Zassenhaus Conjecture for small groups

Leo Margolis University of Murcia With A. Bächle, F. Eisele, A. Herman, A. Konovalov, G. Singh

> Groups St Andrews 2017 Birmingham August 6th - 12th 2017

Notation and Setting

- G finite group,
- $\mathbb{Z}G$ integral group ring over G,
- Augmentation map: $\varepsilon : \mathbb{Z}G \to \mathbb{Z}, \ \varepsilon(\sum_{g \in G} z_g g) = \sum_{g \in G} z_g$,
- $V(\mathbb{Z}G)$ group of units of augmentation 1 aka normalized units.
- All units of ZG are of the form ±V(ZG), so it suffices to consider V(ZG).
- Exponents of G and $V(\mathbb{Z}G)$ coincide. (Cohn-Livingstone '67)

Basic question:

How is the torsion part of $V(\mathbb{Z}G)$ connected to *G*?

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Notation and Setting

- G finite group,
- $\mathbb{Z}G$ integral group ring over G,
- Augmentation map: $\varepsilon : \mathbb{Z}G \to \mathbb{Z}, \ \varepsilon(\sum_{g \in G} z_g g) = \sum_{g \in G} z_g$,
- $V(\mathbb{Z}G)$ group of units of augmentation 1 aka normalized units.
- All units of ZG are of the form ±V(ZG), so it suffices to consider V(ZG).
- Exponents of G and $V(\mathbb{Z}G)$ coincide. (Cohn-Livingstone '67)

Basic question:

How is the torsion part of $V(\mathbb{Z}G)$ connected to *G*?

The Zassenhaus Conjecture

Main open question concerning torsion units:

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1974)

(ZC) Any $u \in V(\mathbb{Z}G)$ of finite order is conjugate in $\mathbb{Q}G$ to an element $g \in G$. I.e. there exists a unit $x \in \mathbb{Q}G$ such that $x^{-1}ux = g$.

If such x and g exist, one says that u is **rationally conjugate** to g.

The Zassenhaus Conjecture is known to hold for

- Nilpotent Groups (Weiss '91)
- Groups with normal Sylow subgroup with abelian complement (Hertweck '07)
- Cyclic-By-Abelian Groups (Caicedo-M'-del Rio '13)
- Some other special series of nilpotent-by-abelian groups
- Groups till order 192 (this talk)
- Some special (mostly small) non-solvable groups (Luthar-Passi, Hertweck, Gildea, Kimmerle-Konovalov, Bächle-M', M'-Serrano-del Río)

The Zassenhaus Conjecture

Main open question concerning torsion units:

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1974)

(ZC) Any $u \in V(\mathbb{Z}G)$ of finite order is conjugate in $\mathbb{Q}G$ to an element $g \in G$. I.e. there exists a unit $x \in \mathbb{Q}G$ such that $x^{-1}ux = g$.

If such x and g exist, one says that u is **rationally conjugate** to g. The Zassenhaus Conjecture is known to hold for

- Nilpotent Groups (Weiss '91)
- Groups with normal Sylow subgroup with abelian complement (Hertweck '07)
- Cyclic-By-Abelian Groups (Caicedo-M'-del Rio '13)
- Some other special series of nilpotent-by-abelian groups
- Groups till order 192 (this talk)
- Some special (mostly small) non-solvable groups (Luthar-Passi, Hertweck, Gildea, Kimmerle-Konovalov, Bächle-M', M'-Serrano-del Río)

Partial Augmentations

Let x^G be a conjugacy class in G and $u = \sum_{g \in G} z_g g \in \mathbb{Z}G$. Then

$$\varepsilon_x(u) = \sum_{g \in x^G} z_g$$

is called the **partial augmentation** of u with respect to x.

Theorem (Marciniak-Ritter-Sehgal-Weiss '87)

 $u \in V(\mathbb{Z}G)$ is rationally conjugate to an element of G if and only if $\varepsilon_x(u^d) \ge 0$ for all $x \in G$ and $d \in \mathbb{Z}$.

