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DEFINITIONS AND EXAMPLES

DEFINITION (Ph. Hall). A subgroup H of a group G is
pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for
every g ∈ G.

AGREEMENT. Further we consider finite groups only.

EXAMPLES. The following subgroups are pronormal in
finite groups:

• Normal subgroups;
• Maximal subgroups;
• Sylow subgroups;
• Sylow subgroups of normal subgroups.

PROPOSITION. Let A�G and H ≤ A.
The following statements are equivalent:
(1) H is pronornal in G;
(2) H is pronormal in A and G = ANG(H).
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WHY IS IT INTERESTING?

DEFINITION (L. Babai). A group G is called a CI-group if
between every two isomorphic relational structures on G
(as underlying set) which are invariant under the group
GR = {gR | g ∈ G} of right multiplications

gR : x 7→ xg,

there exists an isomorphism which is at the same time an
automorphism of G.

THEOREM (L. Babai, 1977). G is a CI-group if and only
if GR is pronormal in Sym(G).

COROLLARY. If G is a CI-group then G is abelian.

THEOREM (P.Pálfy, 1987). G is a CI-group if and only if
|G| = 4 or G is cyclic of order n such that (n, ϕ(n)) = 1.
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WHY IS IT INTERESTING?

A conjugacy class of a pronormal subgroup is an example of a
locally conjugate collection of subgroups.

DEFINITION (M. Aschbacher and M. Hall, Jr.) A collection ∆
of subgroups of a group G is said to be locally conjugate if
(1) ∆ = ∆G (i. e. A ∈ ∆⇒ Ag ∈ ∆ for all g ∈ G);
(2) G = 〈∆〉;
(3) if A,B ∈ ∆ then either [A,B] = 1 or A and B are

conjugate in 〈A,B〉.

If D is a class of odd transpositions of a group
(for instance, 3-transpositions)
then ∆ = {〈d〉 | d ∈ D} is locally conjugate.

If H is pronormal in G then HG is locally conjugate in 〈HG〉.
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WHY IS IT INTERESTING?

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

THEOREM (Ch. Praeger, 1984). Let G be a transitive
permutation group on a set Ω of n points, and let K be a
nontrivial pronormal subgroup of G. Suppose that K fixes
exactly f points of Ω. Then
(a) f ≤ 1

2(n− 1), and
(b) if f = 1

2(n− 1) then K is transitive on its support in Ω,
and either G ≥ An, or G = GL(d, 2) acting on the
n = 2d − 1 nonzero vectors, and K is the pointwise
stabilizer of a hyperplane.
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CONJECTURE

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

A group G is simple if G does not contain proper normal subgroups.

QUESTION. What are pronormal subgroups of finite
simple groups?

DEFINITION. H is a Hall subgroup of G if
(|H|, |G : H|) = 1.

THEOREM (E. Vdovin and D. Revin, 2012). Every Hall
subgroup is pronormal in every finite simple group.

CONJECTURE (E. Vdovin and D. Revin, 2012). The
subgroups of odd index (= the overgroups of Sylow
2-subgroups) are pronormal in finite simple groups.
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ON THE FINITE SIMPLE GROUPS

A group G is simple if G does not contain proper normal subgroups.

With respect to the Classification of Finite Simple Groups,
finite simple groups are:

• Cyclic groups Cp, where p is a prime;
• Alternating groups Alt(n) for n ≥ 5;
• Classical groups: PSLn(q) = Ln(q),
PSUn(q) = Un(q) = PSL−

n (q) = L−
n (q),

PSp2n(q) = S2n(q), PΩn(q) = On(q) (n is odd),
PΩ+

n (q) = O+
n (q) (n is even),

PΩ−
n (q) = O−

n (q) (n is even);
• Exceptional groups of Lie type:
E8(q), E7(q),
E6(q), 2E6(q) = E−

6 (q),
3D4(q), F4(q), 2F4(q),
G2(q), 2G2(q) = Re(q) (q is a power of 3),
2B2(q) = Sz(q) (q is a power of 2);

• 26 sporadic groups.
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PRONORMAL SUBGROUPS

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

PROPOSITION 1. Let G be a group, S ≤ H ≤ G and S be
a pronormal (for example, Sylow) subgroup of G. Then the
following conditions are equivalent:
(1) H is pronormal in G;
(2) H and Hg are conjugate in 〈H,Hg〉 for every g ∈ NG(S).

