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Definition 1. A group G is said to be capable if there exists a group H
such that G ∼= H/Z (H), or equivalently, G is isomorphic to the inner
automorphism group of a group H.

M. Hall and J.K. Senior, The groups of order 2n (n ≤ 6), MacMillan, New
York, 1964.

Theorem 1. Let A be a finitely generated abelian group written as

A = Zn1 ⊕ Zn2 ⊕ . . .⊕ Znk

such that ni | ni+1, where Zn = Z, the infinite cyclic group, if n = 0. Then
A is capable if and only if k ≥ 2 and nk−1 = nk .

R. Baer, Groups with preassigned central and central quotient groups,
Trans. Amer. Math. Soc. 44 (1938), 387-412.
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F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center
factor groups, J. Algebra 61 (1979), 161-177.

Definition 2. The epicenter Z ∗(G ) of a group G is defined as⋂
{φZ (E ); (E , φ) is a central extension of G}.

Theorem 2. A group is capable if and only Z ∗(G ) = 1.
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G. Ellis, On the capability of groups, Proc. Edinburgh Math Soc. 41
(1998), 487-495.

Theorem 3. Z ∗(G ) = Z∧(G ) = {a ∈ G | a ∧ g = 1∧, ∀ g ∈ G}, the
exterior center of G .

A. Magidin and R.F. Morse, Capable p-groups, Proceedings Groups St.
Andrews 2013, Lecture Notes LMS 422. (2015), 399-427.
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Definition 3. A p-group G is special of rank n, if G ′ is elementary abelian
of rank n and G ′ = Z (G ).

F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center
factor groups, J. Algebra 61 (1979), 161-177.

Theorem 4. A special p-group of rank 1 (= extra special) is capable if
and only if it is dihedral of order 8 or of order p3 and exponent p, p > 2.
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H. Heineken, Nilpotent groups of class 2 that can appear as central
quotient groups, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248.

Theorem 5. Let G be a special p-group or rank 2 which is capable. Then

p5 ≤ |G | ≤ p7.
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Lemma 1. Let G be a p-group of nilpotency class 2 whose center is an
elementary abelian p-group. Then G has exponent at most p2.

The case p = 2:

Theorem 6. Let G be a capable special 2-group of rank 2. Then G has
exponent 4 and there are three isomorphism classes, if |G | = 25 and 26,
and one isomorphism class, if |G | = 27.

From now on: p > 2.
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GAP output: special p-groups of rank 2 and order p5 for 2 < p ≤ 37:

exp G = p

p Total Capable

3 1 1
5 1 1
7 1 1

11 1 1
13 1 1
17 1 1
19 1 1
23 1 1
29 1 1
31 1 1
37 1 1

exp G = p2

Total Capable

10 3
12 3
14 3
18 3
20 3
24 3
26 3
30 3
36 3
38 3
44 3
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GAP output: special p-groups of rank 2 and order p6 for 2 < p ≤ 37:

exp G = p

p Total Capable

3 3 3
5 3 3
7 3 3

11 3 3
13 3 3
17 3 3
19 3 3
23 3 3
29 3 3
31 3 3
37 3 3

exp G = p2

Total Capable

32 3
38 3
44 3
56 3
62 3
74 3
80 3
92 3

110 3
116 3
134 3
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GAP output: special p-groups of rank 2 and order p7 for 2 < p ≤ 11:

exp G = p

p Total Capable

3 2 1
5 2 1
7 2 1

11 2 1

exp G = p2

Total Capable

97 1
136 1
184 1
298 1
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Theorem 7. Let G be a special p-group of rank 2, exponent p and order
pn, 5 ≤ n ≤ 7. If G is capable, then there exists exactly one isomorphism
class for n = 5 and 7, and three classes for n = 6.

A. Magidin, On the capability of finite groups of class 2 and prime
exponent, Publ. Math. Debrecen, 85 (2014) 309-337.
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The case exp G = p2:

Consider G = K o L, K = 〈a, b | ap2
= bp

2
= 1, ab = ap+1〉 and L an

elementary abelian p-group of rank n.

