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Theorem(J.Cossey-T.O.Hawkes,2000)
Let p be a prime and 0 = eo < e1 < · · · < en be integers. Then
there exists a p-group G with nilpotency class 2 such that, the
set of conjugacy class sizes of G is exactly
{1 = pe0 , pe1 , . . . , pen}.

Problem 1(Avinoam Mann,2011)

Find other constructions, in particular ones that produce groups
of higher class.

Problem 2
What about groups with exactly two conjugacy class sizes?
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Let’s go in history
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A finite group G is said to be of conjugate type
(1 = m0,m1, . . . ,mr ); if mi ’s are precisely the different sizes of
conjugacy classes of G . Here we say that G is of conjugate rank
r .

In the 1953, N. Ito started the study of finite groups with few
conjugacy class sizes.

In a series of paper ”On finite groups with given conjugate type
I, II, III (1953, 1970, 1970)”, he studied finite groups with 2, 3, 4
conjugacy class sizes respectively.

In this talk, we concentrate mainly on finite groups with exactly
two conjugacy class sizes.
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Theorem(N. Ito, 1953)

Let G be a finite group with exactly two conjugacy class sizes,
namely 1 and m. Then the following hold;

m is a power of some prime p, say m = pn.

G = P × A, where P is the non-abelian sylow p-subgroup of G
and A is an abelian p′-subgroup of G .

In particular, G is nilpotent.
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Problem 3

Find a bound on the nilpotency class of p-groups with exactly two
conjugacy class sizes.

Problem 4

Classify finite p-groups of conjugate type (1, pn), where n ≥ 1.
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Theorem(I.M.Isaacs, 1970)

Let G be a finite group, which contain a proper normal subgroup N
such that all the conjugacy classes of G , which lie outside N have
same lengths.

Then either G/N is cyclic or every non-identity
element of G/N is of prime order.

Corollary 1
Let G be a finite p-group with conjugate type (1, pn). Then
exp(G/Z (G )) = p.

Corollary 2
Let G be a finite 2-group with conjugate type (1, 2n). Then
nilpotency class of G is exactly 2.
Now, we can modify problem 3, and state it as

Problem 3
Find a bound on the nilpotency class of p-groups with exactly two
conjugacy class sizes, for odd primes p.
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Theorem(K. Ishikawa, 2002)

Let p be an odd prime and G be a p-group with exactly two
conjugacy class sizes.

Then the nilpotency class of G is either 2 or 3.

Mann and Isaacs independently generalized this.

T. K. Naik (Groups St Andrews 2017, Birmingham) On p-groups . . . 12/08/2017 (11 A.M) 8 / 21



Theorem(K. Ishikawa, 2002)

Let p be an odd prime and G be a p-group with exactly two
conjugacy class sizes. Then the nilpotency class of G is either 2 or 3.

Mann and Isaacs independently generalized this.

T. K. Naik (Groups St Andrews 2017, Birmingham) On p-groups . . . 12/08/2017 (11 A.M) 8 / 21



Theorem(K. Ishikawa, 2002)

Let p be an odd prime and G be a p-group with exactly two
conjugacy class sizes. Then the nilpotency class of G is either 2 or 3.

Mann and Isaacs independently generalized this.

T. K. Naik (Groups St Andrews 2017, Birmingham) On p-groups . . . 12/08/2017 (11 A.M) 8 / 21



Now we summarize the situation on Problem 1 and Problem 2, (with
the extra conditions) for the groups having exactly two conjugacy
class sizes.

1 Given any odd prime p and any integer n ≥ 1, we can not
construct finite p-group of conjugate type (1, pn), with
nilpotency class greater than 3.

2 Given any integer n ≥ 1, We can not construct finite 2-group of
conjugate type (1, 2n), with nilpotency class greater than 2.

Now, we concentrate on Problem 4;

Problem 4

Classify finite p-groups of conjugate type (1, pn), where n ≥ 1.
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Here, we present a classification (up to isoclinism) for finite p-groups
of

1 class 2 and conjugate type (1, pn); for n ≤ 3.

2 class 3 and conjugate type (1, pn); for all n ≥ 1.
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Isoclinism(P.Hall,1940)

Two finite groups G and H are called isoclinic if there exists an
isomorphism φ of the factor group Ḡ = G/Z(G ) onto H̄ = H/Z(H),
and an isomorphism θ of the subgroup G ′ onto H ′ such that the
following diagram is commutative

Ḡ × Ḡ
aG−−−→ G ′

φ×φ
y yθ

H̄ × H̄
aH−−−→ H ′.

aG and aH are canonical commutator maps.

