$\frac{3}{2}$-Generation of Finite Groups

Scott Harper
University of Bristol

Groups St Andrews
7th August 2017

Generating Finite Simple Groups

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let $P(G)$ be the probability that a pair of elements of G generate G.

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let $P(G)$ be the probability that a pair of elements of G generate G.
Netto's Conjecture (1882) $\quad P\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let $P(G)$ be the probability that a pair of elements of G generate G.
Netto's Conjecture (1882) $P\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$

Theorem (Liebeck \& Shalev, 1995)
If G is a finite simple group, then $P(G) \rightarrow 1$ as $|G| \rightarrow \infty$

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let $P(G)$ be the probability that a pair of elements of G generate G.
Netto's Conjecture (1882) $P\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$

Theorem (Liebeck \& Shalev, 1995)
If G is a finite simple group, then $P(G) \rightarrow 1$ as $|G| \rightarrow \infty$

Summary: Finite simple groups have many generating pairs.

Generating Finite Simple Groups

Theorem (Steinberg, 1962)

Every finite simple group is generated by two elements.

Let $P(G)$ be the probability that a pair of elements of G generate G.
Netto's Conjecture (1882) $P\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$

Theorem (Liebeck \& Shalev, 1995)
If G is a finite simple group, then $P(G) \rightarrow 1$ as $|G| \rightarrow \infty$

Summary: Finite simple groups have many generating pairs.
Question: How are these generating pairs distributed across the group?

$\frac{3}{2}$-Generation

A group G is $\frac{3}{2}$-generated if every non-identity element of G is contained in a generating pair.

$\frac{3}{2}-G e n e r a t i o n$

A group G is $\frac{3}{2}$-generated if every non-identity element of G is contained in a generating pair.

Theorem (Guralnick \& Kantor, 2000)

Every finite simple group is $\frac{3}{2}$-generated.

$\frac{3}{2}-G e n e r a t i o n$

A group G is $\frac{3}{2}$-generated if every non-identity element of G is contained in a generating pair.

Theorem (Guralnick \& Kantor, 2000)

Every finite simple group is $\frac{3}{2}$-generated.

Main Question

Which finite groups are $\frac{3}{2}$-generated?

$\frac{3}{2}-G e n e r a t i o n$

A group G is $\frac{3}{2}$-generated if every non-identity element of G is contained in a generating pair.

Theorem (Guralnick \& Kantor, 2000)

Every finite simple group is $\frac{3}{2}$-generated.

Main Question

Which finite groups are $\frac{3}{2}$-generated?

Simple groups: Groups such that all proper quotients are trivial.

$\frac{3}{2}$-Generation

A group G is $\frac{3}{2}$-generated if every non-identity element of G is contained in a generating pair.

Theorem (Guralnick \& Kantor, 2000)

Every finite simple group is $\frac{3}{2}$-generated.

Main Question

Which finite groups are $\frac{3}{2}$-generated?

Simple groups: Groups such that all proper quotients are trivial. Any more? Groups such that all proper quotients are cyclic?

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.
Proof

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Proof

Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Proof

Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$. Since G is $\frac{3}{2}$-generated, there exists $x \in G$ such that $\langle x, n\rangle=G$.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Proof

Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$. Since G is $\frac{3}{2}$-generated, there exists $x \in G$ such that $\langle x, n\rangle=G$.
In particular, $\langle x N, n N\rangle=G / N$.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Proof

Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$. Since G is $\frac{3}{2}$-generated, there exists $x \in G$ such that $\langle x, n\rangle=G$.

In particular, $\langle x N, n N\rangle=G / N$. Since $n N$ is trivial in G / N, in fact, $G / N=\langle x N\rangle$.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.

Proof

Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$. Since G is $\frac{3}{2}$-generated, there exists $x \in G$ such that $\langle x, n\rangle=G$.
In particular, $\langle x N, n N\rangle=G / N$. Since $n N$ is trivial in G / N, in fact, $G / N=\langle x N\rangle$. So G / N is cyclic.

Let G be a finite group.

Proposition

G is $\frac{3}{2}$-generated \Longrightarrow every proper quotient of G is cyclic.
Proof
Let $1 \neq N \unlhd G$ and fix $1 \neq n \in N$. Since G is $\frac{3}{2}$-generated, there exists $x \in G$ such that $\langle x, n\rangle=G$.
In particular, $\langle x N, n N\rangle=G / N$. Since $n N$ is trivial in G / N, in fact, $G / N=\langle x N\rangle$. So G / N is cyclic.

