# Generators for discrete subgroups of 2-by-2 matrices over rational quaternion algebras

Ann Kiefer Universität Bielefeld

Groups St Andrews Birmingham, 11th August

Goal: Generators for  $SL_2((\frac{a,b}{\mathbb{Z}}))$ 

• consider 
$$M_2((rac{a,b}{\mathbb{Q}}))$$
 with  $a,b<0$ 

• order  $\left(\frac{a,b}{\mathbb{Z}}\right)$  in  $\left(\frac{a,b}{\mathbb{Q}}\right)$ 

#### Goal of this work Finding generators for $(P)SL_2((\frac{a,b}{\mathbb{Z}}))$ .

► G finite group.

► G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of  $\mathcal{U}(\mathbb{Z}G)$ .

G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of  $\mathcal{U}(\mathbb{Z}G)$ .

- $\mathbb{Q}G = \prod_{i=1}^{n} M_{n_i}(D_i)$ ,  $D_i$  a division algebra,
- let  $\mathcal{O}_i$  be an order in  $D_i$  for every  $1 \leq i \leq n$ .

G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of  $\mathcal{U}(\mathbb{Z}G)$ .

- $\mathbb{Q}G = \prod_{i=1}^{n} M_{n_i}(D_i)$ ,  $D_i$  a division algebra,
- let  $\mathcal{O}_i$  be an order in  $D_i$  for every  $1 \leq i \leq n$ .

Finding generators and relations for  $\mathcal{U}(\mathbb{Z}G)$ , up to commensurability, reduces to finding generators and relations for  $\mathrm{SL}_{n_i}(\mathcal{O}_i)$  for every  $1 \leq i \leq n$ .

# **Exceptional Components**

#### Definition

A finite dimensional simple algebra is said to be an exceptional component, if it is one of the following types:

- (1) a non-commutative division algebra different from a totally definite quaternion algebra,
- (2)  $M_2(\mathbb{Q})$ ,
- (3)  $M_2(\mathbb{Q}(\sqrt{-d}))$  with d > 0,
- (4)  $M_2(\mathcal{H})$  where  $\mathcal{H}$  is a totally definite quaternion algebra with centre  $\mathbb{Q}$ , i.e.  $\mathcal{H} = \left(\frac{a,b}{\mathbb{Q}}\right)$  with *a* and *b* negative integers.

# **Exceptional Components**

#### Definition

A finite dimensional simple algebra is said to be an exceptional component, if it is one of the following types:

- (1) a non-commutative division algebra different from a totally definite quaternion algebra,
- (2)  $M_2(\mathbb{Q})$ ,
- (3)  $M_2(\mathbb{Q}(\sqrt{-d}))$  with d > 0,
- (4)  $M_2(\mathcal{H})$  where  $\mathcal{H}$  is a totally definite quaternion algebra with centre  $\mathbb{Q}$ , i.e.  $\mathcal{H} = \left(\frac{a,b}{\mathbb{Q}}\right)$  with *a* and *b* negative integers.

Idea for some of these cases  $\rightarrow\,$  Discontinuous actions on hyperbolic spaces.

### Isometries of $\mathbb{H}^2$ and $\mathbb{H}^3$

The upper half space model of hyperbolic space

• 
$$\mathbb{H}^2 = \{ z = x + yi \mid x, y \in \mathbb{R}, y > 0 \}$$

• 
$$\mathbb{H}^3 = \{ z = x + yi + rj \mid x, y, r \in \mathbb{R}, r > 0 \}$$

- ▶  $\operatorname{PSL}_2(\mathbb{R}) \cong \operatorname{ISO}^+(\mathbb{H}^2)$
- ▶  $\operatorname{PSL}_2(\mathbb{C}) \cong \operatorname{ISO}^+(\mathbb{H}^3)$

Action on  $\mathbb{H}^2, \mathbb{H}^3$ 

• 
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$
, computed in  $\mathbb{C}$   
•  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = (az+b)(cz+d)^{-1}$ , computed in  $(\frac{-1,-1}{\mathbb{R}})$ 

# Group Actions, Fundamental Domains and Poincaré

Theorem

Let X be a proper metric space. A group  $\Gamma$  of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.

