On I^2 -Betti numbers and their analogues in positive characteristic

Andrei Jaikin-Zapirain

Birmingham, August 12th, 2017

G is a finitely generated group.

 $G > G_1 > G_2 > \dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A : K[G/G_i]^n \to K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A$$

$$\operatorname{rk}_{G/G_i}(A) = \frac{\dim_K \operatorname{Im} \phi_{G/G_i}^A}{|G:G_i|} = n - \frac{\dim_K \ker \phi_{G/G_i}^A}{|G:G_i|}$$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A : K[G/G_i]^n \rightarrow K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A$$

 $\operatorname{rk}_{G/G_i}(A) = rac{\dim_K \operatorname{Im} \phi_{G/G_i}^A}{|G:G|} = n - rac{\dim_K \ker \phi_{G/G_i}^A}{|G:G|}$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A: K[G/G_i]^n \rightarrow K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A.$$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi^A_{G/G_i}: K[G/G_i]^n o K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A.$$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A: K[G/G_i]^n \rightarrow K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A.$$

$$\operatorname{rk}_{G/G_i}(A) = \frac{\dim_K \operatorname{Im} \phi_{G/G_i}^A}{|G:G_i|} = n - \frac{\dim_K \ker \phi_{G/G_i}^A}{|G:G_i|}$$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A: K[G/G_i]^n \rightarrow K[G/G_i]^m$$

$$(v_1, \dots, v_n) \mapsto (v_1, \dots, v_n)A.$$

$$\operatorname{rk}_{G/G_i}(A) = \frac{\dim_K \operatorname{Im} \phi_{G/G_i}^A}{|G:G_i|} = n - \frac{\dim_K \ker \phi_{G/G_i}^A}{|G:G_i|}$$

G is a finitely generated group.

 $G>G_1>G_2>\dots$ is a chain of normal subgroups of finite index with trivial intersection. In this setting G is residually finite.

K is a filed (of arbitrary characteristic), $A \in \operatorname{Mat}_{n \times m}(K[G])$

$$\phi_{G/G_i}^A: \quad \mathcal{K}[G/G_i]^n \quad \to \quad \mathcal{K}[G/G_i]^m$$

$$(v_1, \dots, v_n) \quad \mapsto \quad (v_1, \dots, v_n)A.$$

$$\operatorname{rk}_{G/G_i}(A) = \frac{\dim_K \operatorname{Im} \phi_{G/G_i}^A}{|G:G_i|} = n - \frac{\dim_K \ker \phi_{G/G_i}^A}{|G:G_i|}$$

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions

(SRF1) $\operatorname{rk}(M) = 0$ if M is any zero matrix and $\operatorname{rk}(1_R) = 1$; (SRF2) $\operatorname{rk}(M_1M_2) \leq \min\{\operatorname{rk}(M_1), \operatorname{rk}(M_2)\}$ if M_1 and M_2 car be multiplied;

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2) \text{ if } M_1, M_2 \text{ and}$

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions (SRF1) $\operatorname{rk}(M)=0$ if M is any zero matrix and $\operatorname{rk}(1_R)=1$;

(SRF2) $\operatorname{rk}(M_1M_2) \leq \min\{\operatorname{rk}(M_1), \operatorname{rk}(M_2)\}$ if M_1 and M_2 can be multiplied;

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$ if M_1 , M_2 and M_3 are of appropriate sizes.

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions $(\mathsf{SRF1})\operatorname{rk}(M)=0\text{ if }M\text{ is any zero matrix and }\operatorname{rk}(1_R)=1;$ $(\mathsf{SRF2})\operatorname{rk}(M_1M_2)\leq \min\{\operatorname{rk}(M_1),\operatorname{rk}(M_2)\}\text{ if }M_1\text{ and }M_2\text{ can be multiplied;}$

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$ if M_1 , M_2 and M_3 are of appropriate sizes.

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions (SRF1) $\operatorname{rk}(M)=0$ if M is any zero matrix and $\operatorname{rk}(1_R)=1$;

(SRF2) $\operatorname{rk}(M_1M_2) \leq \min\{\operatorname{rk}(M_1), \operatorname{rk}(M_2)\}$ if M_1 and M_2 can be multiplied;

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$ if M_1 , M_2 and M_3 are of appropriate sizes.

be multiplied:

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions (SRF1) $\operatorname{rk}(M)=0$ if M is any zero matrix and $\operatorname{rk}(1_R)=1$; (SRF2) $\operatorname{rk}(M_1M_2)\leq \min\{\operatorname{rk}(M_1),\operatorname{rk}(M_2)\}$ if M_1 and M_2 can

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$ if M_1 , M_2 and M_3 are of appropriate sizes.

