The Strong Symmetric Genus of Almost All D-type Generalized Symmetric Groups

Michael A. Jackson

Department of Mathematics - Grove City College majackson@gcc.edu

> Groups St. Andrews University of Birmingham August, 2017

Strong Symmetric Genus Minimal Generating Pairs

Strong Symmetric Genus

Definition

Given a finite group G, the smallest genus of any closed orientable topological surface on which G acts faithfully as a group of orientation preserving symmetries is called the **strong symmetric** genus of G.

Strong Symmetric Genus Minimal Generating Pairs

Strong Symmetric Genus

Definition

Given a finite group G, the smallest genus of any closed orientable topological surface on which G acts faithfully as a group of orientation preserving symmetries is called the **strong symmetric** genus of G.

- The strong symmetric genus of the group G is denoted $\sigma^0(G)$.
- If $\sigma^0(G) > 1$ for a finite group G, then $\sigma^0(G) \ge 1 + \frac{|G|}{84}$.
- We have equality if G is a Hurwitz group.

Strong Symmetric Genus Minimal Generating Pairs

Known results on the strong symmetric genus

- All groups G such that σ⁰(G) ≤ 25 are known. [Broughton, 1991; May and Zimmerman, 2000 and 2005; Fieldsteel, Lindberg, London, Tran and Xu, (Advised by Breuer) 2008]
- For each positive integer n, there is exists a finite group G with σ⁰(G) = n.
 [May and Zimmerman, 2003]

Strong Symmetric Genus Minimal Generating Pairs

Known results on the strong symmetric genus

The strong symmetric genus is known for the following groups:

- *PSL*₂(*q*) [Glover and Sjerve, 1985 and 1987]
- *SL*₂(*q*) [Voon, 1993]
- the sporadic finite simple groups [Conder, Wilson and Woldar, 1992; Wilson, 1993, 1997 and 2001]
- alternating and symmetric groups [Conder, 1980 and 1981]
- the hyperoctahedral groups [J, 2004]
- the remaining finite Coxeter groups [J, 2007]
- the generalized symmetric groups of type G(n,3) [J, 2010]

Strong Symmetric Genus Minimal Generating Pairs

Generators and the Riemann-Hurwitz Equation

If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.

Strong Symmetric Genus Minimal Generating Pairs

Generators and the Riemann-Hurwitz Equation

- If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.
- For ease of comparision we will assume that p ≤ q ≤ r. Note that a (p, q, r) generating pair also yields a (q, p, r) generating pair and the like.

Strong Symmetric Genus Minimal Generating Pairs

Generators and the Riemann-Hurwitz Equation

- If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.
- For ease of comparision we will assume that p ≤ q ≤ r. Note that a (p, q, r) generating pair also yields a (q, p, r) generating pair and the like.
- The existence of a (p, q, r) generating pair gives a faithful orientation preserving action of the group G on a surface S.

- 4 同下 4 戸下 4 戸下

Strong Symmetric Genus Minimal Generating Pairs

Generators and the Riemann-Hurwitz Equation

- The existence of a (p, q, r) generating pair gives a faithful orientation preserving action of the group G on a surface S.
 - This is done by realizing the group G as a quotient of the triangle group

$$\Delta(p,q,r) = \langle x, y | x^p = y^q = (xy)^r = 1 \rangle.$$

Strong Symmetric Genus Minimal Generating Pairs

Generators and the Riemann-Hurwitz Equation

- The existence of a (p, q, r) generating pair gives a faithful orientation preserving action of the group G on a surface S.
 - This is done by realizing the group G as a quotient of the triangle group

$$\Delta(p,q,r) = \langle x, y | x^p = y^q = (xy)^r = 1 \rangle.$$

• The genus of the surface *S* is then found from the Riemann-Hurwitz formula:

genus
$$(S) = 1 + \frac{|G|}{2}(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}).$$

Strong Symmetric Genus Minimal Generating Pairs

Minimal Generating Pairs

- A (p, q, r) generating pair of G is called a minimal generating pair if no generating pair for the group G gives an action on a surface of smaller genus.
- For the groups we will be working with σ⁰(G) ≥ 2 or equivalently any generating pair will be a (p, q, r) generating pair with ¹/_p + ¹/_q + ¹/_r < 1.

