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Basic definition

Definition

If S ,T are finite sets of integers, then we put

S + T := {x + y | x ∈ S , y ∈ T}, 2S := {x1 + x2 | x1, x2 ∈ S} .

S + T is also called the (Minkowski) sumset of S and T .

If S = {x}, then we denote S + T by x + T and if T = {y}, then we
write S + y instead of S + {y}.

Questions

What can be said about 2S if we know some property of S ?

What can be said about S if we have some bound for |2S | ?
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Background

Remark 1

Let S be a finite set of integers with k elements. Then

|2S | ≥ 2k − 1.

Proof. Let S = {x1, x2, · · · , xk}, and assume x1 < x2 < · · · < xk .

Clearly

2x1 < x1 + x2 < 2x2 < x2 + x3 < 2x3 < · · · < 2xk−1 < xk−1 + xk < 2xk

and each of these elements belongs to 2S . Hence |2S | ≥ 2k − 1, as
required. //
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Background

Remark 2

Let S be a finite set of integers with k elements.

If S is an arithmetic progression:

S = {a, a + r , a + 2r , · · · , a + (k − 1)r},

then

|2S | = 2k − 1.

Proof. We have

2S = {2a, 2a + r , 2a + 2r , ..., 2a + (2k − 2)r}.

//
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Background

Remark 3

Let S be a finite set of integers with k elements.

If |2S | = 2k − 1, then S is an arithmetic progression.

Proof. Let S = {x1, x2, · · · , xk}, and assume x1 < x2 < · · · < xk . Then
2S = {2x1, x1 + x2, 2x2, x2 + x3, 2x3, · · · , 2xk−1, xk−1 + xk , 2xk} with
2x1 < x1 + x2 < 2x2 < x2 + x3 < 2x3 < · · · < 2xk−1 < xk−1 + xk < 2xk .

Clearly x2 = x1 + (x2 − x1).
It holds 2x1 < x1 + x3 < 2x3 with x1 + x3 6= x1 + x2, x2 + x3. Therefore
x1 + x3 = 2x2 and x3 = 2x2 − x1 = x2 + (x2 − x1). Analogously
x2 + x4 = 2x3 and x4 = 2x3 − x2 = x3 + (x3 − x2) = x3 + (x2 − x1),
and so on. //
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Starting point

Additive Number Theory

Direct and Inverse theorems

Gregory A. Freiman,
Foundations of a structural theory of set addition
Translations of mathematical monographs, 37, American
Mathematical Society, Providence, Rhode Island, 1973.
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Background

Additive Number Theory

Direct and Inverse theorems

M.B. Nathanson
Additive number theory - Inverse problems and geometry of sumsets
Springer, New York, 1996.

A. Geroldinger, I.Z. Ruzsa,
Combinatorial Number Theory and Additive Group Theory
Birkäuser, Basel - Boston - Berlin, 2009.
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Background - Direct and Inverse problems

Gregory A. Freiman, Structure theory of set addition, Astérisque, 258
(1999), 1-33

"Thus a direct problem in additive number theory is a
problem which, given summands and some conditions, we
discover something about the set of sums. An inverse
problem in additive number theory is a problem in which,
using some knowledge of the set of sums, we learn something
about the set of summands."
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Background

Let S be a finite set of integers with k elements, and
2S = {x + y | x , y ∈ S}.

Then |2S | ≥ 2k − 1

and |2S | = 2k − 1 if and only if S is an arithmetic progression.

Questions

What can be said about S if |2S | is not much greater than
this minimal value?

What is the structure of S if |2S | ≤ αk , where α is any given
positive number?
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Background - Inverse probems of doubling type

Let S be a finite set of integers.

Question

Determine the structure of S if |2S | satisfies

|2S | ≤ α|S |+ β

for some small α ≥ 1 and small |β|.

Problems of this kind are called

inverse problems of small doubling type.
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Background

G.A. Freiman,
On the addition of finite sets I ,
Izv. Vyss. Ucebn. Zaved. Matematika 6 (13) (1959), 202-213.

G.A. Freiman,
Inverse problems of additive number theory IV . On the addition of finite sets II ,
(Russian) Elabuž . Gos. Ped. Inst. Učen. Zap., 8 (1960), 72-116.
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Starting point

Theorem (G.A. Freiman)

Let S be a finite set of integers with k ≥ 3 elements and
suppose that |2S | ≤ 2k − 1 + b, where 0 ≤ b ≤ k − 3. Then
S is contained in an arithmetic progression of length k + b .

