Depth of subgroups in finite groups

Erzsébet Horváth

Department of Algebra, Budapest University of Technology and Economics, Hungary

Groups St Andrews 2017 in Birmingham: 10th August 2017

Main question of this talk

We will consider a question by Lars Kadison:

Are there subgroups of even depth > 6?

History

The notion of depth originates from von-Neumann algebras and Hopf algebras. Later introduced for group algebras.

Several depth concepts: combinatorial, ordinary, modular

Recent papers on it: by S. Burciu, L. Kadison, B. Külshammer, R. Boltje, S. Danz, T. Fritzsche and C. Reiche.

Our work with L. Héthelyi and F. Petényi:

In the Suzuki groups Sz(q) and Ree groups R(q) determined the combinatorial and ordinary depth of maximal subgroups. (These papers can be found in my homepage.)

Ordinary depth, inclusion matrix

Possible ways to define ordinary depth: with tensor products, with the inclusion matrix, with distance of characters

Inclusion matrix: G, finite group $H \leq G$

$$\operatorname{Irr}(G) = \{\chi_1, \dots, \chi_k\}$$
$$\operatorname{Irr}(H) = \{\phi_1, \dots, \phi_r\}$$
$$M := (m_{i,j}) \in \mathbb{Z}^{r \times k}, \text{ where } m_{i,j} = (\phi_i^G, \chi_j) = (\phi_i, \chi_{jH}).$$

then M is the inclusion matrix or Frobenius matrix of $H \leq G$.

"Powers" of M, the entries of "powers" of M

Define the "Powers" of *M*:

$$M^{(1)} := M, \ M^{(2)} = MM^T, \ M^{(2i)} := (MM^T)^i \in \mathbb{Z}^{r \times r}, \ M^{(2i+1)} := M^{(2i)}M \in \mathbb{Z}^{r \times k}.$$

The entries of "powers" of M are:

$$M_{i,j}^{(2)} = (\phi_i^G, \phi_j^G) = (\operatorname{Res}_H^G \operatorname{Ind}_H^G \phi_i, \phi_j),$$

$$M_{i,j}^{(2m)} = ((\operatorname{Res}_H^G \operatorname{Ind}_H^G)^m \phi_i, \phi_j) \text{ and}$$

$$M_{i,j}^{(2m+1)} = (\operatorname{Ind}_H^G (\operatorname{Res}_H^G \operatorname{Ind}_H^G)^m \phi_i, \chi_j).$$

We note:

$$\mathcal{M}^{(2)}_{i,j}
eq 0$$
 iff $\exists \chi\in \mathsf{Irr}(G)$ s.t. $(\chi_H,\phi_i)
eq 0$ and $(\chi_H,\phi_j)
eq 0.$

Distance of characters

 $\phi, \psi \in \operatorname{Irr}(H)$ are related $\phi \sim \psi$ if $\exists \chi \in \operatorname{Irr}(G)$ s.t. $(\chi_H, \phi) \neq 0$ and $(\chi_H, \psi) \neq 0$.

We define the distance of irreducible characters of *H*:

1.
$$d(\phi, \phi) := 0$$
,

2.
$$d(\phi, \psi) := 1$$
 if $\phi \neq \psi$ and $\phi \sim \psi$.

3. $d(\phi, \psi) := m$ if there is a chain of irreducible characters: $\phi = \phi_0 \sim \phi_1 \sim \cdots \sim \phi_m = \psi$ and no shorter chain exists.

4. $d(\phi, \psi) := -\infty$ if there is no chain between ϕ and ψ . We note: $M_{i,j}^{(2)} \neq 0$ iff $d(\phi_i, \phi_j) \leq 1$.

$$M_{i,j}^{(2m)} \neq 0$$
 and $M_{i,j}^{(2m-2)} = 0$ iff $d(\phi_i, \phi_j) = m$.

Depth of the inclusion matrix

Let $H \leq G$ and let $M = (m_{i,j})$ be its inclusion matrix.

The depth of M is

$$d(M) := \min\{i \ge 1 | \exists q > 0, M^{(i+1)} \le q M^{(i-1)}\}.$$

$$=\min\{i\geq 1|Z(M^{(i-1)})=Z(M^{(i+1)})\},\$$

where Z denotes the set of zero positions.

