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Probability of generating a group

Let d(G ) be the size of the smallest set that generates G .

If we pick k elements from group G where repetitions are
allowed (assuming that k ≤ d(G )), what is the probability of
us generating this group?

We denote this probability by PG (k).

Example: PZ5(2)

Consider G = Z5. We aim to calculate PG (2). If we pick an element
that is not the identity element, then it generates the whole group.

So then the only pair that does not generate the whole group is a
pair of identity elements. Since the number of possible pairs is 25
we have that P2(G ) = 24/25
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Definition of PG ,N(k)

Let N be a normal subgroup of a group G . Let us also
suppose that d(G ), d(G/N) ≤ k .

If we pick k elements from G (repetitions allowed), what is
the probability that they generate G given that they also
generates G modulo N?

We denote this probability by PG ,N(k).
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The Classification of Finite Simple Groups

We now look at the finite simple groups and the finite almost
simple groups.

A group G is almost simple if it satisfies S ≤ G ≤ Aut(S) for
some non-abelian simple group S .

Every finite simple group lies in one of the following classes:

Classification of Finite Simple Groups

Cyclic groups Zp of prime order

Alternating groups An of degree of at least 5

Simple groups of Lie type

One of 26 sporadic simple groups
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Generation of finite simple groups.

So given a finite simple group what can we say about the
probability of us picking two elements (repetition allowed)
that generate the group?

Theorem

For all finite simple groups G , PG (2) > 0.

Theorem [Dixon, 1969; Kantor-Lubotzky, 1990; Liebeck-Shalev,
1995]

For finite simple groups G we have PG (2)→ 1 as |G | → ∞.

Theorem [Menezes, Quick & Roney-Dougal, 2013]

PG (2) ≥ 53/90 = 0.588.
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Bounding PG (2)

Let us start from the definition of PG (2) and see what we can
derive from there. First let us assume that d(G ) ≤ 2, then

PG (2) = P(〈x , y〉 = G | (x , y) ∈ G × G )

= 1− P(〈x , y〉 6= G | (x , y) ∈ G × G )

= 1− |{(x , y) ∈ G × G | 〈x , y〉 6= G}|
|G × G |

.

We notice that if x and y do not generate G if and only if
they both lie in some maximal subgroup of G .

{(x , y) ∈ G × G | 〈x , y〉 6= G} =
⋃

M max G

{(x , y) ∈ M ×M}.
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Bounding PG (2)cont.

So to bound PG (2) we need to bound∣∣∣ ⋃
M max G

{(x , y) ∈ M ×M}
∣∣∣.

We can use the Inclusion-Exclusion Principle to obtain both
an upper bound and lower bound.∣∣∣ ⋃

M max G

{(x , y) ∈ M ×M}
∣∣∣ ≤ ∑

M max G

|M|2

∑
M max G

|M|2−
∑

M,N max G
M 6=N

|M ∩N|2 ≤
∣∣∣ ⋃
M max G

{(x , y) ∈ M ×M}
∣∣∣
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Bounds for PG (k)

By considering the previous and generalizing we can get the
following result.

Theorem

Let G be a group where d(G ) ≤ k , then

1−
∑

M max G

|G : M|−k +
∑

M max G
M 6=N

|G : M ∩ N|−k

≥ PG (k) ≥ 1−
∑

M max G

|G : M|−k .
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Analogues for PG ,N(k)

We can also derive an analogous result for PG ,N(k) with a bit
more effort.

Theorem

1−
∑

M max G
N�M

|G : M|−k +
∑

M1,M2maxG
N�M1,M2

M1 6=M2

|G : M1 ∩M2|−k

≥ PG ,N(k) ≥ 1−
∑

M max G
N�M

|G : M|−k .
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Case where G is simple

If G is simple, and M is a maximal subgroup of G then
|G : M| = |G : NG (M)|.

Let M be a set of representatives for the conjugacy classes of
maximal subgroups.