In particular

3k − 4 Theorem (G.A. Freiman)

Let S be a finite set of integers with k ≥ 3 elements and
suppose that |2S | ≤ 3k − 4. Then there exist integers a and q
such that q > 0 and

S ⊆ {a, a + q, a + 2q, . . . , a + (|2X | − k)q} .
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Starting point

Freiman studied also the case |2S | ≤ 3|S | − 3 and |2S | ≤ 3|S | − 2.

Theorem (G.A. Freiman)

Let S be a finite set of integers with k ≥ 2 elements and suppose that

|2S | ≤ 3k − 3.

Then one of the following holds:

(i) S is a subset of an arithmetic progression of size at most 2k − 1;

(ii) S is a bi-arithmetic progression

S = {a, a + d , · · · , a + (i − 1)d} ∪ {b, b + d , · · · , b + (j − 1)d}, i + j = k;

(iii) k = 6 and S has a determined structure.
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Basic definition

Definition

If S is a subset of a group (G , ·), write

S2 = SS := {xy | x , y ∈ S}.
S2 is also called the square of S .

If G is an additive group, then we put

2S = S + S := {x + y | x , y ∈ S}.
2S is also called the double of S .
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Main problems

Problem

Given S , find information about |S2|.
Direct problems

Problem

Given some bound for |S2| ,

find information about the structure of S .
Inverse problems
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Small doubling problems

By now, Freiman’s theory had been extended tremendously, in many
different directions.

It was shown by Freiman and others that problems in various fields may
be looked at and treated as Structure Theory problems, including
Additive and Combinatorial Number Theory, Group Theory, Integer
Programming and Coding Theory.

J. Cilleuelo, M. Silva, C. Vinuesa, H. Halberstam, N. Gill, B.J.
Green, H. Helfgott, R. Jin, V.F. Lev, P.Y. Smeliansky , I.Z. Ruzsa,
T. Sanders, T.C. Tao, ...
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Torsion-free groups

Now let G be a torsion-free group.
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Doubling problems

Let G be a group and S a finite subset of G .

Let α, β be real numbers.

Inverse problems of doubling type

What is the structure of S if |S2| satisfies

|S2| ≤ α|S |+ β?

The coefficient α, or more precisely the ratio |S2|
|S | , is called

the doubling coefficient of S .
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Doubling problems

There are two main types of questions one may ask.

Question 1

What is the general type of structure that S can have if

|S2| ≤ α|S |+ β?

How behaves this type of structure when α increases?

Question 2

For a given (in general quite small) range of values for α find
the precise (and possibly complete) description of those finite
sets S which satisfy

|S2| ≤ α|S |+ β,

with α and |β| small.
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Doubling problems

Question 1

What is the general type of structure that S can have if

|S2| ≤ α|S |+ β?

How behaves this type of structure when α increases?

Studied recently by many authors:

E. Breuillard, B. Green, I.Z. Ruzsa, T. Tao, . . .

Very powerful general results have been obtained (leading to a
qualitatively complete structure theorem thanks to the
concepts of nilprogressions and approximate groups).

But these results are not very precise quantitatively.
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Small doubling problems

Question 2

For a given (in general quite small) range of values for α find

the precise (and possibly complete) description of those finite
sets S which satisfy

|S2| ≤ α|S |+ β,

with α and |β| small.
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Background - direct results - doubling coefficient 2

Proposition

If S is a non-empty finite subset of the group of the integers, then we

have |2S | ≥ 2|S | − 1.

More generally:

Theorem (J.H.B. Kemperman, Indag. Mat., 1956)

If S is a non-empty finite subset of a torsion-free group, then
we have |S2| ≥ 2|S | − 1.

Question

Is this bound sharp in any torsion-free group?
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Progressions

Definition

If a, r 6= 1 are elements of a multiplicative group G , a
geometric left (rigth) progression with ratio r and length n is
the subset of G

{a, ar , ar 2, · · · , arn−1} ({a, ra, r 2a, · · · , rn−1a}).

If G is an additive abelian group,

{a, a + r , a + 2r , · · · , a + (n − 1)r}

is called an arithmetic progression with difference r and length n.
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An example - doubling coefficient 2

Example

If S = {a, ar , ar 2, · · · , arn−1} is a geometric progression in a
torsion-free group and ar = ra, then

S2 = {a2, a2r , a2r 2, · · · , a2r 2n−2} has order 2|S | − 1.
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Background - inverse results - doubling coefficient 2

Theorem (G.A. Freiman, B.M. Schein, Proc. Amer. Math. Soc., 1991)

If S is a finite subset of a torsion-free group, |S | = k ≥ 2,

|S2| = 2|S | − 1

if and only if

S = {a, aq, · · · , aqk−1}, and either aq = qa or aqa−1 = q−1.

