On recognizing finite simple groups by element orders in the class of all groups

Andrey Mamontov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Birmingham, 2017

Consider a (not necessarily finite) group G of period n, which means that identity $x^n=1$ holds in G.

Consider a (<u>not</u> necessarily <u>finite</u>) group G of period n, which means that identity $x^n=1$ holds in G.

Define $\omega(G) = \{|g||g \in G\}$ to be the set of element orders (or *spectrum*) of G.

Consider a (<u>not</u> necessarily <u>finite</u>) group G of period n, which means that identity $x^n = 1$ holds in G.

Define $\omega(G) = \{|g||g \in G\}$ to be the set of element orders (or *spectrum*) of G.

Observe that $\omega(G)$ is a finite set of natural numbers, closed with respect to division.

Consider a (<u>not</u> necessarily <u>finite</u>) group G of period n, which means that identity $x^n=1$ holds in G.

Define $\omega(G) = \{|g||g \in G\}$ to be the set of element orders (or *spectrum*) of G.

Observe that $\omega(G)$ is a finite set of natural numbers, closed with respect to division.

Example

$$\omega(A_7) = \{1, 2, 3, 4, 5, 6, 7\}$$

Consider a (<u>not</u> necessarily <u>finite</u>) group G of period n, which means that identity $x^n=1$ holds in G.

Define $\omega(G) = \{|g||g \in G\}$ to be the set of element orders (or *spectrum*) of G.

Observe that $\omega(G)$ is a finite set of natural numbers, closed with respect to division.

Example

$$\omega(A_7) = \{1, 2, 3, 4, 5, 6, 7\}$$

We are generally interested in the following question:

$$\omega(G)$$
 given $\Rightarrow G$?

if $\omega(G)$ is given, what can we say about G?

There are several straightforward remarks to the question:

There are several straightforward remarks to the question:

1. Looking at the question one faces the

Burnside problem

is G locally finite?

There are several straightforward remarks to the question:

1. Looking at the question one faces the

Burnside problem

is G locally finite?

In other words: does every finite set of elements from ${\cal G}$ generate a finite subgroup?

There are several straightforward remarks to the question:

1. Looking at the question one faces the

Burnside problem

is G locally finite?

In other words: does every finite set of elements from ${\cal G}$ generate a finite subgroup?

And general answer is

<u>no</u>:

$$\omega(G)$$
 given $\Rightarrow G$?

There are several straightforward remarks to the question:

1. Looking at the question one faces the

Burnside problem

is G locally finite?

In other words: does every finite set of elements from ${\cal G}$ generate a finite subgroup?

And general answer is

no:

there exists finitely generated infinite group G of period n (so take

$$\omega(G) = \{m|n\})$$
 for

n > 665 odd (Adyan 1975)

n > 8000 even (Lysenok 1996)

Known results

$$\{1,5\} \neq \omega(G) \subseteq \{1,2,3,4,5,6\}$$

And the answer is $\underline{\text{yes}}$, a corresponding group G is locally finite, provided that element orders of G are not greater than 6, and G is not a group of period 5.

The list of contributors is quite long:

Known results

$$\{1,5\} \neq \omega(G) \subseteq \{1,2,3,4,5,6\}$$

And the answer is <u>yes</u>, a corresponding group G is locally finite, provided that element orders of G are not greater than 6, and G is not a group of period 5.

```
The list of contributors is quite long:
```

- W. Burnside 1902 (period 3);
- B. Neumann 1937 ($\omega = \{1, 2, 3\}$);
- Sanov 1940 (period 4);
- M. Hall 1958 (period 6);
- M. Newman 1979 ($\omega = \{1, 2, 5\}$);
- N. Gupta and V. Mazurov 1999 + E. Jabara 2004 ($\omega(G) \subset \{1,2,3,4,5\}$); works of E. Jabara, D. Lytkina, V. Mazurov, A. M. 2000-2014 (other cases).

Known results

$$\{1,5\} \neq \omega(G) \subseteq \{1,2,3,4,5,6\}$$

And the answer is <u>yes</u>, a corresponding group G is locally finite, provided that element orders of G are not greater than 6, and G is not a group of period 5.

```
The list of contributors is quite long:
```

- W. Burnside 1902 (period 3);
- B. Neumann 1937 ($\omega = \{1, 2, 3\}$);
- Sanov 1940 (period 4);
- M. Hall 1958 (period 6);
- M. Newman 1979 ($\omega = \{1, 2, 5\}$);
- N. Gupta and V. Mazurov 1999 + E. Jabara 2004 ($\omega(G) \subset \{1,2,3,4,5\}$); works of E. Jabara, D. Lytkina, V. Mazurov, A. M. 2000-2014 (other cases).

So basically each ω requires individual attention.

