Calculations With Matrix Groups Over Rings And Applications To Arithmetic Groups

Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA <u>www.hulpke.com</u>

Groups St Andrews, Birmingham, August '17

Matrix Group Calculations

Matrix groups over commutative ring (here: \mathbb{Z}), given by (finite number) of generating matrices.

What can we say about such groups?

Over finite fields: matrix group recognition

Uses: Divide-and-conquer approach. Data structure *composition tree*. Reduction to simple groups.

Effective Homomorphisms, recursion to kernel, image.

Matrix Group Calculations

Matrix groups over commutative ring (here: \mathbb{Z}), given by (finite number) of generating matrices.

What can we say about such groups?

Finite Quotients key to computability

Over finite fields: matrix group recognition

Uses: Divide-and-conquer approach. Data structure *composition tree*. Reduction to simple groups.

Effective Homomorphisms, recursion to kernel, image.

Matrix Groups Over $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$

First consider $m=p^2$. $(m=p^a \text{ ditto iterated.})$ \bigcirc GReduction mod p gives hom. φ : $SL_n(\mathbb{Z}_m) \rightarrow SL_n(\mathbb{Z}_p)$.Kernel $\{I+pA | A \in \mathbb{Z}_p^{n \times n}\}$. Note: $det(I+pA)=1+p \cdot Tr(A)$.Multiplication by addition of the A-parts modulo p. kero $(I+pA)(I+pB)=I+p(A+B)+p^2...=I+p(A+B) \mod m$ (Under map $A \mapsto I + pA$, ker ϕ is LIE-adjoint module) Multiple primes: Subdirect product

gap> LoadPackage("matgrp"); # available for GAP 4.8.3 [...] gap> g:=SL(3,Integers mod 1040); SL(3,Z/1040Z) gap> ff:=FittingFreeLiftSetup(g);; gap> Size(g); 849852961151281790976000 gap> Collected(RelativeOrders(ff.pcgs)); [[2, 24], [3, 1]] gap> m:=MaximalSubgroupClassReps(g);;time; 24631 #24 seconds gap> List(m,x->Size(g)/Size(x)); [256, 7, 7, 8, 183, 183, 938119, 1476384, 3752476, 123708, 123708, 123708, 31, 31, 3100, 3875, 4000]

Arithmetic Groups

<u>*Roughly*</u>: Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: *G* linear algebraic group, over number field *K*. An *arithmetic group* is $\Gamma < G$, such that for integers $\mathcal{O} < K$ the intersection $\Gamma \cap G(\mathcal{O})$ has finite index in both intersectants.

<u>Prototype</u>: Subgroups of $SL_n(\mathbb{Z})$, $Sp_{2n}(\mathbb{Z})$ of finite index.

<u>Applications:</u> Number Theory (Automorphic Forms), Topology, Expander Graphs, String theory, ...

Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

Arithmetic Groups

<u>*Roughly*</u>: Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: G linear algebraic group, over number field K. An

arithmetic group is $\Gamma < G$, such that

intersection $\Gamma \cap G(\mathcal{O})$ has finite inde

<u>Prototype</u>: Subgroups of $SL_n(\mathbb{Z})$, Sp

<u>Applications:</u> Number Theory (Aut Topology, Expander Graphs, String

Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

Take subgroup $G < SL_n(\mathbb{Z})$ (or Sp_{2n}) given by finite set of generators. *G* is arithmetic if it has finite index.

Can we determine whether G has finite index?

If G has finite index, can we determine it?

Here: Only SL case. SP similar. Others in work.

Joint work with ALLA DETINKO, DANE FLANNERY (St. Andrews / NUI Galway).

Free subgroups, in general impossible, but Coset Enumeration may succeed in unbounded time.

Can we determine whether G has finite index? ▶ If *G* has finite index, can we determine it? Here: Only SL case. SP similar. Others in work. Joint work with ALLA DETINKO, DANE FLANNERY (St. Andrews / NUI Galway).

Take subgroup $G < SL_n(\mathbb{Z})$ (or Sp_{2n}) given by finite set of generators. *G* is arithmetic if it has finite index.

Can we determine whether G has finite index?

If G has finite index, can we determine it?

Here: Only SL case. SP similar. Others in work.

Joint work with ALLA DETINKO, DANE FLANNERY (St. Andrews / NUI Galway).

Take subgroup $G < SL_n(\mathbb{Z})$ (or Sp_{2n}) given by finite set of generators. *G* is arithmetic if it has finite index.

Can we determine whether G has finite index?

If G has finite index, can we determine it?

Here: Only SL case. SP similar. Others in work.

Joint work with ALLA DETINKO, DANE FLANNERY (St. Andrews / NUI Galway).

Easy Example

LONG,

REID

2011

Let $SL_3(\mathbb{Z}) \ge \beta_T =$

$$\begin{pmatrix} -1+T^{3} - T T^{2} \\ 0 & -1 2T \\ -T & 0 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -T^{2} & 1 & -T \\ T & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & T^{2} \\ 0 & 1 & 0 \end{pmatrix}$$

then [SL₃(ℤ): β₋₂]=3670016.