Theorem (Higman '39, Berman '53)

If $u \in V(\mathbb{Z}G)$ is a torsion unit, then $\varepsilon_1(u) = 0$ or u = 1.

Theorem (Hertweck '07)

Let u be a torsion unit in $V(\mathbb{Z}G)$ and $x \in G$ s.t. $\varepsilon_x(u) \neq 0$. Then the order of x divides the order of u.

Partial Augmentations

Let x^G be a conjugacy class in G and $u = \sum_{g \in G} z_g g \in \mathbb{Z}G$. Then

$$\varepsilon_x(u) = \sum_{g \in x^G} z_g$$

is called the **partial augmentation** of u with respect to x.

Theorem (Marciniak-Ritter-Sehgal-Weiss '87)

 $u \in V(\mathbb{Z}G)$ is rationally conjugate to an element of G if and only if $\varepsilon_x(u^d) \ge 0$ for all $x \in G$ and $d \in \mathbb{Z}$.

Theorem (Higman '39, Berman '53)

If $u \in V(\mathbb{Z}G)$ is a torsion unit, then $\varepsilon_1(u) = 0$ or u = 1.

Theorem (Hertweck '07)

Let u be a torsion unit in $V(\mathbb{Z}G)$ and $x \in G$ s.t. $\varepsilon_x(u) \neq 0$. Then the order of x divides the order of u. A standard character theoretic method to study torsion units in $V(\mathbb{Z}G)$ is known as HeLP (**He**rtweckLuthar**P**assi).

 $u \in V(\mathbb{Z}G)$ torsion, χ (ordinary) character of G. By linear extension χ is a character of $V(\mathbb{Z}G)$. ψ a character of $\langle u \rangle$. Then

$$\langle \chi |_{\langle u \rangle}, \psi \rangle \in \mathbb{Z}_{\geq 0}.$$

This is an expression linear in the partial augmentations of $\langle u \rangle$, since $\chi(u^i) = \sum_{x^G} \varepsilon_x(u^i)\chi(x)$, the sum running over conjugacy classes in G.

 \rightsquigarrow System of linear inequalities with finitely many integral solutions.

(日本) (日本) (日本)

A standard character theoretic method to study torsion units in $V(\mathbb{Z}G)$ is known as HeLP (**He**rtweckLuthar**P**assi).

 $u \in V(\mathbb{Z}G)$ torsion, χ (ordinary) character of G. By linear extension χ is a character of $V(\mathbb{Z}G)$. ψ a character of $\langle u \rangle$. Then

$$\langle \chi|_{\langle u\rangle},\psi\rangle\in\mathbb{Z}_{\geq0}.$$

This is an expression linear in the partial augmentations of $\langle u \rangle$, since $\chi(u^i) = \sum_{x^G} \varepsilon_x(u^i)\chi(x)$, the sum running over conjugacy classes in G.

 \rightsquigarrow System of linear inequalities with finitely many integral solutions.

(日本) (日本) (日本)

The solutions correspond to the partial augmentations of units in $\mathbb{C}G$ of order $\circ(u)$ having integral partial augmentations. If all solutions are trivial, i.e. one partial augmentation is 1 and the others 0, then units of order $\circ(u)$ in $V(\mathbb{Z}G)$ are rationally conjugate to elements in G.

In any case we are left with **finitely many** possible partial augmentations for a possible counterexample. For each of them we can compute the eigenvalues under any representation of G.

This procedure is available in a GAP-package (Bächle-M').

・ 同 ト イ ヨ ト イ ヨ ト

The solutions correspond to the partial augmentations of units in $\mathbb{C}G$ of order $\circ(u)$ having integral partial augmentations. If all solutions are trivial, i.e. one partial augmentation is 1 and the others 0, then units of order $\circ(u)$ in $V(\mathbb{Z}G)$ are rationally conjugate to elements in G.

In any case we are left with **finitely many** possible partial augmentations for a possible counterexample. For each of them we can compute the eigenvalues under any representation of G.

This procedure is available in a GAP-package (Bächle-M').

