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Strong Symmetric Genus

Definition

Given a finite group G , the smallest genus of any closed orientable
topological surface on which G acts faithfully as a group of
orientation preserving symmetries is called the strong symmetric
genus of G .

The strong symmetric genus of the group G is denoted σ0(G ).

If σ0(G ) > 1 for a finite group G , then σ0(G ) ≥ 1 + |G |
84 .

We have equality if G is a Hurwitz group.

M. Jackson Strong Symmetric Genus of D-type Groups



Introduction
Generalized Symmetric and D-type groups

Process
Results

Strong Symmetric Genus
Minimal Generating Pairs

Strong Symmetric Genus

Definition

Given a finite group G , the smallest genus of any closed orientable
topological surface on which G acts faithfully as a group of
orientation preserving symmetries is called the strong symmetric
genus of G .

The strong symmetric genus of the group G is denoted σ0(G ).

If σ0(G ) > 1 for a finite group G , then σ0(G ) ≥ 1 + |G |
84 .

We have equality if G is a Hurwitz group.

M. Jackson Strong Symmetric Genus of D-type Groups



Introduction
Generalized Symmetric and D-type groups

Process
Results

Strong Symmetric Genus
Minimal Generating Pairs

Known results on the strong symmetric genus

All groups G such that σ0(G ) ≤ 25 are known.
[Broughton, 1991; May and Zimmerman, 2000 and 2005;
Fieldsteel, Lindberg, London, Tran and Xu, (Advised by
Breuer) 2008]

For each positive integer n, there is exists a finite group G
with σ0(G ) = n.
[May and Zimmerman, 2003]
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Known results on the strong symmetric genus

The strong symmetric genus is known for the following groups:

PSL2(q) [Glover and Sjerve, 1985 and 1987]

SL2(q) [Voon, 1993]

the sporadic finite simple groups
[Conder, Wilson and Woldar, 1992; Wilson, 1993, 1997 and
2001]

alternating and symmetric groups [Conder, 1980 and 1981]

the hyperoctahedral groups [J, 2004]

the remaining finite Coxeter groups [J, 2007]

the generalized symmetric groups of type G (n, 3) [J, 2010]
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Generators and the Riemann-Hurwitz Equation

If a finite group G has generators x and y of orders p and q
respectively with xy having the order r ,
then we say that (x , y) is a (p, q, r) generating pair of G .

For ease of comparision we will assume that p ≤ q ≤ r .
Note that a (p, q, r) generating pair also yields a (q, p, r)
generating pair and the like.

The existence of a (p, q, r) generating pair gives a faithful
orientation preserving action of the group G on a surface S .
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Generators and the Riemann-Hurwitz Equation

The existence of a (p, q, r) generating pair gives a faithful
orientation preserving action of the group G on a surface S .

This is done by realizing the group G as a quotient of the
triangle group

∆(p, q, r) = 〈x , y |xp = yq = (xy)r = 1〉.

The genus of the surface S is then found from the
Riemann-Hurwitz formula:

genus(S) = 1 +
|G |
2

(1− 1

p
− 1

q
− 1

r
).
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Minimal Generating Pairs

A (p, q, r) generating pair of G is called a minimal generating
pair if no generating pair for the group G gives an action on a
surface of smaller genus.

For the groups we will be working with σ0(G ) ≥ 2 or
equivalently any generating pair will be a (p, q, r) generating
pair with 1

p + 1
q + 1

r < 1.

The Riemann-Hurwitz formula:

genus(S) = 1 +
|G |
2

(1− 1

p
− 1

q
− 1

r
).
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A Lemma by Singerman

Lemma (Singerman)

Let G be a finite group such that σ0(G ) > 1. If
|G | > 12(σ0(G )− 1), then G has a (p, q, r) generating pair with

σ0(G ) = 1 +
1

2
|G | · (1− 1

p
− 1

q
− 1

r
).

Singerman’s Lemma implies that if G has a minimal (p, q, r)
generating pair such that 1

p + 1
q + 1

r ≥
5
6 , then the strong

symmetric genus is given by this generating pair.

