Non-cancellation group of a direct product

R. Kwashira^{1, 2} Work with J.C. Mba³

 ¹ University of the Witwatersrand, South Africa,
 ² DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa,
 ³ University of Johannesburg, South Africa

> Birmingham, UK August, 2017

- Introduction
- Non cancellation set of χ_o -groups
- \bullet Non cancellation set of $\mathcal{K}\text{-}\mathsf{groups}$
- $\bullet\,$ The category ${\rm Grp}_{\rm F}$
- Non cancelation group of a direct product

Abstract

Consider the semidirect product $G_i = \mathbb{Z}_{n_i} \rtimes_{\omega_i} \mathbb{Z}$. Methods for computation of the non-cancellation groups $\chi(G_1 \times G_2)$ and $\chi(G_i^k)$, $k \in \mathbb{N}$ were developed in literature. We develop a general method of computing $\chi(G_1 \times G_2, h)$, where $h : F \hookrightarrow G_1 \subseteq G_1 \times G_2$ and F a finite group.

- N f.g. nilpotent group
- $\mathcal{G}(N)$: isomorphism classes of f.g nilpotent groups M such that for every prime p $M_p \simeq N_p$
- $\mathcal{G}(N)$ has a group structure
- χ_o : class of all G f.g. groups with [G,G] finite
- Non cancellation set χ(G): set of all isomorphism classes of groups H such that G × Z ≃ H × Z
- N is a f.g nilpotent group [N, N] finite then $\mathcal{G}(N) = \chi(N)$
- χ(G) has a group structure similar to the group structure on the Mislin genus of a nilpotent χ_o- group
- $H imes \mathbb{Z} \cong G imes \mathbb{Z}$ iff. $H_\pi \cong G_\pi$ (π for every finite set of primes π
- χ_{o} group H, $\chi(H)$ coincides with the restricted genus $\Gamma_{f}(H)$ of H

Introduction 2 continued....

- Fix F finite grp. $h: F \longrightarrow G$ be a monomorphism
- $\mathrm{Grp}_{\mathrm{F}}$: category of groups under F
- objects: (G, h), (G_1, k) group homomorphisms $h : F \longrightarrow G$ and $k : F \longrightarrow G_1$
- ullet morphisms: group homomorphism $eta: {\sf G} \longrightarrow {\sf G}_1$ such that $eta \circ {\sf h} = {\sf k}$
- π -localization of an object: $h: F \longrightarrow G$ is the object $h_{\pi}: F \longrightarrow G_{\pi}$ where π is set of primes
- \mathcal{X}_F : full subcategory of χ_o groups
- $\Gamma_f(h)$: restricted genus: isomorphism classes k such that k_{π} is isomorphic to h_{π} for $k \in \mathcal{X}_F$
- F is a trivial group then \mathcal{X}_F is identified with χ_o -groups
- F trivial : $\chi(G, h)$, non cancellation group of G under F coincides with $\chi(G)$

K be the class of groups: T ⋊_ω F, F finite rank free abelian group T finite abelian group

•
$$H = G(m, u) = \mathbb{Z}_m \rtimes_{\nu} \mathbb{Z}, (m, u) = 1.$$

- H is a K- group
- $\mathcal{K}_{\rm F}$ full subcategory of ${\rm Grp}_{\rm F}$

 Let G_i = Z_{mi} ⋊_{ωi} Z and let h : F → G₁ × G₂ where F is a finite group and h is a monomorphism. We develop a general method for computing χ(G₁ × G₂, h).

- χ_{o} group G: assign a natural number $n(G) = n_1 n_2 n_3$
 - n_1 : exponent of T_G
 - n_2 : exponent of $\operatorname{Aut}(T_G)$
 - n_3 : exponent of the torsion of the center T_{Z_G}
- $G \ \chi_o$ -group with $[G:H] < \infty$, ; $T_G = T_H$
- $W = \{H < G, ([G : H], n) = 1\}$ then $H \times \mathbb{Z} \cong G \times \mathbb{Z}$.
- K group, $K \times \mathbb{Z} \cong G \times \mathbb{Z}$,then exists $J \in W$ with $J \cong K$.
- Given $J_1, J_2 \in W$, if $[G:J_1] \equiv \pm 1[G:J_2] \mod n$, then $J_1 \cong J_2$
- non-cancellation set $\chi(G)$ coincides with the (finite) set $\{[J] : J \in W\}.$
- $\mathbb{Z}_n^*/\{1, -1\} \longrightarrow \chi(G)$ induces a group structure on $\chi(G)$
- G nilpotent, $\chi(G)$ coincides with Hilton-Mislin Genus.