So grouping together the conjugate maximal subgroups we
can see that∑

M max G

|G : M|−k =
∑

M ∈ M
|G : M|−k × |G : NG (M)|

=
∑

M ∈ M
|G : M|−(k−1).
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Case where G is simple cont.

Theorem

Let G be a simple group where d(G ) ≤ 2, and M be a set of
representatives of the conjugacy classes of the maximal subgroups
of G then

1−
∑

M ∈ M
|G : M|−1 +

∑
M max G

M 6=N

|G : M ∩ N|−2

≥ PG (2) ≥ 1−
∑

M ∈ M
|G : M|−1.
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Maximal subgroups

From here we realise that questions asking about the
probabilities PG (k) and PG ,N(k) are actually questions
regarding maximal subgroups.

We have information on the maximal subgroups of simple
groups.

In particular, the possible maximal subgroups of Classical
Simple Groups are classified into 9 Classes under Aschbacher’s
Theorem.

For small dimensions we know all the the maximal subgroups
for the Classical Simple Groups and their related
almost-simple groups [Bray, Holt & Roney-Dougal, 2013].
Therefore we can work out bounds for the probability for these
cases with relative ease.
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A theorem of Liebeck & Shalev

Theorem [Liebeck & Shalev]

There exist constants α, β > 0 such that

1− α

m(G )
≤ PG (2) ≤ 1− β

m(G )

for all finite simple groups G . Where m(G ) is the index of the
largest (maximal) subgroup of G in G .

Remember that

1−
∑

M ∈M
|G : M|−1 ≤ PG (2).

The theorem is more a statement that as |G | gets large we
may get more maximal subgroups but they are dwarfed in size
by the largest ones.
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Results

Consider the inequality of Liebeck and Shalev;

1− α

m(G )
≤ PG (2) ≤ 1− β

m(G )

.

Our aim is to provide absolute values for α and β for specific
families of groups, more specifically the Classical Simple
Groups.

The results we have obtained so far involve PSLn(q) and the
related almost simple groups.
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Results

Theorem

If G = PSL2(q) then

1− α

m(G )
≤ PG (2) ≤ 1− β

m(G )

where α = 38/15 and β = 1. The left hand side becomes an
equality for q = 11.

If G = PSLn(q) where n > 2 then

1− α

m(G )
≤ PG (2) ≤ 1− β

m(G )

where α = 57/20 and β = 16/9.The left hand side is an
equality for n = 3 and q = 4. The right hand side is an
equality for n = 3 and q = 3.
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Results cont.

We also have lower bounds for PG ,N(2) for the case of
N = PSLn(q).

Theorem

If G is almost simple with socle N = PSLn(q) then

1− α

m(G )
≤ PG ,N(2)

where α = 3983/1296 = 3.07 (2 d.p.). With equality occurring
when n = 4 and q = 3, and G is the extension of PSLn(q) by the
graph automorphism γ.

A. M. Mordcovich On probabilistic generation of PSLn(q)



Results cont.

We also have lower bounds for PG ,N(2) for the case of
N = PSLn(q).

Theorem

If G is almost simple with socle N = PSLn(q) then

1− α

m(G )
≤ PG ,N(2)

where α = 3983/1296 = 3.07 (2 d.p.). With equality occurring
when n = 4 and q = 3, and G is the extension of PSLn(q) by the
graph automorphism γ.

A. M. Mordcovich On probabilistic generation of PSLn(q)



Results cont.

We also have lower bounds for PG ,N(2) for the case of
N = PSLn(q).

Theorem

If G is almost simple with socle N = PSLn(q) then

1− α

m(G )
≤ PG ,N(2)

where α = 3983/1296 = 3.07 (2 d.p.). With equality occurring
when n = 4 and q = 3, and G is the extension of PSLn(q) by the
graph automorphism γ.

A. M. Mordcovich On probabilistic generation of PSLn(q)


