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The initial setting

G is a finitely generated group.
G > Gy > Gy > ... is a chain of normal subgroups of finite index
with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), A € Mat,xm(K[G])

ohc: KIG/GI" —  K[G/GI
(Vi,o.oyvn) = (vi,...,vp)A.

dimyc Im ¢ . dimyc ker ¢ ¢

tke/6(A) = —Teer - =" TTeer
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The initial setting

G is a finitely generated group.
G > Gy > Gy > ... is a chain of normal subgroups of finite index
with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), A € Mat,xm(K[G])

086 KIG/GI" —  K[G/G]"

(Vi,o.oyvn) = (vi,...,vp)A.

dimg Im ¢7 dimg ker ¢A
- /G G/G;
tk/6(A) = —Teer - ="— —Tear

{rkg/g,} is a collection of Sylvester matrix rank functions on K[G].
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Sylvester rank function on a K-algebra

Let R be a K-algebra. A rk on R is
a map rk : Mat(R) — R satisfying the following conditions
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Sylvester rank function on a K-algebra

Let R be a K-algebra. A rk on R is
a map rk : Mat(R) — R satisfying the following conditions

(SRF1) rk(M) = 0 if M is any zero matrix and rk(1g) = 1;

(SRF2) k(M1 My) < min{rk(M),rk(M>)} if My and M5 can
be multiplied;
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Sylvester rank function on a K-algebra

Let R be a K-algebra. A rk on R is
a map rk : Mat(R) — R satisfying the following conditions

(SRF1) rk(M) = 0 if M is any zero matrix and rk(1g) = 1;
(SRF2) k(M1 My) < min{rk(M),rk(M>)} if My and M5 can
be multiplied;

M 0

(SRF3) rk < 0 M

> = rk(M1) + rk(M,);
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Sylvester rank function on a K-algebra

Let R be a K-algebra. A rk on R is
a map rk : Mat(R) — R satisfying the following conditions

(SRF1) rk(M) = 0 if M is any zero matrix and rk(1g) = 1;
(SRF2) k(M1 My) < min{rk(M),rk(M>)} if My and M5 can

be multiplied;
(SRF3) rk < ,\gl ,\9,2 > = rk(My) + rk(M»);
(SRF4) rk ( /\gl xz ) > rk(Ml) —|—1“k(M2) if My, M> and

Mjs are of appropriate sizes.
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Sylvester rank function on a K-algebra

Let R be a K-algebra. A rk on R is
a map rk : Mat(R) — R satisfying the following conditions

(SRF1) rk(M) = 0 if M is any zero matrix and rk(1g) = 1;
(SRF2) k(M1 My) < min{rk(M),rk(M>)} if My and M5 can

be multiplied;
(SRF3) rk < ,\gl ,\9,2 > = rk(My) + rk(M»);
(SRF4) rk ( /\gl xz ) > rk(Ml) —|—1“k(M2) if My, M> and

Mjs are of appropriate sizes.

The space P(R) of Sylvester rank functions on R is a compact
convex subset of RMat(R)
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The main questions

Main questiones

O Is there the limit lim;,o rkg /g, (A)?
@ If the limit exists, how does it depend on the chain {G;}?

© What is the range of possible values for lim;_, rkg /g, (A) for
a given group G?

Q Yes, the limit exists.
@ It does not depend on the chain {G;}.

© Assume that there exists an upper bound for the orders of
finite subgroups of G. Let

lem(G) =lem{|H| : H is a finite subgroup of G}.

Then lim; o kg /6, (A) € ﬁz'
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Motivation: Kaplansky's zero-divisor conjecture

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not
contain nontrivial zero divisors, that is, it is a domain.
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Motivation: Kaplansky's zero-divisor conjecture

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not
contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (Icm(G) = 1),
then lim rk¢ /g, (A) € Z.
1— 00
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Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not
contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (Icm(G) = 1),
then lim rk¢ /g, (A) € Z.
1— 00

rk = lim rkg,q, € P(K[G]) is faithful (tk(A) = 0 iff A= 0)
1—00
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Motivation: Kaplansky's zero-divisor conjecture

