Schur Multiplier of Central Product of Groups

Sumana Hatui

(Joint work with Manoj K. Yadav and L.R.Vermani)

Harish-Chandra Research Institute (HRI), India

Groups St Andrews 2017

University of Birmingham

Overview

Sumana Hatui (HRI)

2/28

1 Introduction

2 Preliminaries

3 Results

Sumana Hatui (HRI)

• H₂(G, D): the second homology group of a group G with coefficients in D.

- H₂(G, D): the second homology group of a group G with coefficients in D.
- H²(G, D): the second cohomology group of G with coefficients in D. Here D is a divisible abelian group regarded as a trivial G-module.

- H₂(G, D): the second homology group of a group G with coefficients in D.
- H²(G, D): the second cohomology group of G with coefficients in D. Here D is a divisible abelian group regarded as a trivial G-module.
- ◎ $H_2(G, \mathbb{Z}) \cong (H^2(G, \mathbb{C}^{\times}))^*$ is known as Schur multiplier of G.

Definition

Definition (Internal central product)

Let G be group. A group G is called internal central product of its two normal subgroups H and K amalgamating A if G = HK with $A = H \cap K$ and [H, K] = 1.

28

Definition

Definition (Internal central product)

Let G be group. A group G is called internal central product of its two normal subgroups H and K amalgamating A if G = HK with $A = H \cap K$ and [H, K] = 1.

Definition (External central product)

Let H, K be two groups with isomorphic subgroups $A \leq Z(H)$, $B \leq Z(K)$ under an isomorphism $\phi : A \to B$. Consider the normal subgroup $U = \{(a, \phi(a)^{-1}) \mid a \in A\}$. Then the group $G := (H \times K)/U$ is called the external central product of H and K amalgamating A and B via ϕ .

28

• (I. Schur, 1907) $\mathrm{H}^{2}(H \times K, D) \cong \mathrm{H}^{2}(H, D) \times \mathrm{H}^{2}(K, D) \times \mathrm{Hom}(H \otimes K, D).$

- (I. Schur, 1907) $\mathrm{H}^{2}(H \times K, D) \cong \mathrm{H}^{2}(H, D) \times \mathrm{H}^{2}(K, D) \times \mathrm{Hom}(H \otimes K, D).$
- (K.Tahara, 1972)

If G is the semidirect product of a normal subgroup H and a subgroup K, then $\mathrm{H}^2(G,D) \cong \mathrm{H}^2(K,D) \times \widehat{\mathrm{H}^2}(G,D)$, where $\widehat{\mathrm{H}^2}(G,D)$ is the kernel of res: $\mathrm{H}^2(G,D) \to \mathrm{H}^2(K,D)$.

6

- (I. Schur, 1907) $H^{2}(H \times K, D) \cong H^{2}(H, D) \times H^{2}(K, D) \times Hom(H \otimes K, D).$
- 2 (K.Tahara, 1972)

If G is the semidirect product of a normal subgroup H and a subgroup K, then $\mathrm{H}^2(G,D) \cong \mathrm{H}^2(K,D) \times \widehat{\mathrm{H}^2}(G,D)$, where $\widehat{\mathrm{H}^2}(G,D)$ is the kernel of res: $\mathrm{H}^2(G,D) \to \mathrm{H}^2(K,D)$.

Let G be a central product of two groups H and K. We study H²(G, D), in terms of the second cohomology groups of certain quotients of H and K.

Theorem (Wiegold, 1971)

Let H, K be finite groups, let U, V be isomorphic central subgroups of H, K respectively, and let ϕ be an isomorphism from U onto V. Then the multiplicator of the central product G of H and K amalgamating U with V according to ϕ contains a subgroup isomorphic with $H/U \otimes K/V$.

Theorem (Wiegold, 1971)

Let H, K be finite groups, let U, V be isomorphic central subgroups of H, K respectively, and let ϕ be an isomorphism from U onto V. Then the multiplicator of the central product G of H and K amalgamating U with V according to ϕ contains a subgroup isomorphic with $H/U \otimes K/V$.

Theorem (Eckmann, Hilton and Stammbach, 1973)

Let W be central in $A = H \times K$ with quotient G. Let U and V be the images of W under the projection of A onto H and K respectively. Then $H/U \otimes K/V$ is a quotient of $H_2(G, \mathbb{Z})$.

