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Generating Finite Simple Groups

Theorem (Steinberg, 1962)
Every �nite simple group is generated by two elements.

Let P(G) be the probability that a pair of elements of G generate G.

Netto’s Conjecture (1882) P(An)→ 1 as n→∞

Theorem (Liebeck & Shalev, 1995)
If G is a �nite simple group, then P(G)→ 1 as |G| → ∞

Summary: Finite simple groups have many generating pairs.

Question: How are these generating pairs distributed across the group?
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A group G is 3
2-generated if every non-identity element of G is contained in

a generating pair.

Theorem (Guralnick & Kantor, 2000)
Every �nite simple group is 3

2 -generated.

Main Question
Which �nite groups are 3

2 -generated?

Simple groups: Groups such that all proper quotients are trivial.

Any more? Groups such that all proper quotients are cyclic?
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Let G be a �nite group.

Proposition
G is 3

2 -generated =⇒ every proper quotient of G is cyclic.

Proof

Let 1 6= N E G and �x 1 6= n ∈ N. Since G is 3
2 -generated, there exists x ∈ G

such that 〈x, n〉 = G.

In particular, 〈xN, nN〉 = G/N. Since nN is trivial in G/N, in fact, G/N = 〈xN〉.
So G/N is cyclic. �

Conjecture (Breuer, Guralnick & Kantor, 2008)
G is 3

2 -generated ⇐⇒ every proper quotient of G is cyclic.
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2-Generation and Spread

Theorem (H, 2017)
If T = PSp2m(q) or T = Ω2m+1(q) and g ∈ Aut(T), then 〈T, g〉 is 3

2 -generated.

A group G has spread k if for any distinct x1, . . . , xk ∈ G \ 1 there exists an
element z ∈ G such that 〈x1, g〉 = · · · = 〈xk, z〉 = G.

Write s(G) for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick & Kantor, 2008)
If G is a �nite simple group, then s(G) ≥ 2.

Theorem (H, 2017)
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Asymptotic Behaviour of Spread

Theorem (Guralnick & Shalev, 2003)

Let Gn be a �nite simple classical group. Assume that |Gn| → ∞.
Then s(Gn)→∞ if and only if there is no subsequence of (Gn) of

� odd-dimensional orthogonal groups over a �eld of �xed size, or
� symplectic groups in even characteristic over a �eld of �xed size.

Theorem (H, 2017)

Let Gn = 〈Tn, gn〉 where Tn ∈ {PSp2m(q), Ω2m+1(q)} and gn ∈ Aut(Tn).
Assume that |Gn| → ∞. Then s(Gn)→∞ if and only if (Tn) does not have a
sequence as above.
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Probabilistic Method

Let s ∈ G. Write
P(x, s) =

|{z ∈ sG | 〈x, z〉 6= G}|
|sG|

Lemma 1
If for any element x ∈ G of prime order P(x, s) < 1

k , then s(G) ≥ k.

〈x, sg〉 6= G =⇒ x lies in a maximal subgroup of G which contains sg

=⇒ xg
−1
lies in a maximal subgroup of G which contains s

LetM(G, s) be the set of maximal subgroups of G which contain s.

Lemma 2

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

.
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Proof Idea

Let T = Spn(q) where q = 2e with e > 1 and where n ≡ 2 (mod 4).

Then Aut(T) = 〈T,σ〉 = T:〈σ〉 where σ : (aij) 7→ (a2ij).

Let G = Aut(T).

1 Choose an element s ∈ G

Observation 1: s 6∈ Spn(q)

This is a signi�cant di�erence from the case when G is simple.

Observation 2: se ∈ Spn(q)

A central idea of the method: choose s such that we understand se.

Question: Which elements in Spn(q) arise as se for some s 6∈ Spn(q)?
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Let X be a connected linear algebraic group. Example: X = Spn(F2)

Let σ : X → X be a Frobenius morphism. Example: σ : (aij) 7→ (a2ij)

Write Xσ be the subgroup of X �xed by σ. Example: Xσ = Spn(2)

Write Xσe be the subgroup of X �xed by σe. Example: Xσe = Spn(q)

Shintani Descent
There is a bijection (with other nice properties)

f : Xσe-classes of Xσeσ −→ Xσ-classes of Xσ

such that f(g) is X-conjugate to ge.

Application For all x ∈ Spn(2) ≤ Spn(q) there exists s ∈ Spn(q)σ such
that se is Spn(F2)-conjugate to x.
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Choose s ∈ Spn(q)σ such that se has the form(
A1

A2

)
∈ Spn(2)

where A1 and A2 act irreducibly on non-degenerate 2- and (n− 2)-spaces.

2 Determine the maximal subgroups inM(G, s)

Theorem (Aschbacher, 1984)
Let G be a classical almost simple group with socle T. Any maximal subgroup
of G which does not contain T belongs to one of:

� C1, . . . , C8 (a family of geometric subgroups);
� S (the family of almost simple irreducible subgroups).

Key Features Only two subspaces are stabilised by se.
A power of se has an (n− 2)-dimensional 1-eigenspace.
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3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to

generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems

generation
problems, base sizes, �nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes

,
base sizes, �nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry

, �nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups

, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



3 Calculate P(x, s) for x ∈ G of prime order

Recall that

P(x, s) ≤
∑

H∈M(G,s)

|xG ∩ H|
|xG|

The quantity |xG∩H|
|xG| is the �xed point ratio of the action of G on the G/H.

Fixed point ratios �nd applications to generation problems, base sizes,
�nite geometry, monodromy groups . . .

Theorem (Burness, 2007)
Let G be an almost simple classical group, let H be a maximal subgroup of G
and let x ∈ G have prime order. Then

|xG ∩ H| < |xG|ε

for ε ≈ 1
2 , provided that H does not stabilise a subspace.



Summary

Conjecture
A �nite group is 3

2 -generated i� every proper quotient is cyclic.

Theorem (H, 2017)
If T = PSp2m(q) or T = Ω2m+1(q) and g ∈ Aut(T), then s(〈T, g〉) ≥ 2.

Asymptotic Results: We apply a similar probabilistic approach.

Current work: Prove similar results on the spread of the remaining almost
simple groups of Lie type.

Question: Are there any �nite groups with spread one but not two?
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