Let R be a K-algebra. A Sylvester matrix rank function rk on R is a map $\operatorname{rk}:\operatorname{Mat}(R)\to\mathbb{R}_{\geq 0}$ satisfying the following conditions

(SRF1)
$$\operatorname{rk}(M) = 0$$
 if M is any zero matrix and $\operatorname{rk}(1_R) = 1$;

(SRF2) $\operatorname{rk}(M_1M_2) \leq \min\{\operatorname{rk}(M_1), \operatorname{rk}(M_2)\}$ if M_1 and M_2 can be multiplied;

(SRF3)
$$\operatorname{rk}\begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} = \operatorname{rk}(M_1) + \operatorname{rk}(M_2);$$

(SRF4) $\operatorname{rk}\begin{pmatrix} M_1 & M_3 \\ 0 & M_2 \end{pmatrix} \ge \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$ if M_1 , M_2 and M_3 are of appropriate sizes.

Main questiones

- ① Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ① If the limit exists, how does it depend on the chain $\{G_i\}$?
- What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

- Yes, the limit exists.
- It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty}\mathrm{rk}_{G/G_i}(A)\in\frac{1}{\mathrm{lcm}(G)}\mathbb{Z}$$

Main questiones

- **1** Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- What is the range of possible values for lim_{i→∞} rk_{G/Gi}(A) for a given group G?

- Yes, the limit exists.
- It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \frac{1}{\mathrm{lcm}(G)}\mathbb{Z}$$
.

Main questiones

- **1** Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- **3** What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

- Yes, the limit exists.
- It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \frac{1}{\mathrm{lcm}(G)}\mathbb{Z}$$
.

Main questiones

- **1** Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- **③** What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

- Yes, the limit exists.
- ② It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \frac{1}{\mathrm{lcm}(G)}\mathbb{Z}$$
.

Main questiones

- **1** Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- **3** What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

Conjectures

- Yes, the limit exists.
- ② It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) \in \frac{1}{\operatorname{lcm}(G)} \mathbb{Z}$.

Main questiones

- **1** Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- **3** What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

- Yes, the limit exists.
- 2 It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H| : H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \frac{1}{\mathrm{lcm}(G)}\mathbb{Z}$$
.

Main questiones

- ① Is there the limit $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$?
- ② If the limit exists, how does it depend on the chain $\{G_i\}$?
- **③** What is the range of possible values for $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A)$ for a given group G?

- Yes, the limit exists.
- 2 It does not depend on the chain $\{G_i\}$.
- Assume that there exists an upper bound for the orders of finite subgroups of G. Let

$$lcm(G) = lcm\{|H|: H \text{ is a finite subgroup of } G\}.$$

Then
$$\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$$
.

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (lcm(G) = 1), then $\lim_{i \to \infty} \operatorname{rk}_{G/G_i}(A) \in \mathbb{Z}$.

$$\operatorname{rk} = \lim_{i o \infty} \operatorname{rk}_{G/G_i} \in \mathbb{P}(K[G])$$
 is faithful $(\operatorname{rk}(A) = 0 ext{ iff } A = 0)$

P. Cohn: Assume that a K-algebra R has a faithful Sylvester matrix rank function taking only integer values. Then R can be embedded in a skew field.

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (lcm(G) = 1), then $\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \mathbb{Z}$.

$$\mathrm{rk} = \lim_{i o \infty} \mathrm{rk}_{G/G_i} \in \mathbb{P}(K[G])$$
 is faithful $(\mathrm{rk}(A) = 0 \; \mathrm{iff} \; A = 0)$

P. Cohn: Assume that a K-algebra R has a faithful Sylvester matrix rank function taking only integer values. Then R can be embedded in a skew field.

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (lcm(G) = 1), then $\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) \in \mathbb{Z}$.

$$\mathrm{rk} = \lim_{i \to \infty} \mathrm{rk}_{G/G_i} \in \mathbb{P}(K[G]) \text{ is faithful } (\mathrm{rk}(A) = 0 \text{ iff } A = 0)$$

P. Cohn: Assume that a K-algebra R has a faithful Sylvester matrix rank function taking only integer values. Then R can be embedded in a skew field.

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (lcm(G) = 1), then $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) \in \mathbb{Z}$.

$$\mathrm{rk} = \lim_{i \to \infty} \mathrm{rk}_{G/G_i} \in \mathbb{P}(K[G]) \text{ is faithful } (\mathrm{rk}(A) = 0 \text{ iff } A = 0)$$

P. Cohn: Assume that a K-algebra R has a faithful Sylvester matrix rank function taking only integer values. Then R can be embedded in a skew field.

Kaplansky's zero-divisor conjecture

Let G be a torsion-free group. Then the group ring K[G] does not contain nontrivial zero divisors, that is, it is a domain.

Conjectures 1 and 3 predict that if G is torsion-free (lcm(G) = 1), then $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) \in \mathbb{Z}$.

$$\mathrm{rk} = \lim_{i \to \infty} \mathrm{rk}_{G/G_i} \in \mathbb{P}(K[G]) \text{ is faithful } (\mathrm{rk}(A) = 0 \text{ iff } A = 0)$$

P. Cohn: Assume that a K-algebra R has a faithful Sylvester matrix rank function taking only integer values. Then R can be embedded in a skew field.

