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Notation and Setting

G finite group,
ZG integral group ring over G ,
Augmentation map: ε : ZG → Z, ε(

∑
g∈G

zgg) =
∑

g∈G
zg ,

V(ZG) group of units of augmentation 1 aka normalized units.
All units of ZG are of the form ±V(ZG), so it suffices to
consider V(ZG).
Exponents of G and V(ZG) coincide. (Cohn-Livingstone ’67)

Basic question:

How is the torsion part of V(ZG) connected to G?

Leo Margolis, University of Murcia Zassenhaus Conjecture for small groups



Notation and Setting

G finite group,
ZG integral group ring over G ,
Augmentation map: ε : ZG → Z, ε(

∑
g∈G

zgg) =
∑

g∈G
zg ,

V(ZG) group of units of augmentation 1 aka normalized units.
All units of ZG are of the form ±V(ZG), so it suffices to
consider V(ZG).
Exponents of G and V(ZG) coincide. (Cohn-Livingstone ’67)

Basic question:

How is the torsion part of V(ZG) connected to G?

Leo Margolis, University of Murcia Zassenhaus Conjecture for small groups



The Zassenhaus Conjecture
Main open question concerning torsion units:

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1974)
(ZC) Any u ∈ V (ZG) of finite order is conjugate in QG to an
element g ∈ G . I.e. there exists a unit x ∈ QG such that
x−1ux = g .

If such x and g exist, one says that u is rationally conjugate to g .
The Zassenhaus Conjecture is known to hold for

Nilpotent Groups (Weiss ’91)
Groups with normal Sylow subgroup with abelian complement
(Hertweck ’07)
Cyclic-By-Abelian Groups (Caicedo-M’-del Rio ’13)
Some other special series of nilpotent-by-abelian groups
Groups till order 192 (this talk)
Some special (mostly small) non-solvable groups
(Luthar-Passi, Hertweck, Gildea, Kimmerle-Konovalov,
Bächle-M’, M’-Serrano-del Ŕıo)
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Partial Augmentations
Let xG be a conjugacy class in G and u =

∑
g∈G

zgg ∈ ZG . Then

εx (u) =
∑

g∈xG

zg

is called the partial augmentation of u with respect to x .

Theorem (Marciniak-Ritter-Sehgal-Weiss ’87)
u ∈ V (ZG) is rationally conjugate to an element of G if and only
if εx (ud ) ≥ 0 for all x ∈ G and d ∈ Z.

Theorem (Higman ’39, Berman ’53)
If u ∈ V (ZG) is a torsion unit, then ε1(u) = 0 or u = 1.

Theorem (Hertweck ’07)
Let u be a torsion unit in V (ZG) and x ∈ G s.t. εx (u) 6= 0. Then
the order of x divides the order of u.
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Methods: HeLP (Hertweck-Luthar-Passi)

A standard character theoretic method to study torsion units in
V(ZG) is known as HeLP (HertweckLutharPassi).

u ∈ V(ZG) torsion, χ (ordinary) character of G . By linear
extension χ is a character of V(ZG).
ψ a character of 〈u〉. Then

〈χ|〈u〉, ψ〉 ∈ Z≥0.

This is an expression linear in the partial augmentations of 〈u〉,
since χ(ui ) =

∑
xG εx (ui )χ(x), the sum running over conjugacy

classes in G .
 System of linear inequalities with finitely many integral
solutions.
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Methods: HeLP (Hertweck-Luthar-Passi)

The solutions correspond to the partial augmentations of units in
CG of order ◦(u) having integral partial augmentations.
If all solutions are trivial, i.e. one partial augmentation is 1 and the
others 0, then units of order ◦(u) in V(ZG) are rationally
conjugate to elements in G .

In any case we are left with finitely many possible partial
augmentations for a possible counterexample. For each of them we
can compute the eigenvalues under any representation of G .

This procedure is available in a GAP-package (Bächle-M’).
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Methods: Quotients

N E G , u ∈ V(ZG) with specific partial augmentations.

ϕ : ZG → Z(G/N) natural homomorphism. Then the partial
augmentations of ϕ(u) are given by sums of partial augmentations
of u which correspond to conjugacy classes of G fusing in G/N.

 If we know that no unit with augmentations of ϕ(u) exists in
V(Z(G/N)), then u does not exist.
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Methods: Partially central units (Höfert, Herman-Singh)

D irreducible C-representation of G ↔ e ∈ CG idempotent.
u ∈ V(ZG) with specific partial augmentations given, then
eigenvalues of D(u) can be computed.

If ue ∈ CGe is central, conjugation will not change the ue-part of
u = ue + u(1− e).
Show ue /∈ ZGe using a Z-basis from {D(g)|g ∈ G}.
 u /∈ ZG .

Implemented as GAP-routine (Herman-Konovalov-Singh).
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Methods: Additional arguments from literature

More restrictions can be obtained from some specific results in the
literature. Of particular importance are the following results of
Hertweck.

Theorem (Hertweck)
Let N E G be a p-group and u ∈ V(ZG) a torsion unit mapping to
1 under ZG → Z(G/N). Then u is conjugate in the p-adic group
ring ZpG to an element of G .

Lemma (Hertweck ’07)
Let u ∈ V(ZG) be a torsion unit such that the p-part of u is
conjugate in ZpG to an element x in G . Then εg (u) 6= 0 implies
that the p-part of g is conjugate to x in G .
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Double action lattices (work ongoing)

Existence of u is equivalent to existence of Z(G × 〈u〉)-lattice M
which is

ZG-free of rank 1 (like ZG),
the action of u on the G fix-points in M is trivial (u is
normalized)
C⊗Z M ∼= M(u). Where M(u) is a C(G × 〈u〉)-module,
existing by the HeLP-method, such that

(g , ui )m = gmu−i , m ∈ M(u), g ∈ G , i ∈ Z.

Determining the existence of such a lattice is a finite problem, but
not doable in practice.
Changing to the semilocal coefficient ring Z(◦(u)) this becomes
computable by GAP-routines implemented by F. Eisele.
 Computations are complicated and not always straightforward,
but promising.
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Thank you for your attention !
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