Easy Example

LONG,

REID

2011

Let $SL_3(\mathbb{Z}) \ge \beta_T =$

$$\begin{pmatrix} -1+T^{3} - T T^{2} \\ 0 & -1 2T \\ -T & 0 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -T^{2} & 1 & -T \\ T & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & T^{2} \\ 0 & 1 & 0 \end{pmatrix}$$

then $[SL_3(\mathbb{Z}): \beta_{-2}] = 3670016$. (Barely) doable.

Easy Example

LONG,

REID

2011

Let $SL_3(\mathbb{Z}) \ge \beta_T =$

$$\begin{pmatrix} -1+T^{3} - T T^{2} \\ 0 & -1 2T \\ -T & 0 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -T^{2} & 1 & -T \\ T & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & T^{2} \\ 0 & 1 & 0 \end{pmatrix}$$

then $[SL_3(\mathbb{Z}): \beta_{-2}] = 3670016$. (Barely) doable.

But $[SL_3(\mathbb{Z}): \beta_7]=24193282798937316960$ =2⁵3⁴5·7¹⁰19 · 347821 ~ 2⁶⁴. Hopeless.

New Approach

- A subgroup of finite index defines a finite permutation quotient.
- Use finite quotients, in particular congruence quotients, to determine the index?

Congruence Subgroups

The *m*-th congruence subgroup $\Gamma_m \leq SL_n(\mathbb{Z})$ is the kernel of the reduction φ_m modulo *m*. Image is $SL_n(\mathbb{Z}_m)$.

If $G \leq SL_n(\mathbb{Z})$ has finite index, there exists integer / such that $\Gamma_1 \leq G$. The smallest such / is called the *level* of G.

Then $[SL_n(\mathbb{Z}):G] = [SL_n(\mathbb{Z}_I) : \varphi_I(G)].$

Calculate this second index from generators of *G* modulo *I*.

Thus sufficient to find level to get index.

Strategy

Consider congruence images $\varphi_m(G) < SL_n(\mathbb{Z}_m)$ for increasing values of *m* to find level *I* of *G*.

Find the primes dividing /

Find the prime powers dividing /

Criterion on whether $I_m = [SL_n(\mathbb{Z}_m) : \varphi_m(G)]$ increases.

Same Index

 $SL_n(\mathbb{Z})$

(mp)

 $C(mp^2)$

Let $G \leq SL_n(\mathbb{Z})$ and $C(m) = \ker \varphi_m$. If for a given *m* and prime *p* we have that $I_m = I_{mp}$ but $I_{mp} \neq I_{mp}^2$, then (modulo mp^2) *G* contains a supplement to C(mp).

We show such supplements typically do not exist, thus a stable index remains stable.

Kernel Supplements

Let *p* be prime, $a \ge 2$, $m = p^a$ and $H = SL(n, \mathbb{Z}_m)$ for $n \ge 2$ (or $H = Sp(2n, \mathbb{Z}_m)$ for $n \ge 1$). Let $C(k) \triangleleft H$ kernel mod *k*.

Theorem: (D-F-H.) $C(p^{a+1})$ has no proper supplement in $C(p^a)$.

- **Theorem:** (Beisiegel 1977, Weigel 1995, ..., D-F-H.)
- Let a=2. C(p) has a supplement in H if and only if
- (a) $H=SL(2,\mathbb{Z}_4)$, $SL(2,\mathbb{Z}_9)$, $SL(3,\mathbb{Z}_4)$, or $SL(4,\mathbb{Z}_4)$.

(b) *H*=Sp(2,ℤ₄), Sp(2,ℤ₉).

<u>Proof</u>: Small cases/counterexample by explicit calculation. Use nice elements to show supplement contains kernel.

Index Algorithm

Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{P} of primes dividing I.

- 1. Set *m*=lcm(4,∏).
- 2. While for any $p \in \mathscr{P}$ we have $[SL_n(\mathbb{Z}_m): \varphi_m(G)] < [SL_n(\mathbb{Z}_{pm}): \varphi_{pm}(G)], \text{ set } m := pm.$
- 3. Repeat until index is stable, level divides *m*. Show also that one can work prime-by-prime.

Index Algorithm

Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{P} of primes dividing I.

- 1. Set *m*=lcm(4,∏).
- 2. While for any $p \in \mathscr{P}$ we have $[SL_n(\mathbb{Z}_m): \varphi_m(G)] < [SL_n(\mathbb{Z}_{pm}): \varphi_{pm}(G)], \text{ set } m := pm.$
- 3. Repeat until index is stable, level divides *m*.Show also that one can worl because we start with 4

Index Algorithm

Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{P} of primes dividing I.

- 1. Set *m*=lcm(4,∏).
- While for any p ∈ P we have
 A group projecting onto PSL_n(p) has only trivial subdirect products with subgroups of PSL_n(q)
 Explanation match is stable, reveal divides m.

Show also that one can work prime-by-prime.