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i\to\infty} \frac{\dim_K H_p(G_i \setminus \mathcal{C}, K)}{|G:G_i|}$$
.

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i o\infty}rac{dim_K H_p(G_iackslash\mathcal{C},K)}{|G:G_i|}.$$

We use the cellular chain complex

 $\lim_{i \to \infty} \frac{\lim_{i \to \infty} (\operatorname{rk}_{G/G_i}(A_p) + \operatorname{rk}_{G/G_i}(A_{p+1}))}{|G:G_i|} = n_p - \lim_{i \to \infty} (\operatorname{rk}_{G/G_i}(A_p) + \operatorname{rk}_{G/G_i}(A_{p+1}))$

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i\to\infty} \frac{\dim_K H_p(G_i \setminus \mathcal{C}, K)}{|G:G_i|}$$
.

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i\to\infty} \frac{\dim_K H_p(G_i \setminus C, K)}{|G:G_i|}$$
.

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i\to\infty}\frac{dim_K H_p(G_i\backslash \mathcal{C},K)}{|G:G_i|}$$
.

Let C be a CW-complex of dimension n and C_i $(0 \le i \le n)$ its i-dimensional cells.

Assume that G acts freely on C conserving the CW-structure and $G \setminus C$ has only a finite number of cells.

Goal: we want to analyze
$$\lim_{i\to\infty}\frac{dim_K H_p(G_i\setminus\mathcal{C},K)}{|G:G_i|}$$
.

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$).

A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id } (\text{mod } n)\}.$

$$1 o \mathcal{K}_{\Gamma} o \widehat{\Gamma} o \Gamma_{\widehat{congr}} o 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property Γ . Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$.

$$\lim_{i \to \infty} \frac{\dim_{\mathbb{F}_p} H_1(G(p^i), \mathbb{F}_p)}{|G: G(p^i)|} = 0$$

We know that there exists normal chain $\mathit{G} = \mathit{G}_1 >_{\mathit{f}} \mathit{G}_2 >_{\mathit{f}} \ldots$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G_i,\mathbb{F}_p)}{|G:G_i|}=0.$$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}$.

$$1 \to \mathcal{K}_{\Gamma} \to \widehat{\Gamma} \to \Gamma_{\widehat{congr}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property Γ . Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_{\ell} \Gamma$

$$\lim_{j \to \infty} rac{\dim_{\mathbb{F}_p} H_1(G(p^i), \mathbb{F}_p)}{|G:G(p^i)|} = 0.$$

We know that there exists normal chain $G=G_1>_fG_2>_f\ldots$

$$\lim_{t\to\infty} \frac{1}{|G:G_t|} = 0$$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}$.

$$1 \to \mathcal{K}_\Gamma \to \widehat{\Gamma} \to \Gamma_{\widehat{\textit{congr}}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property Γ . Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G(p^i),\mathbb{F}_p)}{|G:G(p^i)|}=0.$$

We know that there exists normal chain $\mathit{G} = \mathit{G}_1 >_{\mathit{f}} \mathit{G}_2 >_{\mathit{f}} \ldots$

$$\lim_{t\to\infty} \frac{}{|G:G|} = 0$$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}$.

$$1 \to \mathcal{K}_\Gamma \to \widehat{\Gamma} \to \Gamma_{\widehat{\textit{congr}}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property

F. Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G(p^i),\mathbb{F}_p)}{|G:G(p^i)|}=0.$$

We know that there exists normal chain $G = G_1 >_f G_2 >_f \dots$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G_i,\mathbb{F}_p)}{|G:G_i|}=0.$$

Motivation: the congruence kernel of arithmetic subgroups in $SL_2(\mathbb{C})$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}.$

$$1 \to \mathcal{K}_\Gamma \to \widehat{\Gamma} \to \Gamma_{\widehat{\textit{congr}}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property F. Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$

$$\lim_{i o\infty}rac{\mathsf{dim}_{\mathbb{F}_p}\,H_1(G(p^i),\mathbb{F}_p)}{|G:G(p^i)|}=0.$$

We know that there exists normal chain $G = G_1 >_f G_2 >_f \dots$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G_i,\mathbb{F}_p)}{|G:G_i|}=0.$$

Motivation: the congruence kernel of arithmetic subgroups in $SL_2(\mathbb{C})$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}.$

$$1 \to \mathcal{K}_\Gamma \to \widehat{\Gamma} \to \Gamma_{\widehat{\text{congr}}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property F. Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G(p^i),\mathbb{F}_p)}{|G:G(p^i)|}=0.$$

We know that there exists normal chain $G = G_1 >_f G_2 >_f \dots$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G_i,\mathbb{F}_p)}{|G:G_i|}=0.$$

Motivation: the congruence kernel of arithmetic subgroups in $SL_2(\mathbb{C})$

Let Γ be an arithmetic subgroup of $SL_2(\mathbb{C})$ (e.g. $\Gamma = SL_2(\mathbb{Z}[i])$). A congruence subgroup of Γ is a subgroup containing $\Gamma(n) = \{g \in \Gamma : g \equiv \text{Id} \pmod{n}\}$.