REMARK. Let G be a group, H ≤ G and S be a pronormal
subgroup of G. If NG(S) ≤ H then H is pronormal in G.
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NORMALIZERS OF SYLOW 2-SUBGROUPS

LEMMA 1 (A. Kondrat’ev, 2005). Let G be a finite
nonabelian simple group and S ∈ Syl2(G). Then
NG(S) = S excluding the following cases:
(1) G ∼= J2, J3, Suz or HN and |NG(S) : S| = 3;
(2) G ∼= 2G2(32n+1) or J1 and NG(S)/S ∼= 7 o 3;
(3) G is a group of Lie type over field of characteristic 2 and

NG(S) is a Borel subgroup of G;
(4) G ∼= PSL2(q) where 3 < q ≡ ±3 (mod 8) and NG(S) ∼= A4;
(5) G ∼= PSp2n(q), where n ≥ 2, q ≡ ±3 (mod 8),

n = 2s1 + · · ·+ 2st for s1 > · · · > st ≥ 0 and NG(S)/S is the
elementary abelian group of order 3t;

(6) G ∼= PSLηn(q), where n ≥ 3, η = ±, q is odd,
n = 2s1 + · · ·+ 2st for s1 > · · · > st > 0 and
NG(S) ∼= S × C1 × · · · × Ct−1, where C1, . . . Ct−2, Ct−1 are
cyclic subgroup of orders
(q − η1)2′ , . . . , (q − η1)2′ , (q − η1)2′/(q − η1, n)2′
respectively;

(7) G ∼= Eη6 (q) where η = ± and q is odd and
|NG(S) : S| = (q − η1)2′/(q − η1, 3)2′ 6= 1.
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PRONORMAL SUBGROUPS

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

THEOREM 1 (A. Kondrat’ev, N.M., D. Revin, 2015). All
subgroups of odd index are pronormal in the following finite
simple groups:
(1) Alt(n), where n ≥ 5;
(2) sporadic groups;
(3) groups of Lie type over fields of characteristic 2;
(4) PSL2n(q);
(5) PSU2n(q);
(6) PSp2n(q), where q 6≡ ±3 (mod 8);
(7) PΩεn(q), where ε ∈ {+,−, epmty symbol};
(8) exceptional groups of Lie type not isomorphic to E6(q) or

2E6(q).
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PROBLEM

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

PROBLEM. Are the subgroups of odd index pronormal in
the following finite simple groups:
(1) PSLn(q), where n 6= 2w and q is odd;
(2) PSUn(q), where n 6= 2w and q is odd;
(3) PSp2n(q), where q ≡ ±3 (mod 8);
(4) exceptional groups of Lie type E6(q) and 2E6(q), where q is

odd?
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COUNTEREXAMPLE TO THE CONJECTURE

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

Let q ≡ ±3 (mod 8) be a prime power and n be a positive
integer. It’s well known, Sylow 2-subgroup S of a group
T = Sp2(q) = SL2(q) is isomorphic to Q8 and
NT (S) ∼= SL2(3) = Q8 : 3. We have

H = Q8 o Sym(3n) ≤ X = SL2(3) o Sym(3n) ≤ Y =
Sp2(q) o Sym(3n) ≤ G = Sp6n(q).