Another remark:

2. If we additionally assume that G is finite then the question is specifically interesting for $\omega(G)=\omega(H)$, where H is some non-abelian finite simple group, when very often we may conclude that $H\simeq G$.

Another remark:

2. If we additionally assume that G is finite then the question is specifically interesting for $\omega(G)=\omega(H)$, where H is some non-abelian finite simple group, when very often we may conclude that $H\simeq G$.

Let's remove the condition $|G|<\infty$, look at small H and consider the following question:

$$\omega(G)$$
 given $\Rightarrow G$?

Another remark:

2. If we additionally assume that G is finite then the question is specifically interesting for $\omega(G)=\omega(H)$, where H is some non-abelian finite simple group, when very often we may conclude that $H\simeq G$.

Let's remove the condition $|G|<\infty$, look at small H and consider the following question:

$$\omega(G) = \omega(H)$$
, H — small f.s.g $\Rightarrow G \simeq H$?

So we want to look at small non-abelian finite simple groups H, and ask which H are recognized by their sets of element orders $\omega(H)$ in the class of all groups, i.e. when G is not finite apriory.

$$\omega(G)$$
 given $\Rightarrow G$?

Another remark:

2. If we additionally assume that G is finite then the question is specifically interesting for $\omega(G)=\omega(H)$, where H is some non-abelian finite simple group, when very often we may conclude that $H\simeq G$.

Let's remove the condition $|G|<\infty$, look at small H and consider the following question:

$$\omega(G) = \omega(H)$$
, H — small f.s.g $\Rightarrow G \simeq H$?

So we want to look at small non-abelian finite simple groups H, and ask which H are recognized by their sets of element orders $\omega(H)$ in the class of all groups, i.e. when G is not finite apriory.

⇒ naturally we face the corresponding Burnside problem

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

$$\omega(G)$$
 given $\Rightarrow G$?

Another remark:

2. If we additionally assume that G is finite then the question is specifically interesting for $\omega(G)=\omega(H)$, where H is some non-abelian finite simple group, when very often we may conclude that $H\simeq G$.

Let's remove the condition $|G|<\infty$, look at small H and consider the following question:

$$\omega(G) = \omega(H)$$
, H — small f.s.g $\Rightarrow G \simeq H$?

So we want to look at small non-abelian finite simple groups H, and ask which H are recognized by their sets of element orders $\omega(H)$ in the class of all groups, i.e. when G is not finite apriory.

⇒ naturally we face the corresponding Burnside problem But modulo what is already known for finite groups usually this is the major problem that should be solved.

Recognizable

The following groups are known to be recognizable by their sets of element orders (spectra) in the class of all groups:

 $L_2(2^m)$ A. Zhurtov, V. Mazurov 1999 $L_2(7)\simeq L_3(2)$ D. Lytkina, A. Kuznetsov 2007 M_{10} (not simple) E. Jabara, D. Lytkina, A. M. 2014 $L_3(4)$ E. Jabara, A. M. 2016 $(\{1,2,3,4,5,7\})$ A_7 - in progress

Recognizable

The following groups are known to be recognizable by their sets of element orders (spectra) in the class of all groups:

 $L_2(2^m)$ A. Zhurtov, V. Mazurov 1999 $L_2(7)\simeq L_3(2)$ D. Lytkina, A. Kuznetsov 2007 M_{10} (not simple) E. Jabara, D. Lytkina, A. M. 2014 $L_3(4)$ E. Jabara, A. M. 2016 $(\{1,2,3,4,5,7\})$ A_7 - in progress

In some sense it is more pleasant to have a business here with simple groups. And I want to try to explain why by demonstrating the role of normal subgroups, centralizers of involution, etc. in the proof.

Warning

Note that there are finite simple groups, which are recognizable by spectrum in the class of finite groups, but are not recognizable in the class of all groups.

V. Mazurov, A. Olshanskiy, A. Sozutov 2016

Let $m=2^{10}k\geq 2^{49}$ be an integer such that $q=m+\epsilon$ is a power of prime for $\epsilon\in\{1,-1\}$. Then $L_2(q)$ is not recognizable by spectrum in the class of all groups.

Setup: given H — small f.s.g from the list;

Setup: given H — small f.s.g from the list; G with $\omega(G) = \omega(H)$

Setup: given H — small f.s.g from the list; G with $\omega(G)=\omega(H)$ want to prove that G is locally finite.

Setup: given H — small f.s.g from the list; G with $\omega(G)=\omega(H)$ want to prove that G is locally finite.

It is useful to keep in mind (Shmidt's theorem 1945) If $H \subseteq G$, H and G/H are locally finite, then G is locally finite

Setup: given H — small f.s.g from the list; G with $\omega(G)=\omega(H)$ want to prove that G is locally finite.