In particular, if |S2| = 2|S | − 1, then S is contained in a left coset of a

cyclic subgroup of G .
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Background - inverse results - doubling coefficient 2

Theorem (Y.O. Hamidoune, A.S. Lladó, O. Serra, Combinatorica, 1998)

If S is a finite subset of a torsion-free group G , |S | = k ≥ 4,
such that

|S2| ≤ 2|S |,

then there exist a, q ∈ G such that

S = {a, aq, · · · , aqk} \ {c}, with c ∈ {a, aq}.
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Small doubling problems with doubling coefficient 3

Theorem (G.A. Freiman, 1959)

Let S be a finite set of integers with k ≥ 3 elements and suppose that

|2S | ≤ 3k − 4.

Then S is contained in an arithmetic progression of size 2k − 3.

Conjecture (G.A. Freiman)

If G is any torsion-free group, S a finite subset of G , |S | ≥ 4,
and

|S2| ≤ 3|S | − 4,

then S is contained in a geometric progression of length at
most 2|S | − 3.
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Small doubling problems with doubling coefficient 3

Theorem (G.A. Freiman)

Let S be a finite set of integers with k ≥ 2 elements and suppose that
|2S | ≤ 3k − 3.

Then one of the following holds:

(i) S is contained in an arithmetic progression of size at most 2k − 1;

(ii) S is a bi-arithmetic progression
S = {a, a+q, a+2q, · · · , a+(i−1)q}∪{b, b+q, a+2q, · · · , b+(j−1)q};
(iii) k = 6 and S has a determined structure.

Problem

Let G be any torsion-free group, S a finite subset of G ,

|S | ≥ 3.
What is the structure of S if

|S2| ≤ 3|S | − 3?
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Small doubling problems with doubling coefficient 3

Freiman studied also the case |2S | = 3|S | − 2, S a finite set of integers.
He proved that, with the exception of some cases with |S | small, then

either S is contained in an arithmetic progression or it is the union of two
arithmetic progressions with same difference.

Conjecture (G.A. Freiman)

If G is any torsion-free group, S a finite subset of G , |S | ≥ 11,
and |S2| ≤ 3|S | − 2,

then S is contained in a geometric progression of length at

most 2|S |+ 1 or

it is the union of two geometric progressions with same ratio.
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Small doubling problems have been studied

in abelian groups

by many authors:

Y.O. Hamidoune, B. Green, M. Kneser,

A.S. Lladó, A. Plagne, P.P. Palfy,

I.Z. Ruzsa, O. Serra, Y.V. Stanchescu, . . .
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New results

In a series of papers with

Gregory Freiman, Marcel Herzog, Mercede Maj,

Yonutz Stanchescu, Alain Plagne, Derek Robinson

we studied Freiman’s conjectures

and more generally small doubling problems

in the class of orderable groups.
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New results
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Papers

G.A. Freiman, M. Herzog, P. L., M. Maj

Small doubling in ordered groups

J. Australian Math. Soc., 96 (2014), no. 3, 316-325.
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Papers

G.A. Freiman, M. Herzog, P.L., M. Maj, Y.V.
Stanchescu

Direct and inverse problems in additive number theory
and in non − abelian group theory

European J. Combin. 40 (2014), 42-54.

A small doubling structure theorem
in a Baumslag − Solitar group

European J. Combin. 44 (2015), 106-124.
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Papers

G.A. Freiman, M. Herzog, P. L., M. Maj, A. Plagne,
D.J.S. Robinson, Y.V. Stanchescu

On the structure of subsets of an orderable group,

with some small doubling properties

J. Algebra, 445 (2016), 307-326.

G.A. Freiman, M. Herzog, P. L., M. Maj, A. Plagne,
Y.V. Stanchescu

Small doubling in ordered groups : generators and structures,

Groups Geom. Dyn., 11 (2017), 585-612.
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Ordered groups

Definition

Let G be a group and suppose that a total order relation ≤ is
defined on the set G .
We say that (G ,≤) is an ordered group if for all a, b, x , y ∈ G ,
the inequality a ≤ b implies that xay ≤ xby .

