

Department of Mathematics University of Manitoba Canada

On Semigroups Admitting Conjugates

G.I. Moghaddam, R. Padmanabhan

Groups St Andrews 2017

August 7, 2017

While every subsemigroup of a group is cancellative, a famous theorem of A.I. Mal'cev (1939) shows that not every cancellative semigroup is embeddable in a group. Patterned after the classical quotient construction, Oyestein Ore (1931) discovered the "principle of common left multiple" to embed a non-commutative domain into a division ring. Using this as a backdrop, Malcev, B.H. Neumann and Taylor developed semigroup equivalents of nilpotent groups of class n and proved that cancellative semigroups of nilpotent class n are embeddable in groups of the same nilpotency class. In this talk, we investigate some equational classes of semigroups admitting conjugates - and prove that all the valid group theory implications do carry over to the equational theory of semigroups admitting conjugates.

Let S be a semigroup and $x, y, z \in S$.

If xy = xz or yx = zx imply y = z, then we say *S* is a cancellative semigroup.

Basic Definitions, Facts and Notations

Let S be a semigroup and $x, y, z \in S$.

- If xy = xz or yx = zx imply y = z, then we say *S* is a cancellative semigroup.
- If for each $x, y \in S$ there exist an element $z \in S$ such that xy = yz, then z is called conjugate of x by y, and we say S admits conjugates.

Let S be a semigroup and $x, y, z \in S$.

- If xy = xz or yx = zx imply y = z, then we say *S* is a cancellative semigroup.
- If for each $x, y \in S$ there exist an element $z \in S$ such that xy = yz, then z is called conjugate of x by y, and we say S admits conjugates.
- If for each $x, y \in S$ there exist an element $z \in S$ such that xy = yxz, then z is called commutator of x and y, and we say S admits commutators.

Fact: If *S* is a cancellative semigroup such that for $x, y \in S$, both conjugate of *x* by *y* and commutator of *x* and *y* exist, then both conjugate and commutator are unique.

Notations:

- Conjugate of x by y is denoted by x^y .
- Commutator of x and y is denoted by [x, y].
- By [x, y, z] we mean [[x, y], z].

Basic Definitions, Facts and Notations

Let S be a cancellative semigroup which admits conjugates. If for all elements x, y and z in S,

xyzyx = yxzxy,

then S is called nilpotent of class 2.

Fact: Let S be a cancellative semigroup which admits commutators. Then S is nilpotent of class 2 if and only if

z[x,y] = [x,y]z, for all elements x, y and z in S.

Fact: If a cancellative semigroup S admits commutators then it must admit conjugates as well.

In fact since xy = yx[x, y] so x^y exist and $x^y = x[x, y]$.

Moreover

$$xy = y x^y \qquad (*) \,.$$

Examples

In
$$GL_2(\mathbf{R})$$
, let $S_1 = \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \ \middle| \ a, b \in \mathbf{I}, \ b \neq 0 \right\}$ and
 $S_2 = \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \ \middle| \ a, b \in \mathbf{R}, \ 0 < b < 1 \right\}$. Then both S_1 and S_2 are cancellative semigroups and admit conjugates. In fact for any
 $X = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}$ and $Y = \begin{pmatrix} 1 & c \\ 0 & d \end{pmatrix}$ in S_1 or S_2 , $X^Y = \begin{pmatrix} 1 & c + ad - bc \\ 0 & b \end{pmatrix}$ is
in both S_1 and S_2 .
But $[X, Y] = \begin{pmatrix} 1 & c + ad - bc - a \\ 0 & 1 \end{pmatrix}$ is in S_1 but not in S_2 .
Therefore S_1 is a cancellative semigroup that admits both conju-
gates and commutators and S_2 is a cancellative semigroup that
admits conjugates but not commutators.

Background : In general cancellative semigroups are not embeddable in groups due to A.I. Mal'cev (1939).