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not
contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (Icm(G) = 1),
then lim rk¢ /g, (A) € Z.
1— 00

tk = lim rkg,6 € P(K[G]) is faithful (rk(A) = 0 iff A =0)
1—00
P. Cohn: Assume that a K-algebra R has a faithful Sylvester

matrix rank function taking only integer values. Then R can be
embedded in a skew field.
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Motivation: Kaplansky's zero-divisor conjecture

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not
contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (Icm(G) = 1),
then lim rk¢ /g, (A) € Z.
1— 00

tk = lim rkg,6 € P(K[G]) is faithful (rk(A) = 0 iff A =0)
1—00

P. Cohn: Assume that a K-algebra R has a faithful Sylvester

matrix rank function taking only integer values. Then R can be

embedded in a skew field.

Thus, Conjectures 1 and 3 imply Kaplansky's zero-divisor
conjecture for K[G]
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Motivation: the growth of the Betti numbers in a chain of

coverings

Let C be a CW-complex of dimension n and C; (0 < i < n) its
i-dimensional cells.
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ZCora] ozl B z[Cpa] ... —Z—0
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Motivation: the growth of the Betti numbers in a chain of

coverings

Let C be a CW-complex of dimension n and C; (0 < i < n) its
i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and
G\C has only a finite number of cells.

Goal: we want to analyze lim dimk Hp(Gi\C, K)
i—00 |G . G,|

We use the cellular chain complex
d,
ZCora] ozl B z[Cpa] ... —Z—0

ziG)e B giGle Y z[Glw .. s Z 0

 dimkHy(G\C, K .
lim K P( \ ) =np— lim (I'k(;/Gi(Ap)+rkG/Gi(AP+1))'

i—00 G:G; i—00
i
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Motivation: the congruence kernel of arithmetic subgroups

in SLy(C)

Let I' be an arithmetic subgroup of SLy(C) (e.g. I = SL2(Z[i])).
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Let I' be an arithmetic subgroup of SLy(C) (e.g. I = SL2(Z[i])).
A congruence subgroup of I is a subgroup containing
Mn)={gel: g=Id (mod n)}.

1—>ICr—>F—>FCg\ngr—>1.
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in SLy(C)

Let I' be an arithmetic subgroup of SLy(C) (e.g. I = SL2(Z[i])).
A congruence subgroup of I is a subgroup containing
Mn)={gel: g=Id (mod n)}.

1 Kr—T - leongr — 1.

I does not satisfy weak congruence property
Cd(lCr) < 2
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Motivation: the congruence kernel of arithmetic subgroups

in SLy(C)

Let I' be an arithmetic subgroup of SLy(C) (e.g. I = SL2(Z[i])).
A congruence subgroup of I is a subgroup containing
Mn)={gel: g=Id (mod n)}.

1 Kr—T - leongr — 1.

I does not satisfy weak congruence property
cd(Kr) <2 and
cd(Kr) = 1 if for every prime p and for every subgroup G <¢ T

- dims, H(G(5). )
i—00 |G : G(p)]

=0.
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Motivation: the congruence kernel of arithmetic subgroups

in SLy(C)

Let I' be an arithmetic subgroup of SLy(C) (e.g. I = SL2(Z[i])).
A congruence subgroup of I is a subgroup containing
Mn)={gel: g=Id (mod n)}.

1 Kr—T - leongr — 1.

I does not satisfy weak congruence property
cd(Kr) <2 and

cd(Kr) = 1 if for every prime p and for every subgroup G <¢ T

o dims, H(G(P1). )

i—00 |G : G(p)]

We know that there exists normal chain G = Gy >¢ Gy >¢ ...

=0.

|' dim]Fp Hl(G,',Fp) .
N T
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Motivation: the Hanna Neumann conjecture

F is a free group;
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Motivation: the Hanna Neumann conjecture

F is a free group; U and W are f.g. subgroups of F;

tk(U) = max{rk(U) — 1,0}.
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Motivation: the Hanna Neumann conjecture

F is a free group; U and W are f.g. subgroups of F;
tk(U) = max{rk(U) — 1,0}.