Strong Symmetric Genus Minimal Generating Pairs

Minimal Generating Pairs

- A (p, q, r) generating pair of G is called a minimal generating pair if no generating pair for the group G gives an action on a surface of smaller genus.
- For the groups we will be working with σ⁰(G) ≥ 2 or equivalently any generating pair will be a (p, q, r) generating pair with ¹/_p + ¹/_q + ¹/_r < 1.

The Riemann-Hurwitz formula:

genus
$$(S) = 1 + \frac{|G|}{2}(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}).$$

Strong Symmetric Genus Minimal Generating Pairs

A Lemma by Singerman

Lemma (Singerman)

Let G be a finite group such that $\sigma^0(G) > 1$. If $|G| > 12(\sigma^0(G) - 1)$, then G has a (p, q, r) generating pair with

$$\sigma^0(G) = 1 + rac{1}{2} |G| \cdot (1 - rac{1}{p} - rac{1}{q} - rac{1}{r}).$$

AP ► < E ►

Strong Symmetric Genus Minimal Generating Pairs

A Lemma by Singerman

Lemma (Singerman)

Let G be a finite group such that $\sigma^0(G) > 1$. If $|G| > 12(\sigma^0(G) - 1)$, then G has a (p,q,r) generating pair with

$$\sigma^0(G) = 1 + rac{1}{2}|G| \cdot (1 - rac{1}{p} - rac{1}{q} - rac{1}{r}).$$

- Singerman's Lemma implies that if G has a minimal (p, q, r) generating pair such that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge \frac{5}{6}$, then the strong symmetric genus is given by this generating pair.
- Since $\sigma^0(G) > 1$, we know that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$

・ロト ・同ト ・ヨト ・ヨ

Strong Symmetric Genus Minimal Generating Pairs

More on Singerman's Lemma

- Recall: if G has a minimal (p, q, r) generating pair such that $\frac{5}{6} \leq \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$, then the strong symmetric genus is given by this generating pair.
- The triples of numbers (p, q, r) that fit this requirement are:

•
$$(2,3,r)$$
 for any $r \ge 7$.

•
$$(2,4,r)$$
 for $5 \le r \le 11$.

•
$$(3,3,r)$$
 for $r = 4$ or $r = 5$.

Strong Symmetric Genus Minimal Generating Pairs

More on Singerman's Lemma

- Recall: if G has a minimal (p, q, r) generating pair such that $\frac{5}{6} \leq \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$, then the strong symmetric genus is given by this generating pair.
- The triples of numbers (p, q, r) that fit this requirement are:

•
$$(2,3,r)$$
 for any $r \ge 7$.

•
$$(2, 4, r)$$
 for $5 \le r \le 11$.

•
$$(3,3,r)$$
 for $r = 4$ or $r = 5$.

- The groups in this talk have S_n as a subgroup. So at least two numbers in the triple must be of even.
- The triples fitting both requirements are:
 - (2,3,r) for $r \ge 8$ even.
 - (2, 4, r) for $5 \le r \le 11$.

Generalized Symmetric Groups D-type Generalized Symmetric Groups Notation

Generalized Symmetric Groups

•
$$G(n,m) = \mathbb{Z}_m \wr S_n$$
 for $n > 1$ and $m \ge 1$.

(日) (同) (三) (三)

Generalized Symmetric Groups D-type Generalized Symmetric Groups Notation

Generalized Symmetric Groups

- $G(n,m) = \mathbb{Z}_m \wr S_n$ for n > 1 and $m \ge 1$.
- G(n, m) is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size *m*.

・ 同 ト ・ ヨ ト ・ ヨ

Generalized Symmetric Groups D-type Generalized Symmetric Groups Notation

Generalized Symmetric Groups

- $G(n,m) = \mathbb{Z}_m \wr S_n$ for n > 1 and $m \ge 1$.
- G(n, m) is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size *m*.
- G(n, 1) is the symmetric group S_n .
- G(n,2) is the hyperoctahedral group B_n .