Conjecture (Breuer, Guralnick \& Kantor, 2008)

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Which finite groups are $\frac{3}{2}$-generated?

Conjecture
G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Which finite groups are $\frac{3}{2}$-generated?

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Need to show: For all finite groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.

Which finite groups are $\frac{3}{2}$-generated?

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Need to show: For all finite groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.

It suffices to show: For all finite almost simple groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.

Which finite groups are $\frac{3}{2}$-generated?

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Need to show: For all finite groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.

It suffices to show: For all finite almost simple groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.
G is almost simple if $T \leq G \leq \operatorname{Aut}(T)$ for a non-abelian simple group T.

Which finite groups are $\frac{3}{2}$-generated?

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Need to show: For all finite groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.

It suffices to show: For all finite almost simple groups G, every proper quotient of G is cyclic $\Longrightarrow G$ is $\frac{3}{2}$-generated.
G is almost simple if $T \leq G \leq \operatorname{Aut}(T)$ for a non-abelian simple group T.
Examples $\quad G=S_{n}$ (with $T=A_{n}$); $G=P G L_{n}(q)$ (with $T=\operatorname{PSL}_{n}(q)$).

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating
Classical

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating
Classical

Exceptional

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating
Classical

Exceptional

Sporadic

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical

Exceptional

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical
Linear

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical
Linear
Symplectic

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical
Linear
Symplectic Orthogonal

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.
Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical
Linear
Symplectic Orthogonal Unitary

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

Conjecture

G is $\frac{3}{2}$-generated \Longleftrightarrow every proper quotient of G is cyclic.

Aim: For simple T and $g \in \operatorname{Aut}(T)$, show that $G=\langle T, g\rangle$ is $\frac{3}{2}$-generated.
Alternating Piccard, 1939
Classical
Linear Burness \& Guest, 2013
Symplectic Orthogonal Unitary

Exceptional

Sporadic Breuer, Guralnick \& Kantor, 2008

$\frac{3}{2}$-Generation and Spread

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $\langle T, g\rangle$ is $\frac{3}{2}$-generated.

$\frac{3}{2}$-Generation and Spread

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $\langle T, g\rangle$ is $\frac{3}{2}$-generated.

A group G has spread k if for any distinct $x_{1}, \ldots, x_{k} \in G \backslash 1$ there exists an element $z \in G$ such that $\left\langle x_{1}, g\right\rangle=\cdots=\left\langle x_{k}, z\right\rangle=G$.

$\frac{3}{2}$-Generation and Spread

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $\langle T, g\rangle$ is $\frac{3}{2}$-generated.

A group G has spread k if for any distinct $x_{1}, \ldots, x_{k} \in G \backslash 1$ there exists an element $z \in G$ such that $\left\langle x_{1}, g\right\rangle=\cdots=\left\langle x_{k}, z\right\rangle=G$.

Write $\boldsymbol{s}(G)$ for the greatest integer k such that G has spread k.

$\frac{3}{2}$-Generation and Spread

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $\langle T, g\rangle$ is $\frac{3}{2}$-generated.

A group G has spread k if for any distinct $x_{1}, \ldots, x_{k} \in G \backslash 1$ there exists an element $z \in G$ such that $\left\langle x_{1}, g\right\rangle=\cdots=\left\langle x_{k}, z\right\rangle=G$.

Write $s(G)$ for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick \& Kantor, 2008)

If G is a finite simple group, then $s(G) \geq 2$.

$\frac{3}{2}$-Generation and Spread

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $\langle T, g\rangle$ is $\frac{3}{2}$-generated.

A group G has spread k if for any distinct $x_{1}, \ldots, x_{k} \in G \backslash 1$ there exists an element $z \in G$ such that $\left\langle x_{1}, g\right\rangle=\cdots=\left\langle x_{k}, z\right\rangle=G$.

Write $\boldsymbol{s}(G)$ for the greatest integer k such that G has spread k.

Theorem (Breuer, Guralnick \& Kantor, 2008)

If G is a finite simple group, then $s(G) \geq 2$.