1957: H. Neumann: rk(U N W) < 2rk(U)rk(W)
The Hanna Neumann conjecture: tk(U N W) < tk(U)rk(W)

1990: W. Neumann: eru\F/Wﬁ(UﬁXWx_l) < 2rk(U)rk(W).
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Motivation: the Hanna Neumann conjecture

F is a free group; U and W are f.g. subgroups of F;
tk(U) = max{rk(U) — 1,0}.

1957: H. Neumann: rk(U N W) < 2rk(U)rk(W)
The Hanna Neumann conjecture: tk(U N W) < tk(U)rk(W)

1990: W. Neumann: eru\F/Wﬁ(U N xWx~1) < 2rk(U)rk(W).
The strengthened Hanna Neumann conjecture:
> xeu\F/w k(U N xWx™1) < 1k(U)rk(W).
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Motivation: the Hanna Neumann conjecture

F is a free group; U and W are f.g. subgroups of F;
tk(U) = max{rk(U) — 1,0}.

1957: H. Neumann: rk(U N W) < 2rk(U)rk(W)
The Hanna Neumann conjecture: tk(U N W) < tk(U)rk(W)

1990: W. Neumann: eru\F/Wﬁ(UﬁXWx_l) < 2rk(U)rk(W).
The strengthened Hanna Neumann conjecture:

5 veunryw TR(U N xWaL) < TR(U)R(W).

independently by J. Friedman (2011) and |. Mineyev (2011)
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Motivation: the Hanna Neumann conjecture

The strengthened Hanna Neumann conjecture:
> weunFyw TR(U NxWxt) < tk(U)rk(W).

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann
conjecture for free pro-p groups
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2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann
conjecture for free pro-p groups and a for free groups

This new proof uses the strong Atiyah and the Liick approximation
conjectures over C.
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Motivation: the Hanna Neumann conjecture

The strengthened Hanna Neumann conjecture:
> weunFyw TR(U NxWxt) < tk(U)rk(W).

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann
conjecture for free pro-p groups and a for free groups

This new proof uses the strong Atiyah and the Liick approximation
conjectures over C.

2017: Y. Antolin, A. Jaikin-Zapirain: The strengthened Hanna
Neumann conjecture for non-abelian surface groups.

Andrei Jaikin-Zapirain L2-Betti numbers



The dimension of Hilbert G-modules

A Hilbert G-module V is a closed (left G)-invariant subspace of
the Hilbert space /?(G)":

Andrei Jaikin-Zapirain L2-Betti numbers



The dimension of Hilbert G-modules

A Hilbert G-module V is a closed (left G)-invariant subspace of
the Hilbert space /?(G)":

Andrei Jaikin-Zapirain L2-Betti numbers



The dimension of Hilbert G-modules

A Hilbert G-module V is a closed (left G)-invariant subspace of
the Hilbert space /?(G)":

G is finite: I2(G) = C[G] and dim¢g V = %_
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The dimension of Hilbert G-modules

A Hilbert G-module V is a closed (left G)-invariant subspace of
the Hilbert space /?(G)":

G is finite: /(G) = C[G] and dimg V = ¥ ¥,
If A€ Matpxm(C[G]) and N < G, we put
é’/N : I2(G/N)n — /2(G/N)m ' ¢é’/N(V17’ ) Vn) = (V17 sty Vn)A

rkg/n(A) = dimg/y(Im ¢é/,v) = n—dimg/n kercbé/,\,.
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The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
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The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
Let G = Gy > Go > ... be a chain of normal subgroups with trivial
intersection.
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The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
Let G = Gy > Go > ... be a chain of normal subgroups with trivial
intersection.

Conjectures (with coefficients in K)

L (the Liick approximation conjecture over K)
For every matrix A over K[G], lim rk¢ /g (A) = rkg(A).
1—00

Andrei Jaikin-Zapirain L2-Betti numbers



The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
Let G = Gy > Go > ... be a chain of normal subgroups with trivial

intersection.

