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Matrix Group Calculations
Matrix groups over commutative ring (here: ℤ), given 
by (finite number) of generating matrices. 

What can we say about such groups? 

Over finite fields: matrix group recognition 

Uses: Divide-and-conquer approach. Data structure 
composition tree. Reduction to simple groups. 

Effective Homomorphisms, recursion to kernel, image.
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Finite Quotients key to computability



First consider m=p2. (m=pa ditto iterated.) 

Reduction mod p gives hom. φ: SLn(ℤm)→SLn(ℤp). 

Kernel {I+pA|A∈ℤpn×n}. Note: det(I+pA)=1+p·Tr(A). 

Multiplication by addition of the A-parts modulo p. 

 (I+pA)(I+pB)=I+p(A+B)+p2…≡I+p(A+B) mod m 

(Under map A↦I+pA, kerφ is LIE-adjoint module) 

Multiple primes: Subdirect product

Matrix Groups Over ℤm=ℤ/mℤ
G
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gap> LoadPackage(“matgrp”); # available for GAP 4.8.3
   […]
gap> g:=SL(3,Integers mod 1040);
SL(3,Z/1040Z)
gap> ff:=FittingFreeLiftSetup(g);;
gap> Size(g);
849852961151281790976000
gap> Collected(RelativeOrders(ff.pcgs));
[ [ 2, 24 ], [ 3, 1 ] ]
gap> m:=MaximalSubgroupClassReps(g);;time;
24631 #24 seconds
gap> List(m,x->Size(g)/Size(x));
[ 256, 7, 7, 8, 183, 183, 938119, 1476384, 3752476,
  123708, 123708, 123708, 31, 31, 3100, 3875, 4000 ]



Arithmetic Groups
Roughly: Discrete subgroup of Lie Group, defined by 
arithmetic properties on matrix entries(e.g. det=1, preserve 
form). 
Definition: G linear algebraic group, over number field K. An 
arithmetic group is Γ<G, such that for integers O< K the 
intersection Γ∩G(O) has finite index in both intersectants. 

Prototype: Subgroups of SLn(ℤ), Sp2n(ℤ) of finite index. 
Applications: Number Theory (Automorphic Forms), 
Topology, Expander Graphs, String theory, ... 
Theoretical algorithms for problems, such as conjugacy, 
known, but infeasible in practice.
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Take subgroup G < SLn(ℤ) (or Sp2n) given by finite 
set of generators. G is arithmetic if it has finite index. 

Can we determine whether G has finite index? 

If G has finite index, can we determine it? 

Here: Only SL case. SP similar. Others in work. 

Joint work with ALLA DETINKO,                        
DANE FLANNERY                                                
(St. Andrews / NUI Galway).
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Free subgroups, in general impossible, but Coset 
Enumeration may succeed in unbounded time.
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Let SL3(ℤ) ≧βT = 

⟨(    ), (   ),(   )⟩, 

then [SL3(ℤ): β-2]=3670016.
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But [SL3(ℤ): β7]=24193282798937316960 
=25345·71019 · 347821 ~ 264.       Hopeless.
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New Approach

A subgroup of finite index defines a finite 
permutation quotient. 

Use finite quotients, in particular congruence 
quotients, to determine the index?



Congruence Subgroups
The m-th congruence subgroup Γm ≤SLn(ℤ) is the 

kernel of the reduction φm modulo m. Image is SLn(ℤm). 

If G ≤ SLn(ℤ) has finite index, there exists integer l such 
that Γl ≤ G. The smallest such l is called the level of G. 

Then [SLn(ℤ):G ]=[SLn(ℤl ) : φl (G )]. 

Calculate this second index from generators                
of G modulo l. 

Thus sufficient to find level to get index.
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1965



Strategy

Consider congruence images φm(G)<SLn(ℤm) for 
increasing values of m to find level l of G. 

 Find the primes dividing l 

 Find the prime powers dividing l 

 Criterion on whether Im=[SLn(ℤm) : φm (G )] 
increases.



SLn(ℤ)

C(m)

C(mp)

⟨1⟩

G

C(mp2)

Same Index

Let G ≤ SLn(ℤ) and C(m)=ker φm.  

If for a given m and prime p we have that  
Im=Imp but Imp≠Imp2, then (modulo mp2) G 
contains a supplement to C(mp). 

We show such supplements typically do 
not exist, thus a stable index remains stable.



Kernel Supplements
Let p be prime, a ≥ 2, m=pa and H=SL(n,ℤm) for n ≥ 2 
(or H=Sp(2n, ℤm

 ) for n ≥ 1). Let C(k)⊲H kernel mod k. 

Theorem: (D-F-H.)C(pa+1) has no proper supplement in 
C(pa ). 
Theorem: (Beisiegel 1977, Weigel 1995, …,D-F-H.) 
Let a=2. C(p) has a supplement in H if and only if 
(a) H=SL(2,ℤ4), SL(2,ℤ9), SL(3,ℤ4), or SL(4,ℤ4).  