Generalized Symmetric Groups D-type Generalized Symmetric Groups Notation

Generalized Symmetric Groups

- $G(n,m) = \mathbb{Z}_m \wr S_n$ for n > 1 and $m \ge 1$.
- G(n,m) is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size *m*.
- G(n, 1) is the symmetric group S_n .
- G(n,2) is the hyperoctahedral group B_n .
- The strong symmetric genus has been found for the groups:
 - G(n,1) [Conder, 1980]
 - G(n,2) and G(n,3) [J, 2004 and 2010]
 - G(3, m), G(4, m) and G(5, m) [Ginter, Johnson, McNamara, 2008]

- 4 同 6 4 日 6 4 日 6

Generalized Symmetric Groups *D*-type Generalized Symmetric Groups Notation

D-type Generalized Symmetric Groups

•
$$D(n,m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$$
 for $n > 2$ and $m \ge 1$.

- 4 同 2 4 日 2 4 日 2

Generalized Symmetric Groups *D*-type Generalized Symmetric Groups Notation

D-type Generalized Symmetric Groups

- $D(n,m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for n > 2 and $m \ge 1$.
- D(n, m) is an index m subgroup of G(n, m).

/₽ ▶ ∢ ∃ ▶ ∢ ∃

Generalized Symmetric Groups *D*-type Generalized Symmetric Groups Notation

D-type Generalized Symmetric Groups

- $D(n,m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for n > 2 and $m \ge 1$.
- D(n, m) is an index m subgroup of G(n, m).
- D(n, m) is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size *m* each having determinant 1.

・ 同 ト ・ 三 ト ・ 三 三

Generalized Symmetric Groups *D*-type Generalized Symmetric Groups Notation

D-type Generalized Symmetric Groups

- $D(n,m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for n > 2 and $m \ge 1$.
- D(n, m) is an index m subgroup of G(n, m).
- D(n,m) is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size *m* each having determinant 1.
- The strong symmetric genus has been found for the groups D(n, 2) which are the finite Coxeter groups of type D [J, 2007]
- We will be looking at the groups D(n, m) for m > 2.

・ロト ・同ト ・ヨト ・ヨト

Generalized Symmetric Groups D-type Generalized Symmetric Groups Notation

Notation for elements of D(n, m)

- Recall that the group $D(n,m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$.
- An element of D(n,m) will be denoted by $[\sigma,a]$ where
 - σ is an element of S_n , and
 - a is an element of $(\mathbb{Z}_m)^{n-1}$, which we will think of as a list of *n* integers modulo *m* such that the sum of the list is congruent to 0 modulo *m*.
- Notice that multiplication in the group is given by

$$[\sigma, a] \cdot [\tau, b] = [\sigma \cdot \tau, \tau^{-1}(a) + b]$$

where τ^{-1} is acting on the list a and the addition is term by term modulo m.

・ロト ・ 同ト ・ ヨト ・ ヨト

New generators from old Creating generators Other Generators

New generators from old

Suppose that S_n is generated by two elements σ and τ such that

- The number m > 2 divides the order of σ , and
- $\bullet~\sigma$ has two fixed points.
- If m and n are even then σ must have a third fixed point.

- 4 同 🖌 4 目 🖌 4 目

New generators from old Creating generators Other Generators

New generators from old

Suppose that S_n is generated by two elements σ and τ such that

- The number m > 2 divides the order of σ , and
- σ has two fixed points.
- If m and n are even then σ must have a third fixed point.

Then $[\sigma, a]$ and $[\tau, b]$ generate D(n, m) where

- b is a list of zeros,
- a is a list where one fixed point of σ has a 1 and the other fixed point has a -1,
- the rest of *a* is filled in so that the elements permuted by each cycle of σ add to zero modulo *m* and the elements permuted by each cycle of $\tau \cdot \sigma$ add to zero modulo *m*.

<ロト <同ト < ヨト < ヨト

New generators from old Creating generators Other Generators

3 *m*, part I

Suppose that S_n is generated by two elements σ and τ such that

- $3|m, 9 \not| m$, and the number $s = \frac{m}{3}$ divides the order of σ ,
- τ has order 3, and
- both σ and τ have two fixed points.
- If m and n are even then σ must have a third fixed point.

