On p-groups with automorphism groups of prescribed properties

Luke Morgan
The Centre for the Mathematics of Symmetry and
Computation
The University of Western Australia

Joint work with: John Bamberg & Stephen Glasby & Alice C. Niemeyer

11/08/2017

• p a prime, P a finite p-group (so $|P| = p^{\alpha}$).

- p a prime, P a finite p-group (so $|P| = p^a$).
- ▶ Frattini subgroup: $\Phi(G)$ = smallest normal subgroup of P so that $P/\Phi(P)$ is elementary abelian.
- ▶ Burnside's basis theorem: $P/\Phi(P) \cong \mathbb{F}_p^d$ where P is a d-generator group.

- p a prime, P a finite p-group (so $|P| = p^a$).
- ▶ Frattini subgroup: $\Phi(G)$ = smallest normal subgroup of P so that $P/\Phi(P)$ is elementary abelian.
- ▶ Burnside's basis theorem: $P/\Phi(P) \cong \mathbb{F}_p^d$ where P is a d-generator group.
- $\varphi : Aut(P) \to Aut(P/\Phi(P)) \to GL(d,p)$, and let $A(P) := \varphi(Aut(P))$.

- p a prime, P a finite p-group (so $|P| = p^a$).
- ▶ Frattini subgroup: $\Phi(G)$ = smallest normal subgroup of P so that $P/\Phi(P)$ is elementary abelian.
- ▶ Burnside's basis theorem: $P/\Phi(P) \cong \mathbb{F}_p^d$ where P is a d-generator group.
- $\varphi : Aut(P) \to Aut(P/\Phi(P)) \to GL(d,p)$, and let $A(P) := \varphi(Aut(P))$.
- ▶ Which groups occur as A(P) for some p-group P?

Given H, do there exist p-groups P such that $A(P) \cong H$?

Given H, do there exist p-groups P such that $A(P) \cong H$?

Given $H \leq GL(d, p)$, do there exist p-groups P such that A(P) = H (up to conjugation)?

Given H, do there exist p-groups P such that $A(P) \cong H$ (as abstract groups)?

Abstract "representation"

Given $H \leq GL(d, p)$, do there exist p-groups P such that A(P) = H (up to conjugation)?

Linear "representation"

Given H, do there exist p-groups P such that $A(P) \cong H$ (as abstract groups)?

Abstract "representation"

Given $H \leq GL(d, p)$, do there exist p-groups P such that A(P) = H (up to conjugation)?

Linear "representation"

Amongst such P, what is the minimal

- order,
- exponent,
- nilpotency class?

Inducing groups on the central quotient

Theorem (Heineken, Liebeck)

Let H be a group and p an odd prime. There exists a p-group P of exponent p^2 and nilpotency class two such that the group induced on P/Z(P) is isomorphic to H.

Inducing groups on the central quotient

Theorem (Heineken, Liebeck)

Let H be a group and p an odd prime. There exists a p-group P of exponent p^2 and nilpotency class two such that the group induced on P/Z(P) is isomorphic to H.

Rank of P is $\approx |H|$.

Inducing groups on Frattini quotient

Theorem (Bryant, Kovács)

Given $H \leq GL(d,p)$, there exists a d-generator p-group P such that A(P) = H.

Inducing groups on Frattini quotient

Theorem (Bryant, Kovács)

Given $H \leq GL(d,p)$, there exists a d-generator p-group P such that A(P) = H.

This is a linear "representation".

Inducing groups on Frattini quotient

Theorem (Bryant, Kovács)

Given $H \leq GL(d,p)$, there exists a d-generator p-group P such that A(P) = H.

This is a linear "representation".

There is no bound on nilpotency class, exponent or order.

Rarity of such p-groups

```
Theorem (Helleloid, Martin)

Let d \ge 5.
```

$$\lim_{n\to\infty}\left(\begin{array}{c} \textit{proportion of d-generator p-groups}\\ \textit{with p-length at most n}\\ \textit{with automorphism group a p-group} \end{array}\right)=1.$$

Rarity of such p-groups

```
Theorem (Helleloid, Martin)
```

Let $d \ge 5$.

$$\lim_{n\to\infty}\left(\begin{array}{c} \textit{proportion of d-generator p-groups}\\ \textit{with p-length at most n}\\ \textit{with automorphism group a p-group} \end{array}\right)=1.$$

"The automorphism group of a p-group is almost always a p-group."

Problem

• Given H maximal GL(d, p),

Problem

- ▶ Given H \max imal GL(d, p),
- ▶ find: d-generator p-group P with

$$A(P) = H$$
.

Problem

- Given H maximal GL(d, p),
- ▶ find: d-generator p-group P with

$$A(P) = H$$
.