Group Actions, Fundamental Domains and Poincaré

#### Theorem

Let X be a proper metric space. A group  $\Gamma$  of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.

# Definition

A fundamental domain of the discontinuous group  $\Gamma < Iso(X)$  is a closed subset  $\mathcal{F} \subseteq X$  satisfying the following conditions:

 $\blacktriangleright$  the boundary of  ${\cal F}$  has Lebesgue measure 0,

• 
$$g(\mathcal{F}^{\circ}) \neq h(\mathcal{F}^{\circ})$$
 for  $g \neq h$ .

• 
$$X = \bigcup_{g \in \Gamma} g(\mathcal{F}).$$

Group Actions, Fundamental Domains and Poincaré

#### Theorem

Let X be a proper metric space. A group  $\Gamma$  of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.

# Definition

A fundamental domain of the discontinuous group  $\Gamma < Iso(X)$  is a closed subset  $\mathcal{F} \subseteq X$  satisfying the following conditions:

 $\blacktriangleright$  the boundary of  ${\cal F}$  has Lebesgue measure 0,

• 
$$g(\mathcal{F}^{\circ}) \neq h(\mathcal{F}^{\circ})$$
 for  $g \neq h$ .

• 
$$X = \bigcup_{g \in \Gamma} g(\mathcal{F}).$$

# Theorem (Poincaré)

Let  $\mathcal F$  be a convex fundamental polyhedron for a discrete group  $\Gamma$  of  $\mathbb H^n$ . Then  $\Gamma$  is generated by

$$\{g \in \Gamma \mid \mathcal{F} \cap g(\mathcal{F}) \text{ is a side of } \mathcal{F}\}.$$

イロト 不得 トイヨト イヨト 二日

# Fundamental Domain of $PSL_2(\mathbb{Z})$

#### Fundamental Domain of $\mathrm{PSL}_2(\mathbb{Z})$ acting on $\mathbb{H}^2$



 $\Gamma \leq \operatorname{PSL}_2(\mathbb{C})$  discrete group of finite covolume



 $\Gamma \leq \operatorname{PSL}_2(\mathbb{C})$  discrete group of finite covolume

 $\rightarrow$ 

 finite-sided convex polyhedron P of finite volume

イロト 不得 トイヨト イヨト

8/15

# $\Gamma \leq \operatorname{PSL}_2(\mathbb{C})$ discrete group of finite covolume



- finite-sided convex polyhedron P of finite volume
- P contains fundamental domain for Γ

# $\Gamma \leq \mathrm{PSL}_2(\mathbb{C})$ discrete group of finite covolume

- finite-sided convex polyhedron P of finite volume
- P contains fundamental domain for Γ
- finite set of generators up to finite index for Γ

イロト 不得 トイヨト イヨト

Output for  $\operatorname{PSL}_2\left(\mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]\right)$ 



What about  $M_2((\frac{a,b}{\mathbb{O}}))$ ?

• to begin: 
$$M_2((\frac{-1,-1}{\mathbb{Q}}))$$

• order: 
$$PSL_2((\frac{-1,-1}{\mathbb{Z}}))$$

Main idea: imitate DAFC for  $\Gamma \leq PSL_2((\frac{-1,-1}{\mathbb{R}}))$  discrete

What about  $M_2((\frac{a,b}{\mathbb{O}}))$ ?

• to begin: 
$$M_2((\frac{-1,-1}{\mathbb{Q}}))$$

• order: 
$$PSL_2((\frac{-1,-1}{\mathbb{Z}}))$$

Main idea: imitate DAFC for  $\Gamma \leq PSL_2((\frac{-1,-1}{\mathbb{R}}))$  discrete

What is  $PSL_2((\frac{-1,-1}{\mathbb{R}}))$ ?