The index |G : H| is odd and H/Z(G) is a nonpronormal
subgroup of odd index in G/Z(G) = PSp6n(q).
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PRONORMAL SUBGROUPS

LEMMA 1 (A. Kondrat’ev, 2005). Let G be a finite
nonabelian simple group and S ∈ Syl2(G). Then
NG(S) = S excluding the following cases:
(1) G ∼= J2, J3, Suz or HN and |NG(S) : S| = 3;
(2) G ∼= 2G2(32n+1) or J1 and NG(S)/S ∼= 7 o 3;
(3) G is a group of Lie type over field of characteristic 2 and

NG(S) is a Borel subgroup of G;
(4) G ∼= PSL2(q) where 3 < q ≡ ±3 (mod 8) and NG(S) ∼= A4;
(5) G ∼= PSp2n(q), where n ≥ 2, q ≡ ±3 (mod 8),

n = 2s1 + · · ·+ 2st for s1 > · · · > st ≥ 0 and NG(S)/S is the
elementary abelian group of order 3t;

(6) G ∼= PSLηn(q), where n ≥ 3, η = ±, q is odd,
n = 2s1 + · · ·+ 2st for s1 > · · · > st > 0 and
NG(S) ∼= S × C1 × · · · × Ct−1, where C1, . . . Ct−2, Ct−1 are
cyclic subgroup of orders
(q − η1)2′ , . . . , (q − η1)2′ , (q − η1)2′/(q − η1, n)2′
respectively;

(7) G ∼= Eη6 (q) where η = ± and q is odd and
|NG(S) : S| = (q − η1)2′/(q − η1, 3)2′ 6= 1.

Natalia V. Maslova On the pronormality



CLASSIFICATION PROBLEM

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

PROBLEM. Classify finite simple groups in which all
subgroups of odd index are pronormal.

THEOREM 2 (A. Kondrat’ev, N.M., D. Revin, 2016).
Let G = PSpn(q), where q ≡ ±3 (mod 8) and
n 6∈ {2m, 2m(22k + 1) | m, k ∈ N}. Then G contains a
nonpronormal subgroup of odd index.

THEOREM 3 (A. Kondrat’ev, N.M., D. Revin, 2016).
Let G = PSpn(q). Then every subgroup of odd index is
pronormal in G if and only if one of the following
conditions holds:
(1) q 6≡ ±3 (mod 8);
(2) n ∈ {2m, 2m(22k + 1) | m, k ∈ N}.
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SKETCH OF PROOF

G = PSpn(q), where q ≡ ±3 (mod 8) and
n ∈ {2m, 2m(22k + 1) | m, k ∈ N};

H ≤ G and |G : H| is odd;

S ∈ Syl2(G) such that S ≤ H;

g ∈ NG(S) and K = 〈H,Hg〉;

K = G ⇒ H and Hg are conjugate in 〈H,Hg〉;

K 6= G ⇒ ∃M : K ≤M and M is maximal in G;

Do we know M?
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SOME TOOLS

Let m =
∑∞

i=0 ai · 2i and n =
∑∞

i=0 bi · 2i, where
ai, bi ∈ {0, 1}.
We write m � n if ai ≤ bi for every i and
m ≺ n if, in addition, m 6= n.

THEOREM (N.M., 2008). Maximal subgroups of odd
index in Sp2n(q) = Sp(V ), where n > 1 and q is odd are
the following:
(1) Sp2n(q0), where q = qr0 and r is an odd prime;
(2) Sp2m(q)× Sp2(n−m)(q), where m ≺ n;
(3) Sp2m(q) o Sym(t), where n = mt and m = 2k;
(4) 21+4

+ .Alt(5), where n = 2 and q ≡ ±3 (mod 8) is a prime.
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DIFFICULTIES

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

Let X2 be the class of all finite simple groups with
self-normalized Sylow 2-subgroups,
Y2 be the class of all finite groups in which the subgroups
of odd index are pronormal.

Let G and K be finite groups, H ≤ G and A�G. Then

(1) G ∈ Y2 ⇒ G/A ∈ Y2

(2) G ∈ Y2 6⇒ H ∈ Y2

(3) G ∈ Y2 6⇒ A ∈ Y2

(4) G,K ∈ Y2 6⇒ G×K ∈ Y2

even for finite simple groups!
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SOME TOOLS TO WIN DIFFICULTIES

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

X2 is the class of all finite simple groups with self-normalized Sylow 2-subgroups,

Y2 is the class of all finite groups in which the subgroups of odd index are pronormal.