- 4 同 🖌 4 目 🖌 4 目

New generators from old Creating generators Other Generators

3 m, part II

Then $[\sigma, a]$ and $[\tau, b]$ generate D(n, m) where

- a is a list where one fixed point of σ has a 3 and the other fixed point has a -3,
- b is a list where one fixed point of τ has an s and the other has a number -s, and
- the rest of *a* and *b* are filled in so that each of the following add to 0 modulo *m*:
 - $\bullet\,$ the elements of a permuted by each cycle of $\sigma\,$
 - the elements of b permuted by each cycle of au, and
 - the elements of $\sigma^{-1}(b) + a$ permuted by each cycle of $\tau \cdot \sigma$ add to zero modulo *m*.

<ロト <同ト < ヨト < ヨト

New generators from old Creating generators Other Generators

Orders

- Given the σ and τ that generate S_n and satisfy the conditions from either of the past two slides
- the new elements that we created $[\sigma, a]$ and $[\tau, b]$ generate D(n, m).
- In addition the orders of $[\sigma, a]$, $[\tau, b]$ and

$$[\tau, b] \cdot [\tau, b] = [\tau \cdot \sigma, \sigma^{-1}(b) + a]$$

are the same as σ , τ and $\tau \cdot \sigma$, respectively.

- 4 同 🖌 4 目 🖌 4 目

Generalized Symmetric and D-type groups Process Results Other G

New generators from old Creating generators Other Generators

Function

Given an integer m > 2 define r(m) using the following criteria:

- If m = 3, 4, or 6, then r(m) = 8
- If m = 12, then r(m) = 12.
- If 3|m but $9 \not| m$ then let $r(m) = \frac{m}{3}$ for m even and $r(m) = \frac{2m}{3}$ for m odd.
- Otherwise let r(m) = m for m even and r(m) = 2m for m odd.

New generators from old Creating generators Other Generators

Function

Given an integer m > 2 define r(m) using the following criteria:

- If m = 3, 4, or 6, then r(m) = 8
- If m = 12, then r(m) = 12.
- If 3|m but $9 \not| m$ then let $r(m) = \frac{m}{3}$ for m even and $r(m) = \frac{2m}{3}$ for m odd.
- Otherwise let r(m) = m for m even and r(m) = 2m for m odd.

Notice that

- for all m, m|3r(m),
- if 3 $\not|m$ or 9 $\mid m$, then $m \mid r(m)$, and
- r(m) is always even.

□ > < = > <

New generators from old Creating generators Other Generators

Conder's Generators

We use Conder's Papers "More on generators for alternating and symmetric groups" Quart. J. Math. Oxford (2), 32 (1981) 137-163.

Using the coset diagrams from the paper, we see that given m>2 there are generators σ and τ for all but finitely many symmetric groups S_n such that

- σ has order r(m),
- au has order 3,
- $\bullet~\sigma$ has three fixed points, and τ has two fixed points.

naa

New generators from old Creating generators Other Generators

Conder's Generators

We use Conder's Papers "More on generators for alternating and symmetric groups" Quart. J. Math. Oxford (2), 32 (1981) 137-163.

Using the coset diagrams from the paper, we see that given m>2 there are generators σ and τ for all but finitely many symmetric groups S_n such that

- σ has order r(m),
- au has order 3,
- σ has three fixed points, and τ has two fixed points.

For a fixed m, this allows for the creation of a (2, 3, r(m)) generating pair for all but finitely many D(n, m). We are left to show that these generators are a minimal generating pair.

・ロト ・同ト ・ヨト ・ヨト

New generators from old Creating generators Other Generators

Other Generators

 To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better (p, q, r) triple.

| 4 同 1 4 回 1 4 回 1

New generators from old Creating generators Other Generators

Other Generators

- To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better (p, q, r) triple.
- If any prime power pⁱ which divides m does not divide q or r, then D(n, m) cannot have a (2, q, r) generating pair.

A (1) > A (2) > A

New generators from old Creating generators Other Generators

Other Generators

- To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better (p, q, r) triple.
- If any prime power pⁱ which divides m does not divide q or r, then D(n, m) cannot have a (2, q, r) generating pair.
- The best (hyperbolic) triple not of the form (2, q, r) where two of the three numbers are even is (3, 4, 4).
- Notice that

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{r(m)} > \frac{5}{6} = \frac{1}{3} + \frac{1}{4} + \frac{1}{4}$$

New generators from old Creating generators Other Generators

Exceptions

• The triples left that could be better are (2, q, r) with m|qr and (q, r) = 1.