 $\rightarrow$  reduced norm 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

10/15

The action of  $PSL_2((\frac{-1,-1}{\mathbb{R}}))$ 

• Möbius action on 
$$\left(\frac{-1,-1}{\mathbb{R}}\right)$$

▶ action on  $\mathbb{H}^5$  by Poincaré extension

$$\rightarrow \operatorname{PSL}_2((rac{-1,-1}{\mathbb{R}})) \cong \operatorname{ISO}^+(\mathbb{H}^5).$$

However: not very handy to work with.

# **Clifford Algebras**

#### Definition

The Clifford algebra  $C_n$  is the associative algebra over the reals generated by elements  $i_1, i_2, \ldots i_{n-1}$  satisfying

• 
$$i_h^2 = -1$$
 for every  $1 \le h \le n-1$ 

• 
$$i_h i_l = -i_l i_h$$
 for  $h \neq l$ .

#### Definition

The Clifford group  $\Gamma_n$  is the group of all invertible elements of  $C_n$ .

# $\mathrm{PSL}_+(\Gamma_n)$ and its action on $\mathbb{H}^{n+1}$

$$\operatorname{SL}_+(\Gamma_n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad^* - bc^* = 1, + \text{ some conditions} \right\}$$

Theorem (Ahlfors '81)  $PSL_{+}(\Gamma_{n}) \cong ISO^{+}(\mathbb{H}^{n+1}).$ in particular:  $PSL_{+}(\Gamma_{4}) \cong ISO^{+}(\mathbb{H}^{5}).$ 

# $\begin{pmatrix} \mathsf{a} & b \\ c & d \end{pmatrix} z = (\mathsf{a} z + b)(cz + d)^{-1}, \text{ computed in } \mathcal{C}_{n+1}$

Main strategy: Imitate the algorithm for  $\mathrm{PSL}_+(\Gamma_4(\mathbb{Z})) \leq \mathrm{PSL}_+(\Gamma_4)$ , discrete.

To sum up

$$\mathrm{PSL}_2((rac{-1,-1}{\mathbb{R}}))\cong\mathrm{ISO}^+(\mathbb{H}^5)\cong\mathrm{PSL}_+(\Gamma_4)$$

To sum up

$$\operatorname{PSL}_2((\frac{-1,-1}{\mathbb{R}})) \cong \operatorname{ISO}^+(\mathbb{H}^5) \cong \operatorname{PSL}_+(\Gamma_4)$$

$$\begin{array}{ccc} \operatorname{SL}_2(\Gamma_4(\mathbb{Q})) & \xrightarrow{\sim} & \operatorname{SL}_2((\frac{-1,-1}{\mathbb{Q}})) \\ & & & & & & \\ & & & & & & \\ \operatorname{SL}_2(\Gamma_4(\mathbb{Z})) & & & \operatorname{SL}_2((\frac{-1,-1}{\mathbb{Z}})) \end{array}$$

To sum up

$$\operatorname{PSL}_2((rac{-1,-1}{\mathbb{R}}))\cong \operatorname{ISO}^+(\mathbb{H}^5)\cong \operatorname{PSL}_+(\Gamma_4)$$

$$\begin{array}{rcl} \operatorname{SL}_2(\Gamma_4(\mathbb{Q})) & \xrightarrow{\sim} & \operatorname{SL}_2((\frac{-1,-1}{\mathbb{Q}})) \\ & & & & & & \\ & & & & & & \\ \operatorname{SL}_2(\Gamma_4(\mathbb{Z})) & & & \operatorname{SL}_2((\frac{-1,-1}{\mathbb{Z}})) \end{array}$$

What about  $\mathrm{PSL}_2((rac{a,b}{\mathbb{Z}}))$ , a,b<0?

$$(\frac{a,b}{\mathbb{R}})\cong(\frac{-1,-1}{\mathbb{R}})$$

Thank you for your attention.