Since σ0(G ) > 1, we know that 1
p + 1

q + 1
r < 1
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More on Singerman’s Lemma

Recall: if G has a minimal (p, q, r) generating pair such that
5
6 ≤

1
p + 1

q + 1
r < 1, then the strong symmetric genus is given

by this generating pair.

The triples of numbers (p, q, r) that fit this requirement are:

(2, 3, r) for any r ≥ 7.
(2, 4, r) for 5 ≤ r ≤ 11.
(3, 3, r) for r = 4 or r = 5.

The groups in this talk have Sn as a subgroup. So at least two
numbers in the triple must be of even.

The triples fitting both requirements are:

(2, 3, r) for r ≥ 8 even.
(2, 4, r) for 5 ≤ r ≤ 11.
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Generalized Symmetric Groups

G (n,m) = Zm o Sn for n > 1 and m ≥ 1.

G (n,m) is the smallest group of n × n matrices containing

the permutation matrices and
the diagonal matrices with entries in a multiplicative cyclic
group of size m.

G (n, 1) is the symmetric group Sn.

G (n, 2) is the hyperoctahedral group Bn.

The strong symmetric genus has been found for the groups:

G (n, 1) [Conder, 1980]
G (n, 2) and G (n, 3) [J, 2004 and 2010]
G (3,m), G (4,m) and G (5,m) [Ginter, Johnson, McNamara,
2008]
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D-type Generalized Symmetric Groups

D(n,m) = (Zm)n−1 o Sn for n > 2 and m ≥ 1.

D(n,m) is an index m subgroup of G (n,m).

D(n,m) is the smallest group of n × n matrices containing

the permutation matrices and
the diagonal matrices with entries in a multiplicative cyclic
group of size m each having determinant 1.

The strong symmetric genus has been found for the groups
D(n, 2) which are the finite Coxeter groups of type D [J, 2007]

We will be looking at the groups D(n,m) for m > 2.
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Notation for elements of D(n,m)

Recall that the group D(n,m) = (Zm)n−1 o Sn.

An element of D(n,m) will be denoted by [σ, a] where

σ is an element of Sn, and
a is an element of (Zm)n−1, which we will think of as a list of
n integers modulo m such that the sum of the list is congruent
to 0 modulo m.

Notice that multiplication in the group is given by

[σ, a] · [τ, b] = [σ · τ, τ−1(a) + b]

where τ−1 is acting on the list a and the addition is term by
term modulo m.
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New generators from old

Suppose that Sn is generated by two elements σ and τ such that

The number m > 2 divides the order of σ, and

σ has two fixed points.

If m and n are even then σ must have a third fixed point.

Then [σ, a] and [τ, b] generate D(n,m) where

b is a list of zeros,

a is a list where one fixed point of σ has a 1 and the other
fixed point has a -1,

the rest of a is filled in so that the elements permuted by each
cycle of σ add to zero modulo m and the elements permuted
by each cycle of τ · σ add to zero modulo m.
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3|m, part I

Suppose that Sn is generated by two elements σ and τ such that

3|m, 9 6 |m, and the number s = m
3 divides the order of σ,

τ has order 3, and

both σ and τ have two fixed points.

If m and n are even then σ must have a third fixed point.
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3|m, part II

Then [σ, a] and [τ, b] generate D(n,m) where

a is a list where one fixed point of σ has a 3 and the other
fixed point has a -3,

b is a list where one fixed point of τ has an s and the other
has a number −s, and

the rest of a and b are filled in so that each of the following
add to 0 modulo m:

the elements of a permuted by each cycle of σ
the elements of b permuted by each cycle of τ , and
the elements of σ−1(b) + a permuted by each cycle of τ · σ
add to zero modulo m.
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Orders

Given the σ and τ that generate Sn and satisfy the conditions
from either of the past two slides

the new elements that we created [σ, a] and [τ, b] generate
D(n,m).