Amongst such P, minimise:

- exponent aim for exponent p ?
- ▶ nilpotency class aim for class \leq 3 ?
- order.

Where to look?

For a group X, the *lower central series* is defined by:

$$\lambda_0(X) = X$$

and for $i \ge 1$,

$$\lambda_i = [\lambda_{i-1}(X), X]$$

Where to look?

For a group X, the *lower central series* is defined by:

$$\lambda_0(X) = X$$

and for $i \geqslant 1$,

$$\lambda_i = [\lambda_{i-1}(X), X]$$

If X is a p-group of exponent p: $\lambda_i(X)/\lambda_{i+1}(X)$ is an elementary abelian p-group.

Where to look

Let $d \ge 2$ and $n \ge 1$ be integers.

Set $B(d,p) = F_d/(F_d)^p$, the relatively free group of rank d and exponent p.

Set $\Gamma(d,n) = B(d,p) / \lambda_n(B(d,p))$.

Where to look

Let $d \ge 2$ and $n \ge 1$ be integers.

Set $B(d,p) = F_d/(F_d)^p$, the relatively free group of rank d and exponent p.

Set
$$\Gamma(d,n) = B(d,p) / \lambda_n(B(d,p))$$
.

 $\Gamma(d,n)$ is the relatively free d-generator group of exponent p and class n.

Properties of $\Gamma(d, n)$

 $\Gamma(d,n)$ is the (relatively free) d-generator group of exponent p and class n.

 $ightharpoonup \Gamma(d,n)$ is a finite p-group (order formula due to Witt).

Properties of $\Gamma(d, n)$

 $\Gamma(d,n)$ is the (relatively free) d-generator group of exponent p and class n.

- $ightharpoonup \Gamma(d,n)$ is a finite p-group (order formula due to Witt).
- ▶ $A(\Gamma(d,n)) = GL(d,p)$ (as large as possible)

Properties of $\Gamma(d, n)$

 $\Gamma(d,n)$ is the (relatively free) d-generator group of exponent p and class n.

- $ightharpoonup \Gamma(d,n)$ is a finite p-group (order formula due to Witt).
- ▶ $A(\Gamma(d,n)) = GL(d,p)$ (as large as possible)
- ▶ If P is a finite d-generator p-group of exponent p and class at most n, then P is a quotient of $\Gamma(d,n)$.

 $\Gamma(d,n)$ is the (relatively free) d-generator group of exponent p and class n.

Let

$$U < \lambda_{n-1}(\Gamma(d,n))$$

and set

- $\blacktriangleright \ H := N_{\mathrm{GL}(d,p)}(U), \quad (= N_{A(\Gamma(d,n))}(U))$
- $P := \Gamma(d, n)/U.$

Automorphisms of quotients

 $\Gamma(d,n)$ is the (relatively free) d-generator group of exponent p and class n.

Let

$$U < \lambda_{n-1}(\Gamma(d,n))$$

and set

- $\qquad \qquad \vdash \mathsf{H} := \mathsf{N}_{\mathsf{GL}(\mathsf{d},\mathsf{p})}(\mathsf{U}), \quad (= \mathsf{N}_{\mathsf{A}(\mathsf{\Gamma}(\mathsf{d},\mathsf{n}))}(\mathsf{U}))$
- $P := \Gamma(d, n)/U.$

Then P is a d-generator, exponent p, class n finite p-group with

$$A(P) = H$$
.

Maximal subgroups

Strategy to construct a p-group with A(P) = H

Strategy to construct a p-group with A(P) = H

For $H \leq GL(d, p)$, find (minimal) n such that

- ▶ there is a submodule U of $\lambda_{n-1}(\Gamma(d,n))$ with
- $\blacktriangleright \ H = N_{\mathrm{GL}(d,p)}(U).$

Strategy to construct a p-group with A(P) = H

For $H \leq GL(d, p)$, find (minimal) n such that

- ▶ there is a submodule U of $\lambda_{n-1}(\Gamma(d,n))$ with
- $\vdash H = N_{GL(d,p)}(U).$

Also minimise order if pick U of maximal dimension amongst such modules.

Strategy to construct a p-group with A(P) = H

For $H \leq GL(d, p)$, find (minimal) n such that

- ▶ there is a submodule U of $\lambda_{n-1}(\Gamma(d,n))$ with
- $\blacktriangleright \ H = N_{\mathrm{GL}(d,p)}(U).$

Also minimise order if pick U of maximal dimension amongst such modules.

Problem is to show $H = N_{\mathrm{GL}(d,p)}(U)$. When H is maximal – this is easy.

Practical description of $\Gamma(d, n)$

Assume $d \geqslant 2$ and let $V = \mathbb{F}_p^d$.