Definition Let *S* be a cancellative semigroup which admits conjugates. For any elements a, b, c and d in *S* we define

$$a \smallsetminus b = \{ (x, y) | ay = xb^y, x, y \in S \}.$$

The set of all $a \smallsetminus b$ is denoted by \overline{S} , i.e. $\overline{S} = \{a \smallsetminus b \mid a, b \in S\},$

 \square In \overline{S} we define binary operation * as

$$(a \smallsetminus b) \ast (c \smallsetminus d) = ac \smallsetminus db^c$$

Lemma : Let *S* be a cancellative semigroup which admits conjugates. Then for *a*, *b*, *c*, *x*, *y*, *z*, *u*, and *v* in *S*:

- 1. $x^x = x$,
- 2. $(x^y)^z = x^{yz}$,
- 3. $(xy)^z = x^z y^z$,
- 4. If $ay = xb^y, cy = xd^y, av = ub^v$, then $cv = ud^v$ (An analog of Ore's condition),
- 5. If $(a \smallsetminus b) \cap (c \smallsetminus d) \neq \emptyset$, then $a \smallsetminus b = c \smallsetminus d$,
- 6. $a \smallsetminus a = b \smallsetminus b$,
- 7. $au \smallsetminus bu = a \smallsetminus b$,
- 8. $ua \smallsetminus bu^a = a \smallsetminus b$,
- 9. $au \smallsetminus u = av \smallsetminus v$.

Theorem 1: Let *S* be a cancellative semigroup which admits conjugates. Then $(\overline{S}, *)$ is a group and *S* is embeddable into \overline{S} .

In 1942, F. Levi proved that a group satisfies the commutator law [[x, y], z] = [x, [y, z]] if and only if the group is of nilpotent of class at most 2. By a classical result of Mal'cev (also, independently by Neumann and Taylor), a cancellation semigroup satisfies the semigroup law xyzyx = yxzxy if and only it is a subsemigroup of a **group** of nilpotent class at most 2. Here we prove an analog of Levi's theorem for conjugates by characterizing semigroups embeddable in groups of nilpotent of class 2 by means of a single conjugacy law.

Theorem 2: Let *S* be a cancellative semigroup which admits conjugates, then *S* is nilpotent of class 2 if and only if it satisfies the conjugacy law $x^{y^z} = x^y$.

Corollary: Let *S* be a cancellative semigroup which admits conjugates, then *S* is nilpotent of class 2 if and only if it satisfies the conjugacy law $x^{yz} = x^{zy}$.

Following Mal'cev, B.H. Neumann and Taylor, we define a semigroup S to be nilpotent of class 3 if it satisfies the law

(xyzyx)u(yxzxy) = (yxzxy)u(xyzyx);

and inductively we say S is of nilpotent class n if it satisfies the law fug = guf where the law f = g defines semigroups of nilpotent class n-1 and u is a new variable not occurring in the terms f or g.

Theorem 3: Let *S* be a cancellative semigroup which admits conjugates, then *S* is nilpotent of class *n* if and only if it satisfies the (n + 1)-variable conjugacy law $x^f = x^g$ where *x* is a variable not occurring in the terms *f* or *g*.

Proof: Assume that *S* satisfies the law $x^f = x^g$. Let x = fu where *u* is a new variable, then since $x^f = (fu)^f = fu^f = uf$ so must $uf = (fu)^g$. Therefore $fug = (fu)g = g(fu)^g = g(uf) = guf$ which means *S* is nilpotent of class *n*.

Conversely assume that S is nilpotent of class n that is fug = guf is a law. Then by the very definition of conjugates, we have $xf = fx^f$. Premultiplying both sides of this equation by gy, where y is a new variable, we get $gyxf = gyfx^f$. Using the nilpotent identity fug = guf twice, we obtain $fyxg = fygx^f$. Left canceling the common term fy we get $xg = gx^f$. But $xg = gx^g$, therefore $gx^g = gx^f$. Finally left canceling the common term g, we obtain the desired conjugacy law $x^f = x^g$.

Theorem Let *S* be a cancellative semigroup which admits commutators. The following conditions are equivalent for all x, y and z in *S*:

- (a) [x, y]z = z[x, y] -nilpotent of class 2;
- (b) [x, y, z] = [x, [y, z]] -associativity of the commutators ;
- (c) [xy, z] = [x, z][y, z] -distributivity of the commutators ;
- (d) xyzyx = yxzxy;
- (e) $x^{y^{z}} = x^{y}$.

Thank you !