Definition

A group G is orderable if there exists a total order relation ≤
on the set G , such that (G ,≤) is an ordered group.
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Orderable groups

The following properties of ordered groups follow easily from
the definition.

If a < 1, then a−1 > 1 and conversely.

If a > 1, then x−1ax > 1.

If a > b and n is a positive integer, then an > bn and
a−n < b−n.

G is torsion-free.

Lemma (B.H. Neumann)

Let (G , <) be an ordered group and let a, b ∈ G .
If anb = ban for some integer n 6= 0, then ab = ba.
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Orderable groups

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is
torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of orderable groups contains the class of
torsion-free nilpotent groups.

Free groups are orderable.

The group
〈x , c | x−1cx = c−1〉

is not an orderable group.
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Orderable groups

More information concerning orderable groups may be found,
for example, in

R. Botto Mura and A. Rhemtulla, Orderable groups,
Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, Inc., New York and Basel, 1977.

A.M.W. Glass, Partially ordered groups,
World Scientific Publishing Co., Series in Algebra, v. 7, 1999.
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Orderable groups

Any orderable group is an R-group.

A group G is an R-group if, with a, b ∈ G ,

an = bn, n 6= 0, implies a = b.

Any orderable group is an R?-group.

A group G is an R?-group if, with a, b, g1, · · · , gn ∈ G ,

ag1 · · · agn = bg1 · · · bgn implies a = b.

A metabelian R?-group is orderable.
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Small doubling in orderable groups: |S2| ≤ 3|S | − 4

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, J. Austral. Math. Soc.,
2014)

Let (G ,≤) be an ordered group and let S be a finite subset of
G of size k ≥ 3.
Assume that

t = |S2| ≤ 3|S | − 4.

Then 〈S〉 is abelian. Moreover, there exist a, q ∈ G , such that
qa = aq and S is a subset of

{a, aq, aq2, · · · , aqt−k}.
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Small doubling in orderable groups: |S2| ≤ 3|S | − 3

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, J. Austral. Math. Soc.,
2014)

Let (G ,≤) be an ordered group and let S be a finite subset of
G , |S | ≥ 3. Assume that

|S2| ≤ 3|S | − 3.

Then 〈S〉 is abelian.
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Small doubling in orderable groups: |S2| ≤ 3|S | − 3

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, Y.V.
Stanchescu, Groups Geom. Dyn., 2017)

Let G be an ordered group and let S be a finite subset of G ,
|S | ≥ 3. If

|S2| ≤ 3|S | − 3,

then 〈S〉 is abelian, at most 3-generated and one of the
following holds:

(1) |S | ≤ 10;

(2) S is a subset of a geometric progression of length at most
2|S | − 1 ;

(3) S = {ac t | 0 ≤ t ≤ t1 − 1} ∪ {bc t | 0 ≤ t ≤ t2 − 1}.
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Small doubling in orderable groups: 〈S〉 abelian?

Questions

What about 〈S〉 if S is a subset of an orderable group and

|S2| ≤ 3|S | − 2?

Is it abelian? Is it abelian if |S | is big enough?
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Small doubling in orderable groups: 〈S〉 abelian?

Remark

There exists an ordered group G with a subset S of order k
(for any k) such that 〈S〉 is not abelian and |S2| = 3k − 2.

Example

Let
G = 〈a, b | ab = a2〉,

the Baumslag-Solitar group BS(1, 2) and

S = {b, ba, ba2, · · · , bak−1}.

Then

S2 = {b2, b2a, b2a2, b2a3, · · · , b2a3k−3}.

Thus 〈S〉 is non-abelian and |S2| = 3k − 2.
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The structure of 〈S〉 if |S2| = 3|S | − 2

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, Y.V.
Stanchescu, Groups Geom. Dyn., 2017)

Let G be an ordered group and let S be a finite subset of G ,

|S | ≥ 4. If |S2| = 3|S | − 2

then one of the following holds:

(1) 〈S〉 is an abelian group, at most 4-generated;

(2) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = [c , b] = 1〉. In particular
〈S〉 is a nilpotent group of class 2;

(3) 〈S〉 = 〈a, b | ab = a2〉. Therefore 〈S〉 is the Baumslag-
Solitar group BS(1, 2);

(4) 〈S〉 = 〈a〉 × 〈b, c | cb = c2〉;
(5) 〈S〉 = 〈a, b | ab2

= aab, aab = aba〉.
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The structure of S if |S2| = 3|S | − 2 : 〈S〉 abelian

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, Y.V.
Stanchescu, Groups Geom. Dyn., 2017)

Let G be an ordered group and let S be a subset of G of finite
size k > 2. If

|S2| = 3k − 2,

and 〈S〉 is abelian, then one of the following possibilities
occurs:

(1) |S | ≤ 11;

(2) S is a subset of a geometric progression of length at most
2|S |+ 1;

(3) S is contained in the union of two geometric progressions
with the same ratio.
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The structure of S if |S2| = 3|S | − 2 : 〈S〉 nilpotent n.ab.