Practical description of $\Gamma(d, n)$

Assume $d\geqslant 2$ and let $V=\mathbb{F}_p^d.$

$$\Gamma(d,2) = \{(u,v) \mid u \in V, v \in A^2(V)\}$$

 $\text{Multiplication: } (\mathfrak{u},\nu)(\mathfrak{u}',\nu') = (\mathfrak{u}+\mathfrak{u}',\, \nu+\nu'\,+\,\mathfrak{u}\wedge\nu).$

H a maximal parabolic

Suppose H stabilises a proper subspace W < V. Find $U < A^2(V)$ that is H-invariant:

H a maximal parabolic

Suppose H stabilises a proper subspace W < V. Find $U < A^2(V)$ that is H-invariant:

- ▶ $A^2(V)$ is irreducible for GL(d, p).
- ▶ $U := \langle w \land v \mid w \in W, v \in V \rangle$ is H-invariant.
- (*) U is proper unless dim $U = \dim V 1$.

H a maximal parabolic

Suppose H stabilises a proper subspace W < V. Find $U < A^2(V)$ that is H-invariant:

- ▶ $A^2(V)$ is irreducible for GL(d, p).
- ▶ $U := \langle w \land v \mid w \in W, v \in V \rangle$ is H-invariant.
- (*) U is proper unless dim $U = \dim V 1$.
 - ▶ For H stabiliser of proper non-trivial subspace, not as in (*), there exists a d-generator p-group P of exponent p and class 2 with A(P) = H.

H a maximal parabolic

Suppose H stabilises a proper subspace W < V. Find $U < A^2(V)$ that is H-invariant:

- ▶ $A^2(V)$ is irreducible for GL(d, p).
- ▶ $U := \langle w \land v \mid w \in W, v \in V \rangle$ is H-invariant.
- (*) U is proper unless dim $U = \dim V 1$.
 - ▶ For H stabiliser of proper non-trivial subspace, not as in (*), there exists a d-generator p-group P of exponent p and class 2 with A(P) = H.
 - For H as in (*), there is no class 2 group P with A(P) = H.

Another example

H preserves an alternating form β (up to scalars)

$$\pi: A^2(V) \to \mathbb{F}_p, \quad \pi: u \wedge v \mapsto \beta(u, v)$$

Another example

H preserves an alternating form β (up to scalars)

$$\pi: A^2(V) \to \mathbb{F}_p, \quad \pi: u \wedge v \mapsto \beta(u, v)$$

 $\ker \pi$ is a H-invariant submodule of codimension 1.

Another example

H preserves an alternating form β (up to scalars)

$$\pi: A^2(V) \to \mathbb{F}_p, \quad \pi: u \wedge v \mapsto \beta(u, v)$$

 $\ker \pi$ is a H-invariant submodule of codimension 1.

$$\Gamma(d,2)/\ker\pi\cong p_+^{1+\dim V}.$$

Main Result

Theorem (Bamberg, Glasby, M., Niemeyer)

Let $p \geqslant 5$ be a prime, and let $d \geqslant 2$ be an integer. Suppose that H is a maximal subgroup of GL(d,p) with $SL(d,p) \not\leqslant H$ and that $|H| \geqslant p^{3d+1}$. Then there exists a d-generator p-group P of

- exponent p,
- class at most 4,
- order at most $p^{\frac{d^4}{2}}$

and such that A(P) = H.

We handled Aschbacher classes C_1 , C_2 , C_3 , C_4 , C_7 , C_8 .

We handled Aschbacher classes C_1 , C_2 , C_3 , C_4 , C_7 , C_8 .

If $d \neq 2$ we have existence of class two or three group.

We handled Aschbacher classes C_1 , C_2 , C_3 , C_4 , C_7 , C_8 .

If $d \neq 2$ we have existence of class two or three group.

We give a "practical description" of $\Gamma(d,3)$ to show existence of class three groups.

We handled Aschbacher classes C_1 , C_2 , C_3 , C_4 , C_7 , C_8 .

If $d \neq 2$ we have existence of class two or three group.

We give a "practical description" of $\Gamma(d,3)$ to show existence of class three groups.

No C_6 – computational evidence shows the class must be big.

We handled Aschbacher classes C_1 , C_2 , C_3 , C_4 , C_7 , C_8 .

If $d \neq 2$ we have existence of class two or three group.

We give a "practical description" of $\Gamma(d,3)$ to show existence of class three groups.

No C_6 – computational evidence shows the class must be big.

For C_9 , Saul Freedman: There is a class two group for $G_2(p) \leqslant \operatorname{GL}(7,p)$, of order p^{14} .

Thanks!