Depth of group inclusion

Let $H \leq G$ then the ordinary depth of group inclusion is d(H, G) := d(M), where M is the inclusion matrix of $H \leq G$. We note that:

1.
$$d(H, G) = 1$$
 iff $G = HC_G(x)$ for every $x \in H$.
2. $d(H, G) \le 2$ iff $H \triangleleft G$.

Open problem: Characterize in group theoretical way that d(H, G) = m for m > 2.

Remark: If $\exists x$ such that $H^{x} \cap H = 1$ then d(H, G) = 3.

The converse is not true: e.g. see $G = D_{12}$ and $H = C_2 \times C_2$.

Some results on depth, examples

Burciu, Kadison and Külshammer proved:

The smallest examples of subgroups of even depth > 2 are:

1.
$$d(D_8, S_4) = 4$$

2. $d(C_4 \times C_4, C_2 \times ((C_4 \times C_4) : C_3))) = 6$

(In the second example a non-normal $C_4 \times C_4$ subgroup is taken).

Kadison's and Héthelyi's question

Lars Kadison asked (on his homepage) if there exist group inclusions of even depth > 6 ? Our answer is yes. We have found depth 8 group inclusions.

Still open: Are there examples of depth 10 or bigger even depth? Can even depth be arbitrarily large?

Odd depth can be arbitrarily large since $d(S_n, S_{n+1}) = 2n - 1$.

Laci Héthelyi asked:

Are the depths of maximal subgroups of simple groups always odd?

We observed that in Sz(q) and R(q) this is true: 3 and 5 were the values of depth of maximal subgroups.

Answer to Héthelyi's question

There exist simple groups with maximal subgroups of even depth. Let us consider Alternating groups of degree $n \ge 5$:

- 1. A_5 depths of proper nontrivial subgroups are: 3, 5.
- A₆- depths of proper nontrivial subgroups are: 3, 4, 5.
 depth 4: two conjugacy classes of maximal subgroups, both isomorphic to S₄.
- 3. A_7 depths of nontrivial proper subgroups are: 3, 5, 7.
- 4. A_8 depths of nontrivial proper subgroups are: 3, 5, 6, 7, 9. depth 6: unique up to conjugacy and maximal, $\simeq 2^4$: ($GL(2,2) \times GL(2,2)$). (Parabolic in $GL(4,2) \simeq A_8$).
- 5. A_9 depths of nontrivial proper subgroups are: 3, 5, 6, 11. depth 6: unique up to conjugacy and maximal, $\simeq S_7$.

Depth of subgroups in A_n , $n \ge 10$

- 1. A_{10} depths of maximal subgroups are odd. The depths of nontrivial proper subgroups are: 3, 4, 5, 7, 13. depth 4: unique up to conjugacy, $\simeq C_2 \times S_6$.
- 2. A_{11} depths of proper subgroups are: 3, 5, 7, 13.
- 3. A_{12} the depths of maximal subgroups are: 4, 5, 7, 9, 15. depth 4: unique up to conjugacy, $\simeq S_3 \wr S_4$.
- 4. A_{13} depths of maximal subgroups are: 3, 7, 9, 17.
- 5. A_{14} depths of maximal subgroups are: 3, 7, 11, 19.
- 6. A_{15} depths of maximal subgroups are: 3, 5, 7, 8, 11, 21. depth 8: unique up to conjugacy, $\simeq A_{15} \cap (S_{12} \times S_3)$.
- 7. $A_n, n \in \{16, \ldots, 23\}$ no even depth maximal subgroups.

Note: above subgroups have the same depths in S_n as in A_n .

Looking at groups of the ATLAS one finds that $O_8^-(2)$ also has depth 8 subgroups of structure 2^6 : $U_4(2)$.

Looking at the iterated wreath product $G := ((C_2 \wr C_2) \wr C_2) \wr C_2$ we can also find some subgroups of depth 8, e.g. consider $G \cap (A_8 \times A_8)$ inside this group. Among its 63 maximal subgroups up to conjugacy there are 24 of depth 8 in G.

For the construction of these examples, the GAP system was used.

Thank you for your attention.

Acknowledgement

Supported by NKFI-Grant No.115288 and 115799.