$$1 \to \mathcal{K}_\Gamma \to \widehat{\Gamma} \to \Gamma_{\widehat{\textit{congr}}} \to 1.$$

A. Lubotzky: Γ does not satisfy weak congruence property F. Grunewald, A. Pinto, A. Jaikin, P. Zalesskii: $\operatorname{cd}(\mathcal{K}_{\Gamma}) \leq 2$ and $\operatorname{cd}(\mathcal{K}_{\Gamma}) = 1$ if for every prime p and for every subgroup $G \leq_f \Gamma$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(G(p^i),\mathbb{F}_p)}{|G:G(p^i)|}=0.$$

We know that there exists normal chain $G = G_1 >_f G_2 >_f \dots$

$$\lim_{i\to\infty}\frac{\dim_{\mathbb{F}_p}H_1(\mathit{G}_i,\mathbb{F}_p)}{|\mathit{G}:\mathit{G}_i|}=0.$$

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\operatorname{rk}}(U) = \max\{\operatorname{rk}(U) - 1, 0\}.$$

1957: H. Neumann:
$$\overline{\mathrm{rk}}(U\cap W)\leq 2\overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$$

The Hanna Neumann conjecture: $\overline{\mathrm{rk}}(U\cap W)\leq \overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$

1990: W. Neumann:
$$\sum_{x \in U \setminus F/W} \operatorname{rk}(U \cap xWx^{-1}) \leq 2\operatorname{rk}(U)\operatorname{rk}(W)$$
. The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \operatorname{rk}(U \cap xWx^{-1}) \leq \operatorname{rk}(U)\operatorname{rk}(W)$.

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\mathrm{rk}}(U) = \max\{\mathrm{rk}(U) - 1, 0\}.$$

1957: H. Neumann: $\overline{\mathrm{rk}}(U\cap W)\leq 2\overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$ The Hanna Neumann conjecture: $\overline{\mathrm{rk}}(U\cap W)\leq \overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$

1990: W. Neumann: $\sum_{x \in U \setminus F/W} \operatorname{rk}(U \cap xWx^{-1}) \leq 2\operatorname{rk}(U)\operatorname{rk}(W)$. The strengthened Hanna Neumann conjecture:

 $\sum_{x \in U \setminus F/W} \operatorname{rk}(U \cap xWx^{-1}) \le \operatorname{rk}(U)\operatorname{rk}(W)$

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\operatorname{rk}}(\mathit{U}) = \max\{\operatorname{rk}(\mathit{U}) - 1, 0\}.$$

1957: H. Neumann: $\overline{\operatorname{rk}}(U\cap W) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$ The Hanna Neumann conjecture: $\overline{\operatorname{rk}}(U\cap W) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$

1990: W. Neumann: $\sum_{x \in U \setminus F/W} \overline{\mathrm{rk}}(U \cap xWx^{-1}) \leq 2\overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$. The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \overline{\mathrm{rk}}(U \cap xWx^{-1}) \leq \overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$.

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\mathrm{rk}}(\mathit{U}) = \max\{\mathrm{rk}(\mathit{U}) - 1, 0\}.$$

1957: H. Neumann:
$$\overline{\mathrm{rk}}(U \cap W) \leq 2\overline{\mathrm{rk}}(U)\overline{\mathrm{rk}}(W)$$

The Hanna Neumann conjecture: $\overline{\operatorname{rk}}(U \cap W) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$

1990: W. Neumann:
$$\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$
. The strengthened Hanna Neumann conjecture:

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\mathrm{rk}}(U) = \max\{\mathrm{rk}(U) - 1, 0\}.$$

1957: H. Neumann:
$$\overline{\operatorname{rk}}(U\cap W) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$

The Hanna Neumann conjecture: $\overline{\operatorname{rk}}(U\cap W) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$

1990: W. Neumann:
$$\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$
. The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$.

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\operatorname{rk}}(U) = \max\{\operatorname{rk}(U) - 1, 0\}.$$

1957: H. Neumann:
$$\overline{\operatorname{rk}}(U\cap W) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$

The Hanna Neumann conjecture: $\overline{\operatorname{rk}}(U\cap W) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$

1990: W. Neumann:
$$\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$
. The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$.

F is a free group; U and W are f.g. subgroups of F;

$$\overline{\mathrm{rk}}(U) = \max\{\mathrm{rk}(U) - 1, 0\}.$$

1957: H. Neumann:
$$\overline{\operatorname{rk}}(U\cap W) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$

The Hanna Neumann conjecture: $\overline{\operatorname{rk}}(U\cap W) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$

1990: W. Neumann:
$$\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq 2\overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$$
. The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W)$.

The strengthened Hanna Neumann conjecture:

$$\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \le \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W).$$

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann conjecture for free pro-p groups and a new proof for free groups

This new proof uses the strong Atiyah and the Lück approximation conjectures over \mathbb{C} .