Preliminaries

• Consider the following central exact sequence for an arbitrary group X and its central subgroup N:

 $1 \to N \to X \to X/N \to 1.$

Preliminaries

• Consider the following central exact sequence for an arbitrary group X and its central subgroup N:

$$1 \to N \to X \to X/N \to 1.$$

2 Then we have the exact sequence,

 $0 \to \operatorname{Hom}(N \cap X', D) \stackrel{\operatorname{tra}}{\to} \operatorname{H}^2(X/N, D) \stackrel{\operatorname{inf}}{\to} \operatorname{H}^2(X, D)$ $\xrightarrow{\chi} \operatorname{H}^2(N, D) \oplus \operatorname{Hom}(X \otimes N, D),$

28

- tra : transgression homomorphism
- **2** inf : inflation homomorphism
- **o** res : restriction homomorphism

• $\chi = (\text{res}, \psi)$, defined by Iwahori, Matsumoto, where $\psi(\xi)(\bar{x}, n) = f(x, n) - f(n, x)$ for $\bar{x} = xX' \in X/X'$ and $n \in N$, where $\xi \in H^2(X, D)$ and f is a 2-cocycle representative of ξ .

28

Define a map

 $\theta': \mathrm{H}^2(G,D) \to \mathrm{H}^2(H,D) \oplus \mathrm{H}^2(K,D) \oplus \mathrm{Hom}(H \otimes K,D)$

 $\theta' = (res, res, \nu)$

Define a map

 $\theta': \mathrm{H}^{2}(G, D) \to \mathrm{H}^{2}(H, D) \oplus \mathrm{H}^{2}(K, D) \oplus \mathrm{Hom}(H \otimes K, D)$

 $\theta' = (res, res, \nu)$

ν: H²(G, D) → Hom(H ⊗ K, D) is a homomorphism defined as follows: If ξ ∈ H²(G, D) is represented by a 2-cocycle f, then ν(ξ) is the homomorphism f̄ ∈ Hom(H ⊗ K, D) defined by

$$\bar{f}(\bar{h}\otimes\bar{k})=f(h,k)-f(k,h),$$

where $\bar{h} = hH'$ and $\bar{k} = kK'$.

Define a map

 $\theta': \mathrm{H}^{2}(G, D) \to \mathrm{H}^{2}(H, D) \oplus \mathrm{H}^{2}(K, D) \oplus \mathrm{Hom}(H \otimes K, D)$

 $\theta' = (res, res, \nu)$

ν: H²(G, D) → Hom(H ⊗ K, D) is a homomorphism defined as follows: If ξ ∈ H²(G, D) is represented by a 2-cocycle f, then ν(ξ) is the homomorphism f̄ ∈ Hom(H ⊗ K, D) defined by

$$\bar{f}(\bar{h}\otimes\bar{k})=f(h,k)-f(k,h),$$

where $\bar{h} = hH'$ and $\bar{k} = kK'$.

3 θ' is indeed a homomorphism.

10

• We have the exact sequence

$$(H \otimes A) \oplus (K \otimes A) \xrightarrow{\mu} H \otimes K \xrightarrow{\lambda} H/A \otimes K/A \to 0.$$

which induces the exact sequence

• We have the exact sequence

$$(H \otimes A) \oplus (K \otimes A) \xrightarrow{\mu} H \otimes K \xrightarrow{\lambda} H/A \otimes K/A \to 0.$$

which induces the exact sequence

$$0 \longrightarrow \operatorname{Hom}(H/A \otimes K/A, D) \xrightarrow{\lambda^*} \operatorname{Hom}(H \otimes K, D)$$
$$\downarrow^{\mu^*} \operatorname{Hom}(H \otimes A, D) \oplus \operatorname{Hom}(K \otimes A, D)$$

11 / 28

- $X_1 = \mathrm{H}^2(A, D) \oplus \mathrm{Hom}(H \otimes A, D)$
- $2 X_2 = \mathrm{H}^2(A, D) \oplus \mathrm{Hom}(K \otimes A, D)$
- $X_3 = \operatorname{Hom}(H \otimes A, D) \oplus \operatorname{Hom}(K \otimes A, D)$
- $\textcircled{ } Y = \mathrm{H}^2(A,D) \oplus \mathrm{H}^2(A,D)$

12 / 28

Results

Lemma

$$\operatorname{Ker}(\theta') = \{ \inf(\eta) \mid \eta \in \theta^{-1} \big(\operatorname{Im}(\operatorname{tra}, \operatorname{tra}, 0) \big) \}.$$

Set Z = H' ∩ K', where X' denotes the commutator subgroup of a group X.