THEOREM 4 (W. Guo, N.M., D. Revin, 2016-2017). Let G
be a finite group, A�G, A ∈ Y2, and G/A ∈ X2. Let T be
a Sylow 2-subgroup of A. Then the following conditions are
equivalent:
(1) G ∈ Y2;
(2) NG(T )/T ∈ Y2.
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SOME TOOLS TO WIN DIFFICULTIES

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

If m =
∑∞

i=0 ai · 2i and n =
∑∞

i=0 bi · 2i, where ai, bi ∈ {0, 1}.

We write m � n if ai ≤ bi for every i and m ≺ n if, in addition, m 6= n.

THEOREM 5 (W. Guo, N.M., D. Revin, 2016-2017). Let
A be a finite abelian group and G =

∏t
i=1(A o Sym(ni)),

where all the wreath products are natural permutation.
Then all subgroups of odd index are pronormal in G if and
only if for any positive integer m, if m ≺ ni for some i then
h.c.f.(|A|,m) is a power of 2.
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PRONORMAL SUBGROUPS

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

THEOREM 3 (A. Kondrat’ev, N.M., D. Revin, 2016).
Let G = PSpn(q). Then every subgroup of odd index is
pronormal in G if and only if one of the following
conditions holds:
(1) q 6≡ ±3 (mod 8);
(2) n ∈ {2m, 2m(22k + 1) | m, k ∈ N}.

THEOREM 6 (A. Kondrat’ev, N.M., D. Revin, 2017).
Let G be an exceptional group of Lie type Eε

6(q), where q is
odd and ε ∈ {+,−}. Then every subgroup of odd index is
pronormal in G if and only if 9 does not divide q − ε1.

PROBLEM. Are all subgroups of odd index pronormal in
PSLn(q) = L+

n (q) and PSUn(q) = L−n (q), where n 6= 2w

and q is odd?
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THEOREM 3 (A. Kondrat’ev, N.M., D. Revin, 2016).
Let G = PSpn(q). Then every subgroup of odd index is
pronormal in G if and only if one of the following
conditions holds:
(1) q 6≡ ±3 (mod 8);
(2) n ∈ {2m, 2m(22k + 1) | m, k ∈ N}.

THEOREM 6 (A. Kondrat’ev, N.M., D. Revin, 2017).
Let G be an exceptional group of Lie type Eε

6(q), where q is
odd and ε ∈ {+,−}. Then every subgroup of odd index is
pronormal in G if and only if 9 does not divide q − ε1.

PROBLEM. Are all subgroups of odd index pronormal in
PSLn(q) = L+

n (q) and PSUn(q) = L−n (q), where n 6= 2w

and q is odd?
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PROBLEM

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

PROBLEM. Are all subgroups of odd index pronormal in
PSLn(q) = L+

n (q) and PSUn(q) = L−n (q), where n 6= 2w

and q is odd?

If m =
∑∞

i=0 ai · 2i and n =
∑∞

i=0 bi · 2i, where ai, bi ∈ {0, 1}.

We write m � n if ai ≤ bi for every i and m ≺ n if, in addition, m 6= n.

CONJECTURE. Let G = Lε
n(q), where q is odd and

ε ∈ {+,−}. All subgroups of odd index are pronormal in G
if and only if for any positive integer m, if m ≺ n then
h.c.f.(m, q1+ε1(q − ε1)) is a power of 2.
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WHERE CAN WE APPLY THE RESULTS?

H is pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

THEOREM (Ch. Praeger, 1984). Let G be a transitive
permutation group on a set Ω of n points, and let K be a
nontrivial pronormal subgroup of G. Suppose that K fixes
exactly f points of Ω. Then
(a) f ≤ 1

2(n− 1), and
(b) if f = 1

2(n− 1) then K is transitive on its support in Ω,
and either G ≥ An, or G = GL(d, 2) acting on the
n = 2d − 1 nonzero vectors, and K is the pointwise
stabilizer of a hyperplane.

If G is simple, |Ω| is odd, and x ∈ Ω then Gx is usually
pronormal in G, and we wish to know all the exceptions.
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Thank you for your attention!
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