The strengthened Hanna Neumann conjecture: $\sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W).$

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann conjecture for free pro-p groups and a new proof for free groups

This new proof uses the strong Atiyah and the Lück approximation conjectures over \mathbb{C} .

The strengthened Hanna Neumann conjecture:

$$\textstyle \sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W).$$

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann conjecture for free pro-p groups and a new proof for free groups

This new proof uses the strong Atiyah and the Lück approximation conjectures over \mathbb{C} .

The strengthened Hanna Neumann conjecture:

$$\textstyle \sum_{x \in U \setminus F/W} \overline{\operatorname{rk}}(U \cap xWx^{-1}) \leq \overline{\operatorname{rk}}(U)\overline{\operatorname{rk}}(W).$$

2015: A. Jaikin-Zapirain: The strengthened Hanna Neumann conjecture for free pro-p groups and a new proof for free groups

This new proof uses the strong Atiyah and the Lück approximation conjectures over \mathbb{C} .

A Hilbert *G*-module *V* is a closed (left *G*)-invariant subspace of the Hilbert space $I^2(G)^n$: $\dim_G V = \sum_{k=1}^n \langle \operatorname{proj}_V(e_k), e_k \rangle$

$$G$$
 is finite: $I^2(G) = \mathbb{C}[G]$ and $\dim_G V = \frac{\dim_{\mathbb{C}} V}{|G|}$.

$$\phi_{G/N}^A: I^2(G/N)^n \to I^2(G/N)^m; \phi_{G/N}^A(v_1, \dots, v_n) = (v_1, \dots, v_n)A$$

$$\operatorname{rk}_{G/N}(A) := \dim_{G/N}(\overline{\operatorname{Im}\phi_{G/N}^A}) = n - \dim_{G/N}\ker\phi_{G/N}^A$$

A Hilbert *G*-module *V* is a closed (left *G*)-invariant subspace of the Hilbert space $I^2(G)^n$: $\dim_G V = \sum_{k=1}^n \langle \operatorname{proj}_V(e_k), e_k \rangle$

G is finite:
$$I^2(G) = \mathbb{C}[G]$$
 and $\dim_G V = \frac{\dim_{\mathbb{C}} V}{|G|}$.

$$\phi_{G/N}^A: I^2(G/N)^n \to I^2(G/N)^m ; \phi_{G/N}^A(v_1, \dots, v_n) = (v_1, \dots, v_n)A$$

$$\operatorname{rk}_{G/N}(A) := \dim_{G/N}(\overline{\operatorname{Im}\phi_{G/N}^A}) = n - \dim_{G/N}\ker\phi_{G/N}^A$$

A Hilbert *G*-module *V* is a closed (left *G*)-invariant subspace of the Hilbert space $l^2(G)^n$: $\dim_G V = \sum_{k=1}^n \langle \operatorname{proj}_V(e_k), e_k \rangle$

G is finite:
$$I^2(G) = \mathbb{C}[G]$$
 and $\dim_G V = \frac{\dim_{\mathbb{C}} V}{|G|}$.

$$\phi_{G/N}^A : l^2(G/N)^n \to l^2(G/N)^m ; \phi_{G/N}^A(v_1, \dots, v_n) = (v_1, \dots, v_n)A$$
$$\operatorname{rk}_{G/N}(A) := \dim_{G/N}(\overline{\operatorname{Im} \phi_{G/N}^A}) = n - \dim_{G/N} \ker \phi_{G/N}^A.$$

A Hilbert *G*-module *V* is a closed (left *G*)-invariant subspace of the Hilbert space $I^2(G)^n$: $\dim_G V = \sum_{k=1}^n \langle \operatorname{proj}_V(e_k), e_k \rangle$

G is finite:
$$l^2(G) = \mathbb{C}[G]$$
 and $\dim_G V = \frac{\dim_{\mathbb{C}} V}{|G|}$.

$$\phi_{G/N}^A: I^2(G/N)^n \to I^2(G/N)^m ; \phi_{G/N}^A(v_1, \dots, v_n) = (v_1, \dots, v_n)A$$
$$\operatorname{rk}_{G/N}(A) := \dim_{G/N}(\overline{\operatorname{Im} \phi_{G/N}^A}) = n - \dim_{G/N} \ker \phi_{G/N}^A.$$

Let K be a subfield of \mathbb{C}

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

 $K < \mathbb{C}$:

Conjecture L \Rightarrow Conjectures 1 and 2

Conjectures L and A \Rightarrow Conjecture 3

Let K be a subfield of $\mathbb C$

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

 $K < \mathbb{C}$:

Conjecture L \Rightarrow Conjectures 1 and 2

Conjectures L and A ⇒ Conjecture 3

Let K be a subfield of \mathbb{C}

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \mathrm{rk}_{G/G_i}(A) = \mathrm{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

 $K < \mathbb{C}$:

Conjecture L ⇒ Conjectures 1 and 2 Conjectures L and A ⇒ Conjecture 3

Let K be a subfield of \mathbb{C}

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

$K < \mathbb{C}$:

Conjecture L \Rightarrow Conjectures 1 and 2 Conjectures L and A \Rightarrow Conjecture 3

Let K be a subfield of \mathbb{C}

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

$K \leq \mathbb{C}$:

Conjecture L \Rightarrow Conjectures 1 and 2

Conjectures L and A \Rightarrow Conjecture 3

Let K be a subfield of \mathbb{C}

Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection.