Results

Lemma

$$\operatorname{Ker}(\theta') = \{ \inf(\eta) \mid \eta \in \theta^{-1} \big(\operatorname{Im}(\operatorname{tra}, \operatorname{tra}, 0) \big) \}.$$

- Set Z = H' ∩ K', where X' denotes the commutator subgroup of a group X.
- **2** We have an exact sequence

$$0 \to H' \cap K' \xrightarrow{\alpha_1} (A \cap H') \oplus (A \cap K') \xrightarrow{\alpha_2} A \cap G' \to 0,$$

which induces an exact sequence

1

$0 \to \operatorname{Hom}(A \cap G', D) \xrightarrow{\alpha_2^*} \operatorname{Hom}(A \cap H', D) \oplus \operatorname{Hom}(A \cap K', D) \xrightarrow{\alpha_1^*} \operatorname{Hom}(Z, D) \to 0,$

 α_2^* is the homomorphism (res, res).

1

 $0 \to \operatorname{Hom}(A \cap G', D) \xrightarrow{\alpha_2^*} \operatorname{Hom}(A \cap H', D) \oplus \operatorname{Hom}(A \cap K', D) \xrightarrow{\alpha_1^*} \operatorname{Hom}(Z, D) \to 0,$

 α_2^* is the homomorphism (res, res).

2 Define $\chi(f) = \inf \circ \theta^{-1} \circ (\operatorname{tra}, \operatorname{tra}, 0)(g)$ such that $f = \alpha_1^*(g)$.

Theorem

The following sequence is exact:

 $0 \to \operatorname{Hom}(Z,D) \xrightarrow{\chi} \operatorname{H}^2(G,D) \xrightarrow{\theta'} \operatorname{H}^2(H,D) \oplus \operatorname{H}^2(K,D) \oplus \operatorname{Hom}(H \otimes K,D).$

15 / 28

Results

Theorem A

Let B be a subgroup of G such that $B \leq Z$. Then

$$\mathrm{H}^{2}(G, D) \cong \mathrm{H}^{2}(G/B, D)/N,$$

where $N \cong \operatorname{Hom}(B, D)$.

Theorem A

Let B be a subgroup of G such that $B \leq Z$. Then

$$\mathrm{H}^{2}(G, D) \cong \mathrm{H}^{2}(G/B, D)/N,$$

where $N \cong \operatorname{Hom}(B, D)$.

Corollary (Blackburn, Evens, 1979)

Let G be an extra-special p-group of order p^{2n+1} , $n \ge 2$. Then M(G) is an elementary abelian p-group of order p^{2n^2-n-1} .

- $L \cong \operatorname{Hom}\left((A \cap H')/Z, D\right)$
- $M \cong \operatorname{Hom}\left((A \cap K')/Z, D\right)$
- $\ensuremath{\mathfrak{O}}$ Consider $\inf: \mathrm{H}^2(G/A,D) \to \mathrm{H}^2(G/Z,D).$ Then

 $\operatorname{Im}(\inf) \cong \operatorname{H}^{2}(H/A, D)/L \oplus \operatorname{H}^{2}(K/A, D)/M \oplus \operatorname{Hom}(H/A \otimes K/A, D)$

embeds in $\mathrm{H}^2(G/Z, D)$.

18 / 28

• $\mathrm{H}^2(G, D) \cong \mathrm{H}^2(G/Z, D)/N$, where $N \cong \mathrm{Hom}(Z, D)$.

•
$$\mathrm{H}^2(G, D) \cong \mathrm{H}^2(G/Z, D)/N$$
, where $N \cong \mathrm{Hom}(Z, D)$.

Theorem

Hom(Z, D) embeds in $\mathrm{H}^2(H/A, D)/L \oplus \mathrm{H}^2(K/A, D)/M$.

•
$$\mathrm{H}^2(G, D) \cong \mathrm{H}^2(G/Z, D)/N$$
, where $N \cong \mathrm{Hom}(Z, D)$.

Theorem

Hom(Z, D) embeds in $\mathrm{H}^2(H/A, D)/L \oplus \mathrm{H}^2(K/A, D)/M$.

Corollary

Hom(Z, D) embeds in $\mathrm{H}^2(H/Z, D) \oplus \mathrm{H}^2(K/Z, D)$.

Theorem B

Let L, M be defined as above and $N \cong \text{Hom}(Z, D)$. Then the following statements hold true:

(i) $(H^2(H/A, D)/L \oplus H^2(K/A, D)/M)/N \oplus Hom(H/A \otimes K/A, D)$ embeds in $H^2(G, D)$.