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, Y.V. Stanchescu,
European J. Combin., 2017)

Let G be a torsion-free nilpotent group and let S be a subset

of G of size k ≥ 4 with 〈S〉 non-abelian.

Then |S2| = 3k − 2 if and only if there exist a, b, c ∈ G and

non-negative integers i , j such that

S = {a, ac , · · · , ac i , b, bc , · · · , bc j},

with 1 + i + 1 + j = k , c 6= 1 and [a, b] = c±1.
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The structure of S if |S2| = 3|S | − 2 : 〈S〉 non-abelian

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, D.J.S.
Robinson, Y.V. Stanchescu, J. Algebra, 2016)

Let G be an ordered group and let S be a subset of G of finite

size k > 2. If |S2| = 3k − 2,

and 〈S〉 is non-abelian, then one of the following statements
holds:

(1) |S | ≤ 4;

(2) S = {x , xc , xc2, · · · , xck−1}, where cx = c2 or (c2)x = c ;

(3) S = {a, ac , ac2, · · · , ac i , b, bc , bc2, · · · , bc j}, with 1 + i+

1 + j = k and ab = bac or ba = abc, ac = ca, bc = cb, c > 1.

Conversely if S has the structure in (2) and (3), then
|S2| = 3|S | − 2.
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Some methods - 〈S〉 abelian

In order to study the structure of S if 〈S〉 is abelian, we use some ideas
suggested by Gregory Freiman.

Definition

Let A be a finite subset of an abelian group (G ,+) and B a finite subset
of an abelian group (H,+).
A map ϕ : A −→ B is a Freiman isomorphism if it is bijective and from

a1 + a2 = b1 + b2

it follows
ϕ(a1) + ϕ(a2) = ϕ(b1) + ϕ(b2).

A is Freiman isomorphic to B if there exists a Freiman isomorphism
ϕ : A −→ B.

Patrizia LONGOBARDI - University of Salerno Small doubling properties in orderable groups



Some methods - 〈S〉 abelian

In order to study the structure of S if 〈S〉 is abelian, we use some ideas
suggested by Gregory Freiman.

Definition

Let A be a finite subset of an abelian group (G ,+) and B a finite subset
of an abelian group (H,+).
A map ϕ : A −→ B is a Freiman isomorphism if it is bijective and from

a1 + a2 = b1 + b2

it follows
ϕ(a1) + ϕ(a2) = ϕ(b1) + ϕ(b2).

A is Freiman isomorphic to B if there exists a Freiman isomorphism
ϕ : A −→ B.

Patrizia LONGOBARDI - University of Salerno Small doubling properties in orderable groups



Some methods - 〈S〉 abelian

In order to study the structure of S if 〈S〉 is abelian, we use some ideas
suggested by Gregory Freiman.

Definition

Let A be a finite subset of an abelian group (G ,+) and B a finite subset
of an abelian group (H,+).
A map ϕ : A −→ B is a Freiman isomorphism if it is bijective and from

a1 + a2 = b1 + b2

it follows
ϕ(a1) + ϕ(a2) = ϕ(b1) + ϕ(b2).

A is Freiman isomorphic to B if there exists a Freiman isomorphism
ϕ : A −→ B.

Patrizia LONGOBARDI - University of Salerno Small doubling properties in orderable groups



Some methods - 〈S〉 abelian

Remark

If A and B are Freiman isomorphic, then

|A| = |B| and |2A| = |2B|.

Remark

If ϕ : A −→ B is a Freiman isomorphism and

A = {a, a + d , a + 2d , · · · , a + (k − 1)d}

is an arithmetic progression with difference d , then B is an arithmetic
progression with difference ϕ(a + d)− ϕ(a).
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Some methods -〈S〉 = BS(1, 2) or 〈S〉 = 〈a〉 × BS(1, 2)

In order to study the structure of S if

〈S〉 = BS(1, 2),

or
〈S〉 = 〈a〉 × BS(1, 2),

we can use dilates.
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Dilates

Subsets of Z of the form

r ∗ A := {rx | x ∈ A},

where r is a positive integer and A is a finite subset of Z, are
called r -dilates.