Conjectures (with coefficients in K)

L (the Liick approximation conjecture over K)
For every matrix A over K[G], lim rk¢ /g (A) = rkg(A).
1—00

A (the strong Atiyah conjecture over K)
Assume that there exists an upper bound for the orders of
finite subgroups of G. For every matrix A over K[G],
1
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The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
Let G = Gy > Go > ... be a chain of normal subgroups with trivial

intersection.

Conjectures (with coefficients in K)

L (the Liick approximation conjecture over K)
For every matrix A over K[G], lim rk¢ /g (A) = rkg(A).
1—00

A (the strong Atiyah conjecture over K)
Assume that there exists an upper bound for the orders of
finite subgroups of G. For every matrix A over K[G],
1

K <C:
Conjecture L = Conjectures 1 and 2
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The Luck approximation and the strong Atiyah conjectures

Let K be a subfield of C
Let G = Gy > Go > ... be a chain of normal subgroups with trivial

intersection.

Conjectures (with coefficients in K)

L (the Liick approximation conjecture over K)
For every matrix A over K[G], lim rk¢ /g (A) = rkg(A).
1—00

A (the strong Atiyah conjecture over K)
Assume that there exists an upper bound for the orders of
finite subgroups of G. For every matrix A over K[G],
1

K <C:
Conjecture L = Conjectures 1 and 2
Conjectures L and A = Conjecture 3
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The state of the conjectures

The class of elementary amenable groups is the smallest class of
groups containing finite groups, abelian groups and closed under
subgroups, extensions and direct unions.
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The state of the conjectures

The class of elementary amenable groups is the smallest class of
groups containing finite groups, abelian groups and closed under
subgroups, extensions and direct unions.

K<C charK >0
Conj. 1 | Yes Yes
Conj. 2 | Yes Yes
Conj. 3 | Yes Yes
Conj. L | Yes X
Conj. A | Yes X
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The state of the conjectures

A finitely generated group G is amenable if there exists a family
{Fi} of finite subsets of G such that for any g € G

’ lgFinFi|
im = 1,
i—00 ’F,'|
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The state of the conjectures

A finitely generated group G is amenable if there exists a family
{Fi} of finite subsets of G such that for any g € G

i &F0Fl
im ———— = 1.
i—00 ’F,'|

K<C charK >0
Conj. 1 | Yes Yes Yes Yes
Conj. 2 | Yes Yes Yes Yes
Conj. 3 | Yes 7 Yes ?
Conj. L | Yes Yes X
Conj. A | Yes? X

elemantary amenable amenable
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groups;
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The state of the conjectures

groups; groups;
groups
K<C charK >0

Conj. 1 | Yes Yes Yes Yes

Conj. 2 | Yes Yes Yes Yes

Conj. 3 | Yes ? Yes 7

Conj. L | Yes Yes X

Conj. A | Yes ? X

elemantary amenable; amenable
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The state of the conjectures

A finitely generated group G = (S) is sofic if for any € > 0 and for
any k there exists a finite S-labeled graph X = (V/, E) such that
for at least (1 —€)| V| vertices v € V of X, Bk(v) is isomorphic (as
a S-labeled graph) to Bx(1¢) (a ball in the Cayley graph
Cay(G,S)).
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amenable and residually finite groups are sofic
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The state of the conjectures

A finitely generated group G = (S) is sofic if for any € > 0 and for
any k there exists a finite S-labeled graph X = (V/, E) such that
for at least (1 —€)| V| vertices v € V of X, Bk(v) is isomorphic (as
a S-labeled graph) to Bx(1¢) (a ball in the Cayley graph
Cay(G,S)).

amenable and residually finite groups are sofic

K<C charK >0
Conj. 1 | Yes Yes Yes | Yes Yes 7 7
Conj. 2 | Yes Yes Yes | Yes Yes 7 7
Conj. 3 | Yes? ? Yes 7 7 7
Conj. L | Yes Yes Yes | X
Conj. A | Yes ? ? X
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The ideas of the proofs: an analytic approach.

(Liick (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

Let G be a group and let G = G; > G, > ... be a chain of normal
subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).
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Let G be a group and let G = G; > G, > ... be a chain of normal
subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).

@ We may assume that A = BB*, whence ¢é/c,- and gbé are
selfadjoint positive operators
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subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).