(ii) $H^2(G, D)$ embeds in

 $(\mathrm{H}^2(H/Z, D) \oplus \mathrm{H}^2(K/Z, D))/N \oplus \mathrm{Hom}(H \otimes K, D).$

$\ \ \, {\rm O} \ \, {\rm H}^2(G,D)\cong {\rm H}^2(G/Z,D)/N, \, {\rm where} \ \, N\cong {\rm Hom}(Z,D).$

- $H^2(G,D) \cong H^2(G/Z,D)/N$, where $N \cong Hom(Z,D)$.
- Im(inf) ≃ H²(H/A, D)/L ⊕ H²(K/A, D)/M ⊕ Hom(H/A ⊗ K/A, D)
 embeds in H²(G/Z, D).

28

- $H^2(G,D) \cong H^2(G/Z,D)/N$, where $N \cong Hom(Z,D)$.
- Im(inf) \cong H²(H/A, D)/L \oplus H²(K/A, D)/M \oplus Hom(H/A \otimes K/A, D) embeds in H²(G/Z, D).
- ◎ $H^2(G/Z, D)$ embeds in $H^2(H/Z, D)/L \oplus H^2(K/Z, D)/M \oplus Hom(H \otimes K, D).$

28

- Neither of the two embeddings of Theorem B is an isomorphism.
 - Example1: Let H be the extraspecial p-groups of order p^3 and exponent p and $K = \mathbb{Z}_p^{(n+1)}$, where $n \ge 1$. Let G be a central product of H and K amalgamated at $A \cong H' \cong \mathbb{Z}_p$. Note that $G = H \times \mathbb{Z}_p^{(n)}$. It is easy to see that

$$M(G) \cong \mathbb{Z}_p^{\left(\frac{1}{2}n(n+3)+2\right)}.$$

- First embedding in Theorem B can very well be an isomorphism, but the second one can still be strict (i.e., not an isomorphism).
 - Example 2. Consider the group G presented as

$$G = \langle \alpha, \alpha_1, \alpha_2, \gamma \mid [\alpha_1, \alpha] = \gamma^{p^2} = \alpha_2, \alpha^p = \alpha_1^p = \alpha_2^p = 1 \rangle.$$

Example 3. Consider the group G presented as
 G = ⟨α, α₁, α₂, α₃, γ | [α₁, α] = α₂, [α₂, α] = γ^p = α₃, α^p = α_i^(p) = 1, i = 1, 2, 3⟩.

• Both the embeddings in Theorem B can be isomorphisms.

Example 4. Let H be the extraspecial p-groups of order p³ and exponent p² and K ≅ Z_{pⁿ⁺¹}, the cyclic group of order pⁿ⁺¹, where n ≥ 1. Let G be a central product of H and K amalgamated at A ≅ H' ≅ Z_p.

Theorem

If the second embedding in Theorem B is an isomorphism, then so is the first.

Corollary

(i) If A = Z, then

 $\mathrm{H}^{2}(G,D) \cong \left(\mathrm{H}^{2}(H/Z,D) \oplus \mathrm{H}^{2}(K/Z,D)\right) / \mathrm{Hom}(Z,D) \oplus \mathrm{Hom}(H/Z \otimes K/Z,D)$

(ii) If $\inf : H^2(H/A, D) \to H^2(H/Z, D)$ and $\inf : H^2(K/A, D) \to H^2(K/Z, D)$ are epimorphisms, then

 $\mathrm{H}^{2}(G,D) \cong \left(\mathrm{H}^{2}(H/Z,D) \oplus \mathrm{H}^{2}(K/Z,D)\right) / \mathrm{Hom}(Z,D) \oplus \mathrm{Hom}(H/A \otimes K/A,D)$

More precisely, the first embedding in Theorem B is an isomorphism.

References

- Eckmann, B., Hilton, P. J. and Stammbach, U. On the Schur multiplicator of a central quotient of a direct product of groups, J.
 Pure Appl. Algebra 3 (1973), 73-82.
- Wiegold, J., Some groups with non-trivial multiplicators, Math. Z.
 120 (1971), 307-308.
- Iwahori, N. and Matsumoto, H., Several remarks on projective representations of finite groups, J. Fac. Sci. Univ. Tokyo, Sect. I, 10 (1964), 129-146.
- Vermani, L. R., An exact sequence, Bull. London Math Soc., 6 (1974), 349-353.

Thank you for your attention!