The Set Of Primes

- **Theorem:** Let $n \ge 3$ and suppose *G* has finite index. The set \mathscr{P} of primes dividing the level *I* of *G* consists of those primes *p* for which
- 1. p > 2 and $G \mod p \neq SL_n(p)$, or
- 2. p=2 and $G \mod 4 \neq SL_n(\mathbb{Z}_4)$

<u>Proof</u>: If other primes divided the level, there would be a supplement modulo p^2 (or 8).

The Set Of Primes

Theorem: Let $n \ge 3$ and suppose G has finite The set \mathscr{D} of primes dividing the level density of those primes p for which $2a^{riski}$

- 1. p > 2 and $G \mod p \neq SL_n(p)$, or
- 2. p=2 and $G \mod 4 \neq SL_n(\mathbb{Z}_4)$

Proof: If other primes divided the level, there would be a supplement modulo p^2 (or 8).

MATTHEWS,

VASERSTEIN,

WEISFEILER

1984

Finding Primes

We want primes for which $\varphi_p(G) \neq SL_n(p)$. Methods:

a) Odd *n*, have *transvection* $t \in G$ (i.e. rk (t-1)=1). Let $N = \langle t \rangle$ ^G normal closure. Primes for which

 $\varphi_p(t)$ not transvection or $\varphi_p(N)$ not abs. irr.

- b) Test suitable set (possible b/c Steinberg rep.) of representations to remain abs. irr.
- c) Eliminate possibilities of φ_p(G) to lie in maximal subgroups of Aschbacher classes.
 So far done for small (prime) degrees.

Take \mathbb{Z} -lattice $L \leq \mathbb{Z}^{n \times n}$ spanned by G, rank n^2 Primes divide discriminant of L.

- a) Odd *n*, have *transvection* $t \in G$ (i.e. rk $(t \ 1)=1$). Let $N = \langle t \rangle$ ^G normal closure. Primes for which $\varphi_p(t)$ not transvection or $\varphi_p(N)$ not abs. irr.
- b) Test suitable set (possible b/c Steinberg rep.) of representations to remain abs. irr.
- c) Eliminate possibilities of $\varphi_p(G)$ to lie in maximal subgroups of Aschbacher classes. So far done for small (prime) degrees.

Finding Primes

We want primes for which $\varphi_p(G) \neq SL_n(p)$. Methods:

- a) Odd *n*, have *transvection* $t \in G$ (i.e. rk (t-1)=1). Let $N = \langle t \rangle^{-G}$ normal closure. Primes for which
 - $\varphi_p(t)$ not transvection or $\varphi_p(N)$ not abs. irr.
- b) Test suitable set (possible b/c Steinberg rep.) of representations to remain abs. irr.
- c) Eliminate possibilities of $\varphi_p(G)$ to lie in r subgroups of Aschbacher classes. So far done for small (prime) degrees.

E.g.: find suitable elements $a \in G$, whose image cannot lie in particular class:

- $|a| = \infty$, then $|\varphi_p(a)|$ divides *m* iff $a^m \equiv 1 \pmod{p}$
- $[a^m, b^m] \neq 1$ for $m = \exp(S_n)$, then $\varphi_p(G)$ monomial, iff $\varphi_p([a^m, b^m]) \equiv 1 \pmod{p}$

c) Eliminate possibilities of φ_p(G) to lie in maximal subgroups of Aschbacher classes.
 So far done for small (prime) degrees.

gap> g:=BetaT(7);<matrix group with 3 generators> gap> t:=blbeta(g); # transvection from Long/Reid paper [[-685, 14, -98], [-16807, 344, -2401], [2401, -49, 344]]gap> IsTransvection(t); 17 gap> PrimesForDenseT(g,t,SL);time; [7, 1021] • 60 gap> MaxPCSPrimes(g,[7,1021],SL);time; • Try 7 7 Try 49 7 Try 343 7 Try 343 1021 Try 350203 1021 [350203, 24193282798937316960] #Proven Index in SL 291395 # about 5 minutes

gap> g:=Group([[778,2679,665],[323,797,665], [6674504920, -1557328, 34062304949]],2> > [[-274290687,140904793,1960070592],[853,4560,294], [151,930,209]]);; gap> PrimesNonSurjective(g); # about 2 sec. #I irrelevant prime 7 #I Absolute irreducibility - found: [3, 5, 19] new:[19 #I Monomial - found: [2, 3, 53] new:[53] #I Preserve a form — found: [3, 5] new:[] #I Element Order - found: [2, 3, 5, 19] new:[] #I Solvable - found: [2, 3, 5, 19, 53] new:[] [2, 3, 5, 19, 53] gap> MaxPCSPrimes(g,[2,3,5,19,53]); # about 25 sec. Try 2,4,3,9,5,25,19,19²,53, 53²,30210 w. all primes Index is 5860826241898530299904=[[2,13], [3,4], [13,3], [19,3], [31,1], [53,3], [127,1]] **[** 30210, 5860826241898530299904]

Talk to me for more details!