Sums of dilates are defined as usually:

r1 ∗ A + r2 ∗ A = {r1x1 + r2x2 | x1 ∈ A1, x2 ∈ A2}.
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Dilates

These sums have been recently studied in different situations
by Bukh, Cilleruelo, Hamidoune, Plagne, Rué, Silva,
Vinuesa and others.

In particular, they examined sums of two dilates of the form

A + r ∗ A = {a + rb | a, b ∈ A}

and solved various direct and inverse problems concerning their
sizes.
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The group BS(1, 2) = 〈a, b | ab = a2〉

Theorem

Suppose that S = braA ⊆ BS(1, 2), where r ∈ Z, r ≥ 0

and A is a finite subset of Z. Then

S2 = b2ra2r∗A+A

and
|S2| = |2r ∗ A + A| = |A + 2r ∗ A|.
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Some methods - 〈S〉 = 〈a, b | ab2
= aab, aab = aba〉

In order to study the structure of S if

〈S〉 = 〈a, b | ab2
= aab, aab = aba〉,

we notice that for any n ∈ N:

abn
= afn−1(ab)fn ,

where (fn)n∈N is the Fibonacci sequence,
and we use known results concerning the Fibonacci sequence,
for example the Cassini’s identity:

fn−1fn+1 − f 2
n = (−1)n.
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|S2| = 3|S | − 2 - A remark

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, Y.V.
Stanchescu, Groups Geom. Dyn., 2017)

Let G be an ordered group and let S be a finite subset of G ,

|S | ≥ 4. If |S2| = 3|S | − 2

then one of the following holds:

(1) 〈S〉 is an abelian group, at most 4-generated;

(2) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = [c , b] = 1〉. In particular
〈S〉 is a nilpotent group of class 2;

(3) 〈S〉 = 〈a, b | ab = a2〉. Therefore 〈S〉 is the Baumslag-
Solitar group BS(1, 2);

(4) 〈S〉 = 〈a〉 × 〈b, c | cb = c2〉;
(5) 〈S〉 = 〈a, b | ab2

= aab, aab = aba〉.
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|S2| = 3|S | − 2 - A remark

Corollary

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| ≤ 3|S | − 2,

then 〈S〉 is metabelian.

Corollary

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| ≤ 3|S | − 2

and 〈S〉 is nilpotent, then it is nilpotent of class at most 2.
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|S2| = 3|S | − 1 - A result

Questions

Is there an orderable group with a finite subset S of order k (for any
k ≥ 4) such that |S2| = 3|S | − 1

and 〈S〉 is non-metabelian (non-soluble)?

NO

Theorem (G.A. Freiman, M. Herzog, - , M. Maj, A. Plagne, Y.V.
Stanchescu, Groups Geom. Dyn., 2017)

Let G be an ordered group, β ≥ −2 any integer and let k be
an integer such that k ≥ 2β+4. If S is a subset of G of finite
size k and if

|S2| ≤ 3k + β,

then 〈S〉 is metabelian, and it is nilpotent of class at most 2
if G is nilpotent.
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An example

Example

For any k ≥ 3, there exists an ordered group, with a subset S of finite
size k, such that 〈S〉 is not soluble and

|S2| = 4k − 5.

Let
G = 〈a〉 × 〈b, c〉,

where 〈a〉 is infinite cyclic and 〈b, c〉 is free of rank 2.
For any k ≥ 3, define

S = {a, ac , · · · , ack−2, b}.

Then
|S2| = 4k − 5.
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Problems

Conjecture (G.A. Freiman)

If G is any torsion-free group, S a finite subset of G , |S | ≥ 4, and

|S2| ≤ 3|S | − 4,

then S is contained in a geometric progression of length at most 2|S |−3.

Theorem (K.J. Böröczky, P.P. Palfy, O. Serra, Bull. London Math. Soc.,
2012)

The conjecture of Freiman holds if

|S2| ≤ 2|S |+ 1
2
|S |

1
6 − 3.
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Problems

Conjecture

If G is any torsion-free group, S a finite subset of G , |S | ≥ 4,
and

|S2| ≤ 3|S | − 2,

then 〈S〉 is metabelian and, if it is nilpotent, it is nilpotent of
class 2.
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