<ロト <同ト < ヨト < ヨト

DQC

New generators from old Creating generators Other Generators

Exceptions

- The triples left that could be better are (2, q, r) with m|qr and (q, r) = 1.
- If $q \le r$ and $\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1$, the triples to consider are (2, 4, r) for $r \ge 5$.

- 4 同 2 4 日 2 4 日 2

New generators from old Creating generators Other Generators

Exceptions

- The triples left that could be better are (2, q, r) with m|qr and (q, r) = 1.
- If $q \le r$ and $\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1$, the triples to consider are (2, 4, r) for $r \ge 5$.
- Checking sums of reciprocals leaves two cases,
 - m = 20 and the triple (2, 4, 5), and
 - *m* = 28 and the triple (2, 4, 7).

・ 同 ト ・ ヨ ト ・ ヨ

New generators from old Creating generators Other Generators

Exceptions

- The triples left that could be better are (2, q, r) with m|qr and (q, r) = 1.
- If $q \le r$ and $\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1$, the triples to consider are (2, 4, r) for $r \ge 5$.
- Checking sums of reciprocals leaves two cases,
 - m = 20 and the triple (2, 4, 5), and
 - *m* = 28 and the triple (2, 4, 7).
- It turns out that in these two cases the (2, 4, r) triple has a generating pair for all but finitely many cases.

・ロト ・ 同ト ・ ヨト ・ ヨ

New generators from old Creating generators Other Generators

Exceptions - Solved

• We used Brett Everitt's paper "Permutation Representations of the (2, 4, *r*) triangle groups.

- 4 同 🕨 - 4 国 🕨 - 4 国

New generators from old Creating generators Other Generators

Exceptions - Solved

- We used Brett Everitt's paper "Permutation Representations of the (2, 4, *r*) triangle groups.
- This paper does not consider the case (2, 4, 5) since that work had been done earlier by Graham Higman.

▲ □ ▶ ▲ □ ▶ ▲ □

New generators from old Creating generators Other Generators

Exceptions - Solved

- We used Brett Everitt's paper "Permutation Representations of the (2, 4, *r*) triangle groups.
- This paper does not consider the case (2,4,5) since that work had been done earlier by Graham Higman.
- With a slight modification to the coset diagrams in this paper and a similar process to what we did in the (2, 3, r(m)) case, we create a (2, 4, 7)-generating pair for all but finitely many of the D(n, 28) groups.

New generators from old Creating generators Other Generators

Exceptions - Solved

- This leaves just the case where m = 20.
- The coset diagrams for the (2, 4, 5)-generating pairs for all but finitely many of the groups S_n was unpublished work.

A (1) > A (2) > A

New generators from old Creating generators Other Generators

Exceptions - Solved

- This leaves just the case where m = 20.
- The coset diagrams for the (2, 4, 5)-generating pairs for all but finitely many of the groups S_n was unpublished work.
- Therefore we created our own collection of coset diagrams which give appropriate generators for all but finitely many S_n .
- As in earlier cases this (2,4,5)-generating pair of S_n can be modified to be a (2,4,5)-generating pair of D(n,20)

Generating Pairs Strong Symmetric Genus

Theorem

Theorem

Given a fixed m > 2, where m is neither 20 or 28, for all but finitely many positive integers n, the D-type generalized symmetric group D(n, m) has a (2, 3, r(m))-minimal generating pair. In addition all but finitely many of the groups D(n, 20) have a (2, 4, 5)-minimal generating pair and all but finitely many of the groups D(n, 28) have a (2, 4, 7)-minimal generating pair.

Generating Pairs Strong Symmetric Genus

Theorem

Theorem

Given a fixed m > 2, where m is neither 20 or 28, for all but finitely many positive integers n

$$\sigma^{0}(D(n,m)) = \frac{n!m^{n-1}(r(m)-6)}{12r(m)} + 1.$$

In addition for all but finitely many positive integers n

$$\sigma^{0}(D(n,20)) = \frac{n!m^{n-1}}{40} + 1 \text{ and } \sigma^{0}(D(n,28)) = \frac{3n!m^{n-1}}{56} + 1.$$