Conjectures (with coefficients in K)

- L (the Lück approximation conjecture over K) For every matrix A over K[G], $\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A)$.
- A (the strong Atiyah conjecture over K)
 Assume that there exists an upper bound for the orders of finite subgroups of G. For every matrix A over K[G], $\operatorname{rk}_G(A) \in \frac{1}{\operatorname{lcm}(G)}\mathbb{Z}$.

$K \leq \mathbb{C}$:

Conjecture L \Rightarrow Conjectures 1 and 2 Conjectures L and A \Rightarrow Conjecture 3

The class of elementary amenable groups is the smallest class of groups containing finite groups, abelian groups and closed under subgroups, extensions and direct unions.

	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes	Yes
Conj. 2	Yes	Yes
Conj. 3	Yes	Yes
Conj. L	Yes	X
Conj. A	Yes	X

The class of elementary amenable groups is the smallest class of groups containing finite groups, abelian groups and closed under subgroups, extensions and direct unions.

	$\mathcal{K} \leq \mathbb{C}$	char K > 0
Conj. 1	Yes	Yes
Conj. 2	Yes	Yes
Conj. 3	Yes	Yes
Conj. L	Yes	X
Conj. A	Yes	X

A finitely generated group G is amenable if there exists a family $\{F_i\}$ of finite subsets of G such that for any $g \in G$

$$\lim_{i\to\infty}\frac{|gF_i\cap F_i|}{|F_i|}=1.$$

	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes Yes	Yes Yes
Conj. 2	Yes Yes	Yes Yes
Conj. 3	Yes ?	Yes ?
Conj. L	Yes Yes	Χ
Conj. A	Yes ?	X

elemantary amenable amenable

A finitely generated group G is amenable if there exists a family $\{F_i\}$ of finite subsets of G such that for any $g \in G$

$$\lim_{i\to\infty}\frac{|gF_i\cap F_i|}{|F_i|}=1.$$

	$K \leq \mathbb{C}$	$\operatorname{char} K > 0$
Conj. 1	Yes Yes	Yes Yes
Conj. 2	Yes Yes	Yes Yes
Conj. 3	Yes ?	Yes ?
Conj. L	Yes Yes	Χ
Conj. A	Yes ?	X

elemantary amenable amenable

residually torsion-free soluble groups; hyperbolic 3-orbifold groups; virtually special groups

elemantary amenable; amenable

residually torsion-free soluble groups; hyperbolic 3-orbifold groups; virtually special groups

elemantary amenable; <mark>amenabl</mark>e

residually torsion-free soluble groups; hyperbolic 3-orbifold groups; virtually special groups

	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes Yes Yes	Yes Yes ?
Conj. 2	Yes Yes Yes	Yes Yes ?
Conj. 3	Yes ? Yes	Yes??
Conj. L	Yes Yes Yes	Χ
Conj. A	Yes? Yes	X

elemantary amenable; <mark>amenabl</mark>e

residually torsion-free soluble groups; hyperbolic 3-orbifold groups; virtually special groups

	$K \leq \mathbb{C}$	$\operatorname{char} K > 0$
Conj. 1	Yes Yes Yes	Yes Yes ?
Conj. 2	Yes Yes Yes	Yes Yes ?
Conj. 3	Yes ? Yes	Yes??
Conj. L	Yes Yes Yes	X
Conj. A	Yes ? Yes	X

elemantary amenable; amenable

A finitely generated group $G=\langle S\rangle$ is sofic if for any $\epsilon>0$ and for any k there exists a finite S-labeled graph X=(V,E) such that for at least $(1-\epsilon)|V|$ vertices $v\in V$ of X, $B_k(v)$ is isomorphic (as a S-labeled graph) to $B_k(1_G)$ (a ball in the Cayley graph Cay(G,S)).

amenable and residually finite groups are sofic

elemantary amenable; amenable; residually torsion-free soluble; hyperbolic 3-orbifold; virtually special

A finitely generated group $G=\langle S\rangle$ is sofic if for any $\epsilon>0$ and for any k there exists a finite S-labeled graph X=(V,E) such that for at least $(1-\epsilon)|V|$ vertices $v\in V$ of X, $B_k(v)$ is isomorphic (as a S-labeled graph) to $B_k(1_G)$ (a ball in the Cayley graph Cay(G,S)).