It is useful to keep in mind (Shmidt's theorem 1945) If $H \unlhd G$, H and G/H are locally finite, then G is locally finite

So it would be nice to be able to construct locally finite normal subgroups and do the reduction. There is a good candidate for that — $O_2(G)$, provided it is nontrivial: because for groups G in the list $O_2(G)$ is a group of period 4, and hence locally finite by Sanov's theorem.

Setup: given H — small f.s.g from the list; G with $\omega(G)=\omega(H)$ want to prove that G is locally finite.

It is useful to keep in mind (Shmidt's theorem 1945) If $H \unlhd G$, H and G/H are locally finite, then G is locally finite

So it would be nice to be able to construct locally finite normal subgroups and do the reduction. There is a good candidate for that — $O_2(G)$, provided it is nontrivial: because for groups G in the list $O_2(G)$ is a group of period 4, and hence locally finite by Sanov's theorem.

But what can we "reduce" (factor out) this way? Our group has an involution, and two involutions in a periodic group always generate a finite (dihedral) group. And there is a well-known criterion for finite G ensuring that involution i is in $O_2(G)$ in terms of subgroups generated by two involutions:

A conjugacy class of involutions i^G in a finite group G lies in $O_2(G)$ if any two elements from i^G generate a 2-group.

A conjugacy class of involutions i^G in a finite group G lies in $O_2(G)$ if any two elements from i^G generate a 2-group.

It is natural to ask if the theorem holds in periodic groups.

A conjugacy class of involutions i^G in a finite group G lies in $O_2(G)$ if any two elements from i^G generate a 2-group.

It is natural to ask if the theorem holds in periodic groups.

And in general the answer is no.

Corresponding example for large periods $n=2^m\geq 2^{48}$ was constructured by V. Mazurov, A. Olshanskiy, A. Sozutov in the same work.

A conjugacy class of involutions i^G in a finite group G lies in $O_2(G)$ if any two elements from i^G generate a 2-group.

It is natural to ask if the theorem holds in periodic groups.

And in general the answer is no.

Corresponding example for large periods $n=2^m \geq 2^{48}$ was constructured by V. Mazurov, A. Olshanskiy, A. Sozutov in the same work.

However for groups in the list — yes — the theorem holds.

A. M. 2016

If G is a group of period n=4k, where k is odd, i is an involution, and any two elements from i^G generate a 2-subgroup, then $\langle i^G \rangle$ is also 2-subgroup.

(2,3)-generated subgroups

Further we take an involution and an element of order 3 from G and list all possibilities for a subgroup that they generate:

 S_3

 A_4

 A_5

 $L_2(7)$

homomorphic images of Frobenius groups $(C_k \times C_6) \rtimes C_6$

. . .

It is possible to construct this list using coset enumeration in GAP: groups are small.

(2,3)-generated subgroups

Further we take an involution and an element of order 3 from G and list all possibilities for a subgroup that they generate:

 S_3

 A_4

 A_5

 $L_2(7)$

homomorphic images of Frobenius groups $(C_k \times C_6) \rtimes C_6$

. . .

It is possible to construct this list using coset enumeration in GAP: groups are small.

Strategy

Further strategy is to reduce the list of possibilities mod statement that G contains a non-abelian finite simple subgroup H_0 .

If $G \ge H_0$, where H_0 — non-abelian f.s.g, then we can attack this case through the centralizer of involution, using some local analysis and

If $G \ge H_0$, where H_0 — non-abelian f.s.g, then we can attack this case through the centralizer of involution, using some local analysis and

(Shunkov's theorem) A periodic group G containing an involution with finite centralizer is locally finite.

If $G \ge H_0$, where H_0 — non-abelian f.s.g, then we can attack this case through the centralizer of involution, using some local analysis and

(Shunkov's theorem) A periodic group G containing an involution with finite centralizer is locally finite.

And first thing we want to remove from the list of possibilities is A_4 . Here we use Baer-Suzuki theorem to deduce that either $O_2(A_4)$ is in $O_2(G)$ and so can be factored-out, or an involution from A_4 must invert some nontrivial element of odd order, and using local analysis and coset enumeration we obtain f.s.subgroup H_0 .

If $G \ge H_0$, where H_0 — non-abelian f.s.g, then we can attack this case through the centralizer of involution, using some local analysis and

(Shunkov's theorem) A periodic group ${\cal G}$ containing an involution with finite centralizer is locally finite.

And first thing we want to remove from the list of possibilities is A_4 . Here we use Baer-Suzuki theorem to deduce that either $O_2(A_4)$ is in $O_2(G)$ and so can be factored-out, or an involution from A_4 must invert some nontrivial element of odd order, and using local analysis and coset enumeration we obtain f.s.subgroup H_0 .

After that the situation simplifies.