better understand how exotic fusion systems arise at odd primes.
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Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .

Valentina Grazian Fusion systems containing pearls Groups St Andrews 2017 5 / 15



Question

Given a class of p-groups, can we determine all the simple fusion systems

on them?

An interesting class to study is the class of p-groups having small sectional

rank.

A p-group S has sectional rank k if every elementary abelian section P/Q
of S has order at most pk (equivalently if every subgroup of S can be

generated by k elements).

Oliver, 2016 (Memoir of the AMS): p = 2, sectional rank at most 4;

Diaz, Ruiz and Viruel, 2007: p odd, sectional rank 2;

G., 2017 (PhD thesis): p ≥ 5, sectional rank 3.

Theorem 1 (G., 2016)

Let p ≥ 5 be a prime and let F be a saturated fusion system on the

p-group S. If S has sectional rank 3 and Op(F) = 1 then there exists an

essential subgroup E of S such that either E ∼= Cp × Cp or E ∼= p1+2
+ .
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Pearls

Let F be a saturated fusion system on the p-group S.

A pearl is an essential subgroup E of S that is either elementary abelian of

order p2 (E ∼= Cp × Cp) or non-abelian of order p3 and exponent p (if p is

odd then E ∼= p1+2
+ ).

Property 1: Essential subgroups of S are self-centralizing in S.

Theorem (Suzuki): If a p-group S contains a subgroup E of order p2 such

that CS(E) = E then S has maximal nilpotency class.

Theorem

If F contains a pearl then S has maximal nilpotency class.
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p-groups having maximal nilpotency class

1 = Sn

S = Zn−1(S)

Sn−1 = Z(S)

Sn−2 = Z2(S)

S3 = Zn−3(S)

S2 = Zn−2(S)

S1

S4 = Zn−4(S)

M CS(Z2(S))

Let S be a p-group having order pn and

maximal nilpotency class (i.e. class n−1).

Set S2 = [S, S], Si = [Si−1, S] for every
i ≥ 3 and S1 = CS(S2/S4).
Properties of S1:

S2 ≤ S1;
[S : S1] = [S1 : S2] = p;

S1 is characteristic in S; and

S1 = CS(Si/Si+2) for every
2 ≤ i ≤ n− 3.

Another maximal subgroup of S is the

group CS(Sn−2) = CS(Z2(S)), that

might coincide with S1.

Every other maximal subgroup of S has

maximal nilpotency class.
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Structure of a p-group containing an abelian pearl

1 = Sn

Z(S)

Z2(S)

S3

S2

S

S1

Z3(S)

M

CS(E) = E

NS(E)

NS(NS(E))

λ−1

λ

Suppose p is odd and E ∼= Cp × Cp is an

essential subgroup of the p-group S. Then:

Property 1: CS(E) = E;

Property 2: there exists a non-trivial

automorphism ϕ of S (ϕ ∈ AutF (S)))
normalizing E such that

ϕ|E =

(
λ−1 0
0 λ

)
,

for some λ ∈ GF(p) having order p− 1.

So if E = 〈e〉× 〈z〉, with z ∈ Z(S), then

eϕ = eλ
−1

and zϕ = zλ.
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Structure of a p-group containing an abelian pearl

1 = Sn

Z(S)

Z2(S)

S3

S2

S

S1

Z3(S)

M

CS(E) = E

NS(E)

NS(NS(E))

λ−1

λ

λ2

λ3

λn−2

λn−1

λ−1

We can prove that

E � S1 and E � CS(Z2(S)).

In particular, recalling that S1 =
CS(Si/Si+2) for every 2 ≤ i ≤ n− 3,
we get that [E,Si] � Si+2 for every

i ≥ 1.

This fact and properties of commuta-

tors enable us to determine the action

of ϕ on every quotient Si/Si+1.
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Main result

Let p be an odd prime and let F be a saturated fusion system on the

p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank k and order |S| ≥ p4.

Then p ≥ k ≥ 2
and one of the following holds:

|S| = pk+1, S1 is elementary abelian and F , if reduced, is known
(Craven, Oliver, Semeraro);

k = p− 1 and |S| ≥ pp+1;

k ≥ 3, k + 3 ≤ p ≤ 2k + 1, S has exponent p and |S| ≤ pp−1.
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Methods

1 = Sn

Z(S)

Z2(S)

S2

S = Zn−1(S)

S1

Z3(S)

M

E

λ−1

λ[x, y]

λ2

λ3y

Z4(S)

λ4x

C

Note that the group Z3(S) is always abelian

(it centralizes Z2(S)).

Suppose Z4(S) is NOT abelian.

Then |S| ≤ p7 and [Z4(S),Z3(S)] = Z(S).

So there exists x ∈ Z4(S) and y ∈ Z3(S) such
that 1 6= [x, y] ∈ Z(S). Thus

[x, y]λ = [x, y]ϕ = [xλ
4
, yλ

3
] = [x, y]λ

7
.

Since λ has order p− 1, this implies

p = 3 or p = 7.
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Application: fusion systems on p-groups of sectional rank 3

Let p be an odd prime and let F be a saturated fusion system on the

p-group S containing a pearl.

Theorem 2 (G., 2017)

Suppose that S has sectional rank

k and order |S| ≥ p4. Then
p ≥ k ≥ 2 and one of the following

holds:

|S| = pk+1 and S1 is

elementary abelian;

k = p− 1 and |S| ≥ pp+1;

k ≥ 3, k + 3 ≤ p ≤ 2k + 1,
S has exponent p and

|S| ≤ pp−1.

Corollary

Suppose that S has sectional rank

k = 3. Then one of the following

holds:

|S| = p4 and

S ∈ Sylp(Sp4(p));

3 = p− 1 (impossible);

p = 7 and

S ∼=SmallGroup(7^5,37)

(has order 75 and exponent 7).
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Application: fusion systems on p-groups of sectional rank 3

Theorem 3 (G., 2017)

Let p ≥ 5 be a prime, let F be a saturated fusion system on the p-group S.
Suppose that Op(F) = 1 and S has sectional rank 3.

Then F contains a pearl and so one of the following holds:

|S| = p4 and S ∈ Sylp(Sp4(p));

p = 7, S ∼=SmallGroup(7^5,37) (has order 75 and exponent 7),
F = 〈AutF (S),AutF (E)〉, where E ∼= C7 × C7 is an abelian pearl,

and F is simple and exotic.
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Thank you.
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