In addition the orders of [σ, a],[τ, b] and

[τ, b] · [τ, b] = [τ · σ, σ−1(b) + a]

are the same as σ, τ and τ · σ, respectively.
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Function

Given an integer m > 2 define r(m) using the following criteria:

If m = 3, 4, or 6, then r(m) = 8

If m = 12, then r(m) = 12.

If 3|m but 9 6 |m then
let r(m) = m

3 for m even and r(m) = 2m
3 for m odd.

Otherwise let r(m) = m for m even and r(m) = 2m for m
odd.

Notice that

for all m, m|3r(m),

if 3 6 |m or 9|m, then m|r(m), and

r(m) is always even.
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Conder’s Generators

We use Conder’s Papers “More on generators for alternating and
symmetric groups” Quart. J. Math. Oxford (2), 32 (1981)
137-163.
Using the coset diagrams from the paper, we see that given m > 2
there are generators σ and τ for all but finitely many symmetric
groups Sn such that

σ has order r(m),

τ has order 3,

σ has three fixed points, and τ has two fixed points.

For a fixed m, this allows for the creation of a (2, 3, r(m))
generating pair for all but finitely many D(n,m).
We are left to show that these generators are a minimal generating
pair.
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Other Generators

To claim that our generators are a minimal generating pair,
we need to show that there cannot be a generating pair with a
better (p, q, r) triple.

If any prime power pi which divides m does not divide q or r ,
then D(n,m) cannot have a (2, q, r) generating pair.

The best (hyperbolic) triple not of the form (2, q, r) where
two of the three numbers are even is (3, 4, 4).

Notice that

1

2
+

1

3
+

1

r(m)
>

5

6
=

1

3
+

1

4
+

1

4
.
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Exceptions

The triples left that could be better are (2, q, r)
with m|qr and (q, r) = 1.

If q ≤ r and 1
2 + 1

q + 1
r < 1, the triples to consider are (2, 4, r)

for r ≥ 5.

Checking sums of reciprocals leaves two cases,

m = 20 and the triple (2, 4, 5), and
m = 28 and the triple (2, 4, 7).

It turns out that in these two cases the (2, 4, r) triple has a
generating pair for all but finitely many cases.
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It turns out that in these two cases the (2, 4, r) triple has a
generating pair for all but finitely many cases.
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Generalized Symmetric and D-type groups

Process
Results

New generators from old
Creating generators
Other Generators

Exceptions - Solved

We used Brett Everitt’s paper ”Permutation Representations
of the (2, 4, r) triangle groups.

This paper does not consider the case (2, 4, 5) since that work
had been done earlier by Graham Higman.

With a slight modification to the coset diagrams in this paper
and a similar process to what we did in the (2, 3, r(m)) case,
we create a (2, 4, 7)-generating pair for all but finitely many of
the D(n, 28) groups.
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Exceptions - Solved

This leaves just the case where m = 20.

The coset diagrams for the (2, 4, 5)-generating pairs for all but
finitely many of the groups Sn was unpublished work.

Therefore we created our own collection of coset diagrams
which give appropriate generators for all but finitely many Sn.

As in earlier cases this (2, 4, 5)-generating pair of Sn can be
modified to be a (2, 4, 5)-generating pair of D(n, 20)
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Theorem

Theorem

Given a fixed m > 2, where m is neither 20 or 28, for all but
finitely many positive integers n, the D-type generalized symmetric
group D(n,m) has a (2, 3, r(m))-minimal generating pair.
In addition all but finitely many of the groups D(n, 20) have a
(2, 4, 5)-minimal generating pair and all but finitely many of the
groups D(n, 28) have a (2, 4, 7)-minimal generating pair.
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Theorem

Theorem

Given a fixed m > 2, where m is neither 20 or 28, for all but
finitely many positive integers n

σ0(D(n,m)) =
n!mn−1(r(m)− 6)

12r(m)
+ 1.

In addition for all but finitely many positive integers n

σ0(D(n, 20)) =
n!mn−1

40
+ 1 and σ0(D(n, 28)) =

3n!mn−1

56
+ 1.
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