(b) H=Sp(2,ℤ4), Sp(2,ℤ9).  

Proof: Small cases/counterexample by explicit calculation. 
Use nice elements to show supplement contains kernel.



Index Algorithm
Assume that G has (unknown) finite index and level 
l. Assume we know the set P of primes dividing l. 

1. Set m=lcm(4,∏ P ). 

2. While for any p ∈ P we have 

[SLn(ℤm):φm(G)]<[SLn(ℤpm):φpm(G)], set m:=pm. 

3. Repeat until index is stable, level divides m. 

Show also that one can work prime-by-prime.



Index Algorithm
Assume that G has (unknown) finite index and level 
l. Assume we know the set P of primes dividing l. 

1. Set m=lcm(4,∏ P ). 

2. While for any p ∈ P we have 

[SLn(ℤm):φm(G)]<[SLn(ℤpm):φpm(G)], set m:=pm. 

3. Repeat until index is stable, level divides m. 

Show also that one can work prime-by-prime.because we start with 4



Index Algorithm
Assume that G has (unknown) finite index and level 
l. Assume we know the set P of primes dividing l. 

1. Set m=lcm(4,∏ P ). 

2. While for any p ∈ P we have 

[SLn(ℤm):φm(G)]<[SLn(ℤpm):φpm(G)], set m:=pm. 

3. Repeat until index is stable, level divides m. 

Show also that one can work prime-by-prime.

A group projecting onto PSLn(p) has 
only trivial subdirect products with 

subgroups of PSLn(q)



The Set Of Primes
Theorem: Let n≥3 and suppose G has finite index. 
The set P of primes dividing the level l of G consists 

of those primes p for which 

1. p>2 and G mod p ≠SLn(p),  or 

2. p=2 and G mod 4 ≠SLn(ℤ4) 

Proof: If other primes divided the level, there would 
be a supplement modulo p2 (or 8).
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of those primes p for which 

1. p>2 and G mod p ≠SLn(p),  or 

2. p=2 and G mod 4 ≠SLn(ℤ4) 

Proof: If other primes divided the level, there would 
be a supplement modulo p2 (or 8).

Zariski - density
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We want primes for which φp(G)≠SLn(p). Methods: 
a) Odd n, have transvection t ∈G (i.e. rk (t−1)=1). 

Let N= t G normal closure. Primes for which 
φp(t) not transvection or φp(N) not abs. irr.  

b) Test suitable set (possible b/c Steinberg rep.) of 
representations to remain abs. irr. 

c) Eliminate possibilities of φp(G) to lie in maximal 
subgroups of Aschbacher classes.                    
So far done for small (prime) degrees.

Finding Primes
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Finding PrimesTake ℤ-lattice L ≤ ℤn×n spanned by G, rank n2 

Primes divide discriminant of L.
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E.g:. find suitable elements a∈G, whose 
image cannot lie in particular class: 

- |a|= ∞, then |φp(a)| divides m iff 
am≡1(mod p) 

- [am,bm]≠1 for m=exp(Sn), then 
φp(G) monomial, iff 
φp([am,bm])≡1(mod p)



gap> g:=BetaT(7);
<matrix group with 3 generators>
gap> t:=b1beta(g); # transvection from Long/Reid paper
[ [-685,14,-98], [-16807,344,-2401], [2401,-49,344] ]
gap> IsTransvection(t);
1
gap> PrimesForDenseT(g,t,SL);time;
[ 7, 1021 ]
60
gap> MaxPCSPrimes(g,[7,1021],SL);time;
Try 7 7
Try 49 7
Try 343 7
Try 343 1021
Try 350203 1021
[350203, 24193282798937316960 ] #Proven Index in SL
291395 # about 5 minutes



gap> g:=Group([[778,2679,665],[323,797,665], 
>      [6674504920,-1557328,34062304949]], 
>  [[-274290687,140904793,1960070592 ],[853,4560,294], 
>      [151,930,209]]);;

gap> PrimesNonSurjective(g);  # about 2 sec.
#I  irrelevant prime 7
#I  Absolute irreducibility – found: [ 3, 5, 19 ] new:[ 19 ]
#I  Monomial – found: [ 2, 3, 53 ] new:[ 53 ]
#I  Preserve a form – found: [ 3, 5 ] new:[  ]
#I  Element Order – found: [ 2, 3, 5, 19 ] new:[  ]
#I  Solvable – found: [ 2, 3, 5, 19, 53 ] new:[  ]
[ 2, 3, 5, 19, 53 ]

gap> MaxPCSPrimes(g,[2,3,5,19,53]); # about 25 sec.
Try 2,4,3,9,5,25,19,19^2,53, 53^2,30210 w. all primes
Index is 5860826241898530299904=[ [ 2,13 ], [ 3,4 ],
 [ 13,3 ], [ 19,3 ], [ 31,1 ], [ 53,3 ], [ 127,1 ] ]
[ 30210, 5860826241898530299904 ]



Talk to me for 
more details!