Theorem (H, 2017)
If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $s(\langle T, g\rangle) \geq 2$.

Asymptotic Behaviour of Spread

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if there is no subsequence of $\left(G_{n}\right)$ of

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if there is no subsequence of $\left(G_{n}\right)$ of

- odd-dimensional orthogonal groups over a field of fixed size, or

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if there is no subsequence of $\left(G_{n}\right)$ of

- odd-dimensional orthogonal groups over a field of fixed size, or
- symplectic groups in even characteristic over a field of fixed size.

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if there is no subsequence of $\left(G_{n}\right)$ of

- odd-dimensional orthogonal groups over a field of fixed size, or
- symplectic groups in even characteristic over a field of fixed size.

Theorem (H, 2017)

Let $G_{n}=\left\langle T_{n}, g_{n}\right\rangle$ where $T_{n} \in\left\{\operatorname{PSp}_{2 m}(q), \Omega_{2 m+1}(q)\right\}$ and $g_{n} \in \operatorname{Aut}\left(T_{n}\right)$. Assume that $\left|G_{n}\right| \rightarrow \infty$.

Asymptotic Behaviour of Spread

Theorem (Guralnick \& Shalev, 2003)

Let G_{n} be a finite simple classical group. Assume that $\left|G_{n}\right| \rightarrow \infty$.
Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if there is no subsequence of $\left(G_{n}\right)$ of

- odd-dimensional orthogonal groups over a field of fixed size, or
- symplectic groups in even characteristic over a field of fixed size.

Theorem (H, 2017)

Let $G_{n}=\left\langle T_{n}, g_{n}\right\rangle$ where $T_{n} \in\left\{\operatorname{PSp}_{2 m}(q), \Omega_{2 m+1}(q)\right\}$ and $g_{n} \in \operatorname{Aut}\left(T_{n}\right)$. Assume that $\left|G_{n}\right| \rightarrow \infty$. Then $s\left(G_{n}\right) \rightarrow \infty$ if and only if $\left(T_{n}\right)$ does not have a sequence as above.

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1
If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1
If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.

$$
\left\langle x, s^{g}\right\rangle \neq G
$$

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1
If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.
$\left\langle x, s^{g}\right\rangle \neq G \Longrightarrow x$ lies in a maximal subgroup of G which contains s^{g}

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1

If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.

$$
\begin{aligned}
\left\langle x, s^{g}\right\rangle \neq G & \Longrightarrow x \text { lies in a maximal subgroup of } G \text { which contains } s^{g} \\
& \Longrightarrow x^{g^{-1}} \text { lies in a maximal subgroup of } G \text { which contains } s
\end{aligned}
$$

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1

If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.

$$
\begin{aligned}
\left\langle x, s^{g}\right\rangle \neq G & \Longrightarrow x \text { lies in a maximal subgroup of } G \text { which contains } s^{g} \\
& \Longrightarrow x^{g^{-1}} \text { lies in a maximal subgroup of } G \text { which contains } s
\end{aligned}
$$

Let $\mathcal{M}(G, s)$ be the set of maximal subgroups of G which contain s.

Probabilistic Method

Let $s \in G$. Write

$$
P(x, s)=\frac{\left|\left\{z \in s^{G} \mid\langle x, z\rangle \neq G\right\}\right|}{\left|s^{G}\right|}
$$

Lemma 1

If for any element $x \in G$ of prime order $P(x, s)<\frac{1}{k}$, then $s(G) \geq k$.

$$
\begin{aligned}
\left\langle x, s^{g}\right\rangle \neq G & \Longrightarrow x \text { lies in a maximal subgroup of } G \text { which contains } s^{g} \\
& \Longrightarrow x^{g^{-1}} \text { lies in a maximal subgroup of } G \text { which contains } s
\end{aligned}
$$

Let $\mathcal{M}(G, s)$ be the set of maximal subgroups of G which contain s.

Lemma 2

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|} .
$$

Proof Idea

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Observation 1: $s \notin \operatorname{Sp}_{n}(q)$

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Observation 1: $s \notin \operatorname{Sp}_{n}(q)$
This is a significant difference from the case when G is simple.

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Observation 1: $s \notin \operatorname{Sp}_{n}(q)$
This is a significant difference from the case when G is simple.