“Proposition 1.” Let p be an odd prime. The groups defined by the
following presentations contain all the capable special p-groups of rank 2
of order p4+n with Gp = G ′, exponent p2 and n ≥ 1:

G (m1, . . . ,mn) =

〈a, b, x1, . . . , xn | ap
2

= bp
2

= xp1 = · · · = xpn = 1,

ab = ap+1, axi = asip+1btip, bxi = auipb−sip+1, 1 ≤ i ≤ n

[xj , xk ] = 1, 1 ≤ j < k ≤ n〉,

(1.1)

where 0 ≤ si , ti , ui < p and mi =

(
si ti
ui −si

)
for i = 1, . . . , n.
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Theorem 8. There are exactly three isomorphism classes of capable
special p-groups of rank 2 and exponent p2, if |G | = p5 and p6, and one
such class, if |G | = p7.

For |G | = p5, we specifically have

E1 = {G (m) | 0 6= det m and -det m a quadratic residue mod p},
E2 = {G (m) | 0 6= det m, and -det m a quadratic nonresidue mod p},

E3 = {G (m) | det m = 0 and m 6=
(

0 0
u 0

)
, u ∈ Zp}.
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Conjecture. For A ∈ SL(2, p) we have G (m) ∼= G (mA).

No! If m =

(
0 1
0 0

)
, A =

(
0 1
1 0

)
, then mA =

(
0 0
1 0

)
. But

G (m) 6∼= G (mA).

Proposition 2. Let m =

(
s t
u −s

)
and k ∈ Z∗p. Then G (m) ∼= G (km).
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Let m =

(
s t
u −s

)
and m̄ =

(
s̄ t̄
ū −s̄

)
. Set

G (m) =

〈
a, b, x ; ap

2
, bp

2
, xp, [a, b] = ap,

[a, x ] = apsbpt , [b, x ] = aupb−sp

〉

and

G (m̄) =

〈
ā, b̄, x̄ ; āp

2
, b̄p

2
, x̄p, [ā, b̄] = āp,

[ā, x̄ ] = āps̄ b̄pt̄ , [b̄, x̄ ] = āūpb̄−s̄p

〉
.

Find α1, β1, γ1, α2, β2, γ2, γ with ā = aα1bβ1xγ1 , b̄ = aα2bβ2xγ2 , x̄ = xγ

such that the relations of G (m̄) are satisfied.

Remark. By Proposition 2 we can assume that γ = 1.
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Proposition 3. There exist ā, b̄, x̄ ∈ G (m) such that the relations
[ā, x̄ ] = āps̄ b̄pt̄ and [b̄, x̄ ] = āpūb̄−ps̄ are satisfied if and only if there exists

A =

(
α1 β1

α2 β2

)
∈ Z2×2

p such that

(
s t
u −s

)
A = A

(
s̄ t̄
ū −s̄

)
.

Remark. If 0 6= det m = det m̄, then there exists A ∈ SL(2, p) such that
mA = m̄, or equivalently mA = Am̄. (Note: tr(m) = tr(m̄) = 0.)
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Goal: For given α1, α2, β1 β2 find γ1, γ2 such that [ā, b̄] = āp is satisfied.

Observation: The relation [ā, b̄] = āp results into a 2× 2 linear system of

equations of the form B

(
γ1

γ2

)
=

(
δ1

δ2

)
,

where the entries of B and

(
δ1

δ2

)
are functions of α1, α2, β1, β2 and det B 6= 0. There is a nontrivial

solution

(
γ1

γ2

)
if

(
δ1

δ2

)
6=
(

0
0

)
and

(
γ1

γ2

)
=

(
0
0

)
if

(
δ1

δ2

)
=

(
0
0

)
.
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Observation: The relation [ā, b̄] = āp results into a 2× 2 linear system of

equations of the form B

(
γ1

γ2

)
=

(
δ1

δ2

)
, where the entries of B and

(
δ1

δ2

)
are functions of α1, α2, β1, β2 and det B 6= 0.

There is a nontrivial

solution

(
γ1

γ2

)
if

(
δ1

δ2

)
6=
(

0
0

)
and

(
γ1

γ2

)
=

(
0
0

)
if

(
δ1

δ2

)
=

(
0
0

)
.

May 11, 2017 18 / 19



Goal: For given α1, α2, β1 β2 find γ1, γ2 such that [ā, b̄] = āp is satisfied.
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Theorem 9. Let G (m) be a capable special p-group of rank 2 and order
p5. Then:

(1) G (m) ∼= G

((
0 1
0 0

))
if det m = 0;

(2) G (m) ∼= G

((
0 1
1 0

))
, if 0 6= det m and −det m is a quadratic

residue mod p.

(3) G (m) ∼= G

((
0 1
r 0

))
, where r is a primitive root mod p, if

0 6= det m and −det m is a quadratic nonresidue mod p.
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