G = Z_m ⋊_ω Z
ω : Z → Aut(Z_m) automorphism of Z_m defined ω(1)(t) = ut
d : multiplicative order of u modulo m

•
$$\chi(G) = \mathbb{Z}_d^* / \{1, -1\}$$

Non cancellation group of a morphism $\chi(G, h)$

•
$$n = n(G), X(n) = \{u \in \mathbb{N} : (u, n) = 1\}$$

•
$$Y(G, h) = \{u \in X(n), ; \text{ exist } K < G, ; [G : K] = u, (K, h_K) \text{ member } \chi(G, h)\}$$

- $G_u < G$, ; $T_G \subseteq G_u$ and $[G : G_u] = u$ for each $u \in Y(G, h)$
- $h_u: x \mapsto h(x)$ induced homomorphism
- $\varsigma: Y(G,h) \longrightarrow \chi(G,h)$
- $Y^*(G,h)$:image of Y(G,h) in \mathbb{Z}_n^* , $Y^*(G,h) < \mathbb{Z}_n^*$
- $G \ \chi_o$ -group, $h: F \to G$ monomorphism, F finite group
- $\varsigma: Y(G,h)/\pm 1 \longrightarrow \chi(G,h)$ induces a group structure on $\chi(G,h)$
- F trivial, $\chi(G,h) = \chi(G)$

- $G = \mathbb{Z}_m \rtimes_\omega \mathbb{Z}$
- t = d(G) : smallest invariant factors of $\operatorname{Im} \omega$
- $V(G,h) = \{u \in X(t)\}$ s.t K < G, [G : K] = u and (K, h_K) is a member of $\chi(G, h)$
- $V^*(G,h)$ be the image of V(G,h) in \mathbb{Z}_t^*
- Choose K < G of G s.t. (K, h_K) member in $\chi(G, h)$ and [G : K] = u
- t | n(G)

Let n = n(G) and $\rho: Y(G, h) \longrightarrow \chi(G, h)$ be the epimorphism that takes a residue mod n and reduces it mod t. The epimorphism $\zeta: Y^*(G, h) \longrightarrow \chi(G, h)$ factorises through the epimorphism ξ' :

Theorem

For $m \in V(G, h)$, the following conditions are equivalent:

(a)
$$\overline{m} \in \ker[V^*(G,h) \longrightarrow \chi(G,h)].$$

(b) There exists $\alpha \in \operatorname{Aut}(T)$ with $v \circ h = h$ such that $\alpha \in N_{\operatorname{Aut} T} \operatorname{Im} \omega$ and for an automorphism $\Lambda : \operatorname{Im} \omega \longrightarrow \operatorname{Im} \omega$ defined by $v \mapsto \alpha v \alpha^{-1}$, we have $\det(\Lambda) = \pm \overline{m}^{-1} \in V^*(G, h)$.

Non cancelation group of $(G_1 \times G_2, h)$

•
$$G_i = G(m_i, u_i)$$
 with $gcd(m_1, m_2) = 1$, $gcd(m_i, u_j) = 1$, $i, j = 1, 2$

- d_i: multiplicative order of u_i modulo m_i
- $d = \operatorname{lcm}(d_1, d_2)$ and $m = \operatorname{lcm}(m_1, m_2)$.
- If $gcd(d_1, d_2) = 1$ let $t = d_1d_2$ and if $gcd(d_1, d_2) \neq 1$ let $t = gcd(d_1, d_2)$
- $G_1 \times G_2 = (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}) \rtimes_\omega \mathbb{Z}^2$

•
$$\omega: \mathbb{Z}^2 \longrightarrow \operatorname{Aut}(\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2})$$

- $\omega(\epsilon_i) = \omega_i : (t_1, t_2) \mapsto (u_1^{\delta(i,1)} t_1, u_2^{\delta(i,2)} t_2)$
- $\{\epsilon_1, \epsilon_2\}$ standard basis of \mathbb{Z}^2
- $J = \operatorname{Im} \omega = <\omega_1, \omega_2 > \text{is a free } \mathbb{Z}_d\text{-module}$

•
$$\sigma \in \operatorname{End}(J)$$
, $\det(\sigma) \in \mathbb{Z}_d$

- $J_* = N_{\operatorname{Aut}(T_{G_1 \times G_2})}J$
- $\alpha \in Aut(T_{G_1 \times G_2}), \ \bigwedge_{\alpha}$ inner automorphism of $J: \ \bigwedge_{\alpha} : v \mapsto \alpha v \alpha^{-1}$
- q_2 be a multiple of q such that q_2q divides m.
- $e_1=(1,0),~e_2=(0,1)$:elements of ${\mathcal T}_{G_1 imes G_2}$

•
$$F = \{aq_2e_2 : a \in \mathbb{Z}\} F < T_{G_1 \times G_2}$$

• $h: F \hookrightarrow G_1 \times G_2$ inclusion map

- Fix $\alpha \in J^*$ such that $\alpha(x) = x \,\, \forall x \in F$
- exists a 2 × 2 matrix (α_{ij}) of integers such that $\alpha(e_i) = \sum_{j=1}^2 \alpha_{jj}e_j$
- Suppose that Λ_{lpha} is the inner automorphism of J determined by lpha.

For the matrix (α_{ij}) , α_{ii} is a unit modulo m for i = 1, 2.