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $N \trianglelefteq G$, $u \in V(\mathbb{Z}G)$ with specific partial augmentations.

 $\varphi : \mathbb{Z}G \to \mathbb{Z}(G/N)$ natural homomorphism. Then the partial augmentations of $\varphi(u)$ are given by sums of partial augmentations of u which correspond to conjugacy classes of G fusing in G/N.

 \sim → If we know that no unit with augmentations of $\varphi(u)$ exists in $V(\mathbb{Z}(G/N))$, then *u* does not exist.

• (1) • (

D irreducible \mathbb{C} -representation of $G \leftrightarrow e \in \mathbb{C}G$ idempotent. $u \in V(\mathbb{Z}G)$ with specific partial augmentations given, then eigenvalues of D(u) can be computed.

If $ue \in \mathbb{C}Ge$ is central, conjugation will not change the *ue*-part of u = ue + u(1 - e). Show $ue \notin \mathbb{Z}Ge$ using a \mathbb{Z} -basis from $\{D(g)|g \in G\}$. $\rightsquigarrow u \notin \mathbb{Z}G$.

Implemented as GAP-routine (Herman-Konovalov-Singh).

伺下 イヨト イヨト

More restrictions can be obtained from some specific results in the literature. Of particular importance are the following results of Hertweck.

Theorem (Hertweck)

Let $N \leq G$ be a *p*-group and $u \in V(\mathbb{Z}G)$ a torsion unit mapping to 1 under $\mathbb{Z}G \to \mathbb{Z}(G/N)$. Then *u* is conjugate in the *p*-adic group ring $\mathbb{Z}_p G$ to an element of *G*.

Lemma (Hertweck '07)

Let $u \in V(\mathbb{Z}G)$ be a torsion unit such that the *p*-part of *u* is conjugate in \mathbb{Z}_pG to an element *x* in *G*. Then $\varepsilon_g(u) \neq 0$ implies that the *p*-part of *g* is conjugate to *x* in *G*.

イロン イヨン イヨン

Double action lattices (work ongoing)

Existence of u is equivalent to existence of $\mathbb{Z}(G \times \langle u \rangle)$ -lattice M which is

- $\mathbb{Z}G$ -free of rank 1 (like $\mathbb{Z}G$),
- the action of *u* on the *G* fix-points in *M* is trivial (*u* is normalized)
- $\mathbb{C} \otimes_{\mathbb{Z}} M \cong M(u)$. Where M(u) is a $\mathbb{C}(G \times \langle u \rangle)$ -module, existing by the HeLP-method, such that

$$(g, u^i)m = gmu^{-i}, \ m \in M(u), g \in G, i \in \mathbb{Z}.$$

Determining the existence of such a lattice is a finite problem, but not doable in practice.

Changing to the semilocal coefficient ring $\mathbb{Z}_{(\circ(u))}$ this becomes computable by GAP-routines implemented by F. Eisele. \rightsquigarrow Computations are complicated and not always straightforward, but promising.

Double action lattices (work ongoing)

Existence of u is equivalent to existence of $\mathbb{Z}(G \times \langle u \rangle)$ -lattice M which is

- $\mathbb{Z}G$ -free of rank 1 (like $\mathbb{Z}G$),
- the action of *u* on the *G* fix-points in *M* is trivial (*u* is normalized)
- $\mathbb{C} \otimes_{\mathbb{Z}} M \cong M(u)$. Where M(u) is a $\mathbb{C}(G \times \langle u \rangle)$ -module, existing by the HeLP-method, such that

$$(g, u^i)m = gmu^{-i}, \ m \in M(u), g \in G, i \in \mathbb{Z}.$$

Determining the existence of such a lattice is a finite problem, but not doable in practice.

Changing to the semilocal coefficient ring $\mathbb{Z}_{(\circ(u))}$ this becomes computable by GAP-routines implemented by F. Eisele.

 \rightsquigarrow Computations are complicated and not always straightforward, but promising.

(日本) (日本) (日本)

Thank you for your attention !

通 とう ほとう きょう