Observation 2: $s^{e} \in \operatorname{Sp}_{n}(q)$

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Observation 1: $s \notin \operatorname{Sp}_{n}(q)$
This is a significant difference from the case when G is simple.

Observation 2: $s^{e} \in \operatorname{Sp}_{n}(q)$
A central idea of the method: choose s such that we understand s^{e}.

Proof Idea

Let $T=\operatorname{Sp}_{n}(q)$ where $q=2^{e}$ with $e>1$ and where $n \equiv 2(\bmod 4)$.
Then $\operatorname{Aut}(T)=\langle T, \sigma\rangle=T:\langle\sigma\rangle$ where $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$.
Let $G=\operatorname{Aut}(T)$.

1 Choose an element $s \in G$

Observation 1: $s \notin \operatorname{Sp}_{n}(q)$
This is a significant difference from the case when G is simple.

Observation 2: $s^{e} \in \operatorname{Sp}_{n}(q)$
A central idea of the method: choose s such that we understand s^{e}.

Question: Which elements in $\mathrm{Sp}_{n}(q)$ arise as s^{e} for some $s \notin \operatorname{Sp}_{n}(q)$?

Let X be a connected linear algebraic group.

Let X be a connected linear algebraic group. Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$

Let X be a connected linear algebraic group. Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$ Let $\sigma: X \rightarrow X$ be a Frobenius morphism.

Let X be a connected linear algebraic group. Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Let $\sigma: X \rightarrow X$ be a Frobenius morphism.
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$
Example: $X_{\sigma}=\operatorname{Sp}_{n}(2)$

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ. Write $X_{\sigma^{e}}$ be the subgroup of X fixed by σ^{e}.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$
Example: $X_{\sigma}=\operatorname{Sp}_{n}(2)$

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ. Write $X_{\sigma^{e}}$ be the subgroup of X fixed by σ^{e}.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$
Example: $X_{\sigma}=\mathrm{Sp}_{n}(2)$
Example: $X_{\sigma^{e}}=\operatorname{Sp}_{n}(q)$

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ. Write $X_{\sigma^{e}}$ be the subgroup of X fixed by σ^{e}.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$
Example: $X_{\sigma}=\mathrm{Sp}_{n}(2)$
Example: $X_{\sigma^{e}}=\operatorname{Sp}_{n}(q)$

Shintani Descent

There is a bijection (with other nice properties)

$$
f: X_{\sigma^{e}} \text {-classes of } X_{\sigma^{e}} \sigma \longrightarrow X_{\sigma} \text {-classes of } X_{\sigma}
$$

such that $f(g)$ is X-conjugate to g^{e}.

Let X be a connected linear algebraic group. Let $\sigma: X \rightarrow X$ be a Frobenius morphism. Write X_{σ} be the subgroup of X fixed by σ. Write $X_{\sigma^{e}}$ be the subgroup of X fixed by σ^{e}.

Example: $X=\operatorname{Sp}_{n}\left(\overline{\mathbb{F}}_{2}\right)$
Example: $\sigma:\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$
Example: $X_{\sigma}=\mathrm{Sp}_{n}(2)$
Example: $X_{\sigma^{e}}=\operatorname{Sp}_{n}(q)$

Shintani Descent

There is a bijection (with other nice properties)

$$
f: X_{\sigma^{e}} \text {-classes of } X_{\sigma^{e}} \sigma \longrightarrow X_{\sigma} \text {-classes of } X_{\sigma}
$$

such that $f(g)$ is X-conjugate to g^{e}.

Application For all $x \in \operatorname{Sp}_{n}(2) \leq \operatorname{Sp}_{n}(q)$ there exists $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} is $S p_{n}\left(\overline{\mathbb{F}}_{2}\right)$-conjugate to x.

Choose $s \in \mathrm{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.

Choose $s \in \mathrm{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2. Determine the maximal subgroups in $\mathcal{M}(G, s)$

Choose $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2 Determine the maximal subgroups in $\mathcal{M}(G, s)$

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

Choose $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2 Determine the maximal subgroups in $\mathcal{M}(G, s)$

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

- $\mathcal{C}_{1}, \ldots, \mathcal{C}_{8}$ (a family of geometric subgroups);

Choose $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2 Determine the maximal subgroups in $\mathcal{M}(G, s)$

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

- $\mathcal{C}_{1}, \ldots, \mathcal{C}_{8}$ (a family of geometric subgroups);
- \mathcal{S} (the family of almost simple irreducible subgroups).