@ We may assume that A = BB*, whence ¢é/c,- and gbé are
selfadjoint positive operators

@ We associate measures ,ué/G with ¢é/G_ on an interval [0, a].
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(3

Andrei Jaikin-Zapirain L2-Betti numbers



The ideas of the proofs: an analytic approach.

(Liick (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

Let G be a group and let G = G; > G, > ... be a chain of normal
subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).

@ We may assume that A = BB*, whence ¢é/c,- and gbé are
selfadjoint positive operators

@ We associate measures ,ué/Gi with ¢é/G,- on an interval [0, a].
The theorem is equivalent to show that

lim 11¢6,(0) = 11(0)

(3] “é/G,- weakly converges to ué

Andrei Jaikin-Zapirain L2-Betti numbers



The ideas of the proofs: an analytic approach.

(Liick (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

Let G be a group and let G = G; > G, > ... be a chain of normal
subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).

@ We may assume that A = BB*, whence ¢é/c,- and gbé are
selfadjoint positive operators
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The theorem is equivalent to show that
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The ideas of the proofs: an analytic approach.

(Liick (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

Let G be a group and let G = G; > G, > ... be a chain of normal
subgroups with trivial intersection. Assume G/G; are sofic. Then
for every matrix A over Q[G], lim; o tkg /6, (A) = kg (A).

@ We may assume that A = BB*, whence ¢é/c,- and gbé are
selfadjoint positive operators

@ We associate measures ,ué/Gi with ¢é/G,- on an interval [0, a].
The theorem is equivalent to show that
lim pg,c(0) = pg(0
I.'JQO,U«G/G;( ) = w5 (0)

(3] “é/G,- weakly converges to ué, whence,
limsup g/ 6,(0) < 1¢(0).

1—00

@ We use the conditions G/G; are sofic and K < Q to show
that ué/G_(O, €) tends uniformly in i to 0 when € tends to 0.
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The ideas of the proofs: an algebraic approach.

(Jaikin (2017))
Let G be a sofic group.

L Let G = G > Gy > ... be a chain of normal subgroups with
trivial intersection. Assume G/G; are sofic. Then for every
matrix A over C[G],

lim I'kG/G,.(A) = I‘kG(A)

i—00

A If G satisfies the strong Atiyah conjecture over Q, then G
satisfies the strong Atiyah conjecture over C.

o
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(Jaikin (2017))
Let G be a sofic group.

L Let G = G > Gy > ... be a chain of normal subgroups with
trivial intersection. Assume G/G; are sofic. Then for every
matrix A over C[G],

lim I'kG/G,.(A) = I‘kG(A)

i—00

A If G satisfies the strong Atiyah conjecture over Q, then G
satisfies the strong Atiyah conjecture over C.

© We show that Conjecture L over K is equivalent to the
existence of isomorphism between K[G]-rings
Rkie) and Rkiel{6/6}
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The ideas of the proofs: an algebraic approach.

(Jaikin (2017))
Let G be a sofic group.

L Let G = G > Gy > ... be a chain of normal subgroups with
trivial intersection. Assume G/G; are sofic. Then for every
matrix A over C[G],

lim I'kG/G,.(A) = I‘kG(A)

i—00

A If G satisfies the strong Atiyah conjecture over Q, then G
satisfies the strong Atiyah conjecture over C.

© We show that Conjecture L over K is equivalent to the
existence of isomorphism between K[G]-rings
Rkie) and Rkiel{6/6}

@ Using that there exists an isomorphism in the case K = Q, we
construct an isomorphism in the case K = C.
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Main open problems

Problem 1

Extend the results from the characteristic 0 case to the
characteristic p > 0 case.
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groups.
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characteristic p > 0 case.
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groups.
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Problem 3

Show that the strong Atiyah conjecture holds for subgroups of
GL,(C).
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Main open problems
Problem 1

Extend the results from the characteristic 0 case to the
characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator
groups.

one-relator groups with torsion are

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of
GL,(C).

If G is a f.g. subgroup of GL,(C) then it is known that there exists
H <f G such that H satisfies the strong Atiyah conjecture.
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