amenable and residually finite groups are sofic

	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes Yes Yes Yes	Yes Yes ? ?
Conj. 2	Yes Yes Yes Yes	Yes Yes ? ?
Conj. 3	Yes ? Yes ?	Yes ? ? ?
Conj. L	Yes Yes Yes Yes	Χ
Conj. A	Yes ? Yes ?	Χ

elemantary amenable; amenable; residually torsion-free soluble; hyperbolic 3-orbifold; virtually special

A finitely generated group $G = \langle S \rangle$ is sofic if for any $\epsilon > 0$ and for any k there exists a finite S-labeled graph X = (V, E) such that for at least $(1 - \epsilon)|V|$ vertices $v \in V$ of X, $B_k(v)$ is isomorphic (as a S-labeled graph) to $B_k(1_G)$ (a ball in the Cayley graph Cay(G, S)).

amenable and residually finite groups are sofic

	$K \leq \mathbb{C}$	char K > 0	
Conj. 1	Yes Yes Yes Yes	Yes Yes ? ?	
Conj. 2	Yes Yes Yes Yes	Yes Yes ? ?	
Conj. 3	Yes ? Yes ?	Yes ? ? ?	
Conj. L	Yes Yes Yes Yes	X	
Conj. A	Yes ? Yes ?	X	

elemantary amenable; amenable; residually torsion-free soluble; hyperbolic 3-orbifold; virtually special

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

M. Atiyah (1974), J. Dodziuk (1977)

- ① J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- ② G. Elek (2006)
- igotimes igotimes W. Lück (1993) ($\{\mathit{G}/\mathit{G_i}\}$ finite and $K=\mathbb{Q}$),
- J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2003), G. Flek, F. Szaho (2005)
 - G. Elek, E. Szabo (2005)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- **②** G. Elek (2006)
- W. Luck (1993) ($\{G/G_i\}$ finite and $K=\mathbb{Q}$), J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2005)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
 - A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- 2 G. Elek (2006)
- **9** W. Lück (1993) ($\{G/G_i\}$ finite and $K=\mathbb{Q}$), J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2003), G. Elek, E. Szabo (2005)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- **2** G. Elek (2006)
- ③ W. Lück (1993) ($\{G/G_i\}$ finite and $K=\mathbb{Q}$), J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2003), G. Elek, E. Szabo (2005)
- (2014) [DLMSY], P. Linnell, T. Schick (2007), K. Schreve
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	$\operatorname{char} K > 0$
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- **3** G. Elek (2006)
- **③** W. Lück (1993) ({ G/G_i } finite and $K = \mathbb{Q}$), J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2003), G. Elek, E. Szabo (2005)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
 - A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	$\operatorname{char} K > 0$
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- G. Elek (2006)
- **3** W. Lück (1993) ($\{G/G_i\}$ finite and $K=\mathbb{Q}$), J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates (2003), G. Elek, E. Szabo (2005)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- 🌀 A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	$\operatorname{char} K > 0$
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- **3** G. Elek (2006)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- 🗿 A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- G. Elek (2006)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- 6 A. Jaikin-Zapirain (2017)

	$K \leq \bar{\mathbb{Q}}$	$K \leq \mathbb{C}$	char K > 0
Conj. 1	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 2	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	Yes ² Yes ² ? ?
Conj. 3	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	Yes ¹ ? ? ?
Conj. L	Yes ² Yes ² Yes ³ Yes ³	Yes ² Yes ² Yes ⁶ Yes ⁶	X
Conj. A	Yes ¹ ? Yes ⁴ ?	Yes ¹ ? Yes ⁵ ?	X

elemantary amenable; amenable; virtually special; sofic

- **1** J. Moody (1987), P. Linnell (1993), G. Elek (2006)
- **3** G. Elek (2006)
- [DLMSY], P. Linnell, T. Schick (2007), K. Schreve (2014)
- P. Linnell (1993) (free, surface groups), A. Jaikin-Zapirain (2016)
- 6 A. Jaikin-Zapirain (2017)

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{G/G_i} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- We use the conditions G/G_i are sofic and $K \leq \mathbb{Q}$ to show that $\mu_{G/G_i}^A(0, \epsilon)$ tends uniformly in i to 0 when ϵ tends to 0

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{i \to \infty} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- $\mathbf{\Phi}_{G/G_i}^A$ weakly converges to μ_G^A , whence, $\limsup \mu_{G/G_i}^A(0) \le \mu_G^A(0)$.
- We use the conditions G/G_i are sofic and $K \leq \mathbb{Q}$ to show that $\mu_{G/G_i}^A(0, \epsilon)$ tends uniformly in i to 0 when ϵ tends to 0

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- ② We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{G/G_i} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- μ_{G/G_i}^A weakly converges to μ_G^A , whence, $\limsup \mu_{G/G_i}^A(0) \le \mu_G^A(0)$.
- We use the conditions G/G_i are sofic and $K \leq \mathbb{Q}$ to show that $\mu_{G/G_i}^A(0,\epsilon)$ tends uniformly in i to 0 when ϵ tends to 0.