٥

Proof

- $\alpha(0,q_2)=(0,q_2)$ since $(0,q_2)\in F$
- $\alpha(0, q_2) = (q_2 \alpha_{12}, q_2 \alpha_{22}) = (0, q_2)$
- m divides α_{12}
- q divides $lpha_{12}$, while $lpha_{22}$ is a unit modulo m

•
$$[\alpha] = \begin{pmatrix} \alpha_{11} & tq \\ \alpha_{21} & u \end{pmatrix}$$

•
$$det(\alpha) = \alpha_{11}u - \alpha_{21}tq$$

- Claim: α_{11} is a unit modulo m
- α_{11} is not a unit modulo m
- let p common prime divisor of $lpha_{11}$ and m
- p divides q and p divides det(α) contradiction!!! (det(α) is a unit modulo m) (α is an automorphism).
- Thus α_{11} is a unit modulo m.

The inner automorphism \bigwedge_{α} of J coincides with the identity automorphism of J.

Proof

- for \bigwedge_{α} exists a matrix (\bigwedge_{ij}) of integers such that $\bigwedge \omega_i = \omega_1^{\bigwedge_{1i}} \omega_2^{\bigwedge_{2i}}$ for each i
- let $\bigwedge \omega_i = \mathbf{v}_i$. Also $\bigwedge \omega_i = \alpha \omega_i \alpha^{-1} = \mathbf{v}_i \iff \alpha \omega_i = \mathbf{v}_i \alpha$
- $\alpha \omega_i(e_i) = \alpha(u_i e_i) = \sum_{j=1}^2 u_i^{\delta(i,j)} \alpha_{ji} e_j$
- $\mathbf{v}_i \alpha(\mathbf{e}_i) = \mathbf{v}_i \left(\sum_{j=1}^2 \alpha_{jj} \mathbf{e}_j \right) = \sum_{j=1}^2 \alpha_{jj} \mathbf{u}_i^{\delta(i,j)} \bigwedge_{jj} \mathbf{e}_j$
- $\sum_{j=1}^{2} u_i^{\delta(i,j)} \alpha_{ji} e_j = \sum_{j=1}^{2} \alpha_{ji} u_i^{\delta(i,j) \bigwedge_{ji}} e_j$ • j = i
 - α_{ii} is a unit modulo m• $u_i^{\wedge_{ii}} \equiv u_i \mod m$

•
$$\bigwedge_{ii} \equiv 1 \mod d$$

•
$$\bigwedge_{ii} \equiv 1 \mod t, \ (t \mid d)$$

•
$$j \neq i$$

• $\alpha \omega_i(e_j) = \alpha(u^{\delta(i,j)}(e_j)) = \alpha(e_j) = \sum_{k=1}^2 \alpha_{kj} e_k$
• $v_i \alpha(e_j) = \sum_{k=1}^2 \alpha_{kj} u_k^{\wedge ki} e_k$
• Therefore $\sum_{k=1}^2 \alpha_{kj} e_k = \sum_{k=1}^2 \alpha_{kj} u_k^{\wedge ki} e_k$
• $k = j$. Since α_{jj} is a unit modulo m
• then $u_j^{\wedge ji} \equiv 1 \mod m$, that is, $\Lambda_{ji} \cong 0 \mod d$
• Consequently $\Lambda_{ji} \equiv 0 \mod t$. Thus det $(\Lambda_\alpha) = 1$
• Λ_α is identity on J

3

イロト イヨト イヨト イヨト

The pair $(G_1 \times G_2, h)$ is an object of \mathcal{K}_F for which $(G_1 \times G_2, h) = \mathbb{Z}_t^* / \pm 1$.

Proof

• Proposition follows from Theorem 1 and Proposition 3

Bibliography

- A. Fransman and P. Witbooi, Non-cancellation sets of direct powers of certain metacyclic groups, *Kyungpook Math. J.* 41 (2001), no. 2, 191-197.
- P. Hilton and G. Mislin, On the genus of a nilpotent group with finite commutator subgroup, *Math. Z.*, **146** (1976), 201–211.
- J. C. Mba and P. J. Witbooi, Induced morphisms between localization genera of groups, *Algebra Colloquium*, 21: 2 (2014) 285-294
- G. Mislin, Nilpotent groups with finite commutator subgroups, in: P. HILTON (ED), *Localization in Group Theory and Homotopy Theory*, Lecture Notes in Mathematics, **418** (1974), 103–120, Springer-Verlag Berlin.
 - N. O'Sullivan, Genus and Cancellation, *Comm. Algebra* **28** (7) (2000), 3387–3400.

- D. Scevenels and P. Witbooi, Non-cancellation and Mislin genus of certain groups and H_o spaces, J. Pure Appl. Algebra, **170** (2002), 309–320.
- R. Warfield, Genus and cancellation for groups with finite commutator subgroup, J. Pure Appl. Algebra 6 (1975), 125–132.
- P. Witbooi, Generalizing the Hilton-Mislin genus group, J. Algebra 239 (1) (2001), 327–339.
- P. J. Witbooi, Non-cancellation for groups with non-abelian torsion, J. Group Theory 6 (2003), no. 4, 505-515.