Choose $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2 Determine the maximal subgroups in $\mathcal{M}(G, s)$

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

- $\mathcal{C}_{1}, \ldots, \mathcal{C}_{8}$ (a family of geometric subgroups);
- \mathcal{S} (the family of almost simple irreducible subgroups).

Key Features Only two subspaces are stabilised by se.

Choose $s \in \operatorname{Sp}_{n}(q) \sigma$ such that s^{e} has the form

$$
\left(\begin{array}{c|c}
A_{1} & \\
\hline & A_{2}
\end{array}\right) \in \operatorname{Sp}_{n}(2)
$$

where A_{1} and A_{2} act irreducibly on non-degenerate 2 - and ($n-2$)-spaces.
2 Determine the maximal subgroups in $\mathcal{M}(G, s)$

Theorem (Aschbacher, 1984)

Let G be a classical almost simple group with socle T. Any maximal subgroup of G which does not contain T belongs to one of:

- $\mathcal{C}_{1}, \ldots, \mathcal{C}_{8}$ (a family of geometric subgroups);
- \mathcal{S} (the family of almost simple irreducible subgroups).

Key Features Only two subspaces are stabilised by se. A power of s^{e} has an ($n-2$)-dimensional 1-eigenspace.

3 Calculate $P(x, s)$ for $x \in G$ of prime order

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{6}\right|}$ is the fixed point ratio of the action of G on the G / H.

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems, base sizes

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems, base sizes, finite geometry

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{6}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems, base sizes, finite geometry, monodromy groups

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{6} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems, base sizes, finite geometry, monodromy groups ...

3 Calculate $P(x, s)$ for $x \in G$ of prime order
Recall that

$$
P(x, s) \leq \sum_{H \in \mathcal{M}(G, s)} \frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

The quantity $\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}$ is the fixed point ratio of the action of G on the G / H.
Fixed point ratios find applications to generation problems, base sizes, finite geometry, monodromy groups ...

Theorem (Burness, 2007)

Let G be an almost simple classical group, let H be a maximal subgroup of G and let $x \in G$ have prime order. Then

$$
\left|x^{G} \cap H\right|<\left|x^{G}\right|^{\varepsilon}
$$

for $\varepsilon \approx \frac{1}{2}$, provided that H does not stabilise a subspace.

Summary

Conjecture

A finite group is $\frac{3}{2}$-generated iff every proper quotient is cyclic.

Theorem (H, 2017)

If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $s(\langle T, g\rangle) \geq 2$.

Summary

Conjecture

A finite group is $\frac{3}{2}$-generated iff every proper quotient is cyclic.

> Theorem $(H, 2017)$
> If $T=\operatorname{PSp}_{2 m}(q)$ or $T=\Omega_{2 m+1}(q)$ and $g \in \operatorname{Aut}(T)$, then $s(\langle T, g\rangle) \geq 2$.

Asymptotic Results: We apply a similar probabilistic approach.

Summary

Conjecture

A finite group is $\frac{3}{2}$-generated iff every proper quotient is cyclic.

```
Theorem (H, 2017)
If \(T=\operatorname{PSp}_{2 m}(q)\) or \(T=\Omega_{2 m+1}(q)\) and \(g \in \operatorname{Aut}(T)\), then \(s(\langle T, g\rangle) \geq 2\).
```

Asymptotic Results: We apply a similar probabilistic approach.

Current work: Prove similar results on the spread of the remaining almost simple groups of Lie type.

Summary

Conjecture

A finite group is $\frac{3}{2}$-generated iff every proper quotient is cyclic.

```
Theorem (H, 2017)
If \(T=\operatorname{PSp}_{2 m}(q)\) or \(T=\Omega_{2 m+1}(q)\) and \(g \in \operatorname{Aut}(T)\), then \(s(\langle T, g\rangle) \geq 2\).
```

Asymptotic Results: We apply a similar probabilistic approach.

Current work: Prove similar results on the spread of the remaining almost simple groups of Lie type.

Question: Are there any finite groups with spread one but not two?