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- ② We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{i \to \infty} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- We use the conditions G/G_i are sofic and $K \leq \overline{\mathbb{Q}}$ to show that $\mu_{G/G_i}^A(0,\epsilon)$ tends uniformly in i to 0 when ϵ tends to 0

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- ② We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{i \to \infty} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- We use the conditions G/G_i are sofic and $K \leq \bar{\mathbb{Q}}$ to show that $\mu_{G/G_i}^A(0,\epsilon)$ tends uniformly in i to 0 when ϵ tends to 0

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{i \to \infty} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- We use the conditions G/G_i are sofic and $K \leq \bar{\mathbb{Q}}$ to show that $\mu_{G/G_i}^A(0,\epsilon)$ tends uniformly in i to 0 when ϵ tends to 0.

Theorem (Lück (1993), [DLMSY, 2003], G. Elek, E. Szabo (2005))

- We may assume that $A=BB^*$, whence ϕ^A_{G/G_i} and ϕ^A_G are selfadjoint positive operators
- ② We associate measures μ_{G/G_i}^A with ϕ_{G/G_i}^A on an interval [0,a]. The theorem is equivalent to show that $\lim_{i \to \infty} \mu_{G/G_i}^A(0) = \mu_G^A(0)$
- We use the conditions G/G_i are sofic and $K \leq \bar{\mathbb{Q}}$ to show that $\mu_{G/G_i}^A(0,\epsilon)$ tends uniformly in i to 0 when ϵ tends to 0.

Theorem (Jaikin (2017))

Let G be a sofic group.

L Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection. Assume G/G_i are sofic. Then for every matrix A over $\mathbb{C}[G]$,

$$\lim_{i\to\infty}\mathrm{rk}_{G/G_i}(A)=\mathrm{rk}_G(A).$$

- A If G satisfies the strong Atiyah conjecture over $\overline{\mathbb{Q}}$, then G satisfies the strong Atiyah conjecture over \mathbb{C} .
- We show that Conjecture L over K is equivalent to the existence of isomorphism between K[G]-rings $\mathcal{R}_{K[G]}$ and $\mathcal{R}_{K[G],\{G/G\}}$.
- ② Using that there exists an isomorphism in the case $K = \mathbb{Q}$, we construct an isomorphism in the case $K = \mathbb{C}$.

Theorem (Jaikin (2017))

Let G be a sofic group.

L Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection. Assume G/G_i are sofic. Then for every matrix A over $\mathbb{C}[G]$,

$$\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A).$$

- A If G satisfies the strong Atiyah conjecture over \mathbb{Q} , then G satisfies the strong Atiyah conjecture over \mathbb{C} .
- We show that Conjecture L over K is equivalent to the existence of isomorphism between K[G]-rings $\mathcal{R}_{K[G]}$ and $\mathcal{R}_{K[G],\{G/G_i\}}$.
- ② Using that there exists an isomorphism in the case $K = \mathbb{Q}$, we construct an isomorphism in the case $K = \mathbb{C}$.

Theorem (Jaikin (2017))

Let G be a sofic group.

L Let $G = G_1 > G_2 > \dots$ be a chain of normal subgroups with trivial intersection. Assume G/G_i are sofic. Then for every matrix A over $\mathbb{C}[G]$,

$$\lim_{i\to\infty} \operatorname{rk}_{G/G_i}(A) = \operatorname{rk}_G(A).$$

- A If G satisfies the strong Atiyah conjecture over $\overline{\mathbb{Q}}$, then G satisfies the strong Atiyah conjecture over \mathbb{C} .
- We show that Conjecture L over K is equivalent to the existence of isomorphism between K[G]-rings $\mathcal{R}_{K[G]}$ and $\mathcal{R}_{K[G],\{G/G\}}$.
- ② Using that there exists an isomorphism in the case $K = \mathbb{Q}$, we construct an isomorphism in the case $K = \mathbb{C}$.

Problem 1

Extend the results from the characteristic 0 case to the characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator groups.

one-relator groups with torsion are virtually special

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of $GL_n(\mathbb{C})$.

Problem 1

Extend the results from the characteristic 0 case to the characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator groups.

one-relator groups with torsion are virtually special

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of $GL_n(\mathbb{C})$.

Problem 1

Extend the results from the characteristic 0 case to the characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator groups.

one-relator groups with torsion are virtually special

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of $GL_n(\mathbb{C})$.

Problem 1

Extend the results from the characteristic 0 case to the characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator groups.

one-relator groups with torsion are virtually special

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of $GL_n(\mathbb{C})$.

Problem 1

Extend the results from the characteristic 0 case to the characteristic p > 0 case.

Problem 2

Show that the strong Atiyah conjecture holds for one-relator groups.

one-relator groups with torsion are virtually special

Problem 3

Show that the strong Atiyah conjecture holds for subgroups of $GL_n(\mathbb{C})$.

Thanks

THANK YOU FOR YOUR ATTENTION