Before going to the classification, we exhibit some examples.
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For any positive integer r ≥ 1 and prime p > 2, consider the
following group constructed by N. Ito.

Gr =
〈

a1, . . . , ar+1 | [ai , aj ] = bij , [ak , bij ] = 1,

ap
i = ap

r+1 = bp
ij = 1, 1 ≤ i < j ≤ r + 1, 1 ≤ k ≤ r + 1

〉
.

The group Gr is of conjugate type (1, pr ) and nilpotency class 2.

For any k ≥ 1, the group U3(pn) of upper unitriangular matrices
over a field of order pn is of conjugate type (1, pn) and class 2.
This is a Camina special p-group.

The family of Camina special p-groups G , with |G ′| = pk

provides a huge source of examples of groups of conjugate type
(1, pk) and class 2.
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On the other hand examples for class 3 are very rare.

Only examples known are for p-group of conjugate type (1, pn)
and nilpotency class 3, where n is even integer.

These examples were appeared in the construction of certain
Camina p-groups of class 3 by Dark and Scoppola in 1996.

It can be showed that; for fix n, the p-group of conjugate type
(1, p2n) and class 3, constructed by Dark and Scoppola is
isomorphic to Hn/Z (Hn),where Hn can be presented as below;

Hn =




1 0 0 0 0
a 1 0 0 0
c b 1 0 0
d ab − c a 1 0
f e c b 1

 : a, b, c , d , e, f ∈ Fpn

 .
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Now, we come to the classification of p-groups having exactly 2 class
sizes.

Theorem(K.Ishikawa, 1999)
A finite p-group G has exactly two conjugacy class sizes 1 and p if
and only if G is isoclinic to an extra special p-Group.
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Theorem(K.Ishikawa, 1999)

Let G be a finite p-group of conjugate type (1, p2) and
nilpotency class 2. Then G is isoclinic to one of the following;

1 A Camina group H with |H ′| = p2.

2 Gr , for r = 2.

G2 =
〈
a1, a2, a3 | [ai , aj ] = bij , [ak , bij ] = 1,

api = ap3 = bpij = 1, 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3
〉
.

Let G be a finite p-group of conjugate type (1, p2) and
nilpotency class 3. Then G is isoclinic to W , where W can be
presented as,

W =
〈

a1, a2 | [a1, a2] = b, [ai , b] = ci ,

ap
i = bp = cp

i = 1, i = 1, 2
〉
.

Note that W is isomorphic to the the group constructed by Dark and
Scoppola,Hn/Z (Hn); for n = 1.
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Theorem(Tushar K. Naik, Manoj K. Yadav (2017))
Let G be a finite p-group of conjugate type {1, p3}, p > 2. Then
nilpotency class of G is 2.

Moreover G is isoclinic to one of following
groups:

A finite Camina p-group of nilpotency class 2 with commutator
subgroup of order p3;

The group Gr , for r = 3 ;

G3 =
〈

a1, . . . , a4 | [ai , aj ] = bij , [ak , bij ] = 1,

ap
i = ap

4 = bp
ij = 1, 1 ≤ i < j ≤ 4, 1 ≤ k ≤ 4

〉
.

The quotient group G3/M , where M is a normal subgroup of G3

given by M = 〈[a1, a2][a3, a4]〉;
The quotient group G3/N , where N is a normal subgroup of G3

given by N = 〈[a1, a2][a3, a4], [a1, a3][a2, a4]t〉, with t any
fixed integer non-square modulo p.
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Let Ĝn denote the family consisting of (n + 1)-generator
non-abelian special p-groups G of order p(n+1)(n+2)/2. Let Ĝ3
denote the subfamily of Ĝ3 consisting of 2-groups of exponent 4.

Then it follows that all groups of this family are of conjugate
type {1, 23}. It also turns out that any two groups in Ĝ3 are
isoclinic.

For simplicity of notation, we assume that a group G from Ĝ3 is
minimally generated by the set {a, b, c , d}.

T. K. Naik (Groups St Andrews 2017, Birmingham) On p-groups . . . 12/08/2017 (11 A.M) 17 / 21
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Theorem(Tushar K. Naik, Manoj K. Yadav, 2017)
Let G be a finite 2-group of conjugate type {1, 8} and nilpotency
class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;

(ii) A fixed group G in the family Ĝ3, defined above;

(iii) The quotient group G/M , where M is a normal subgroup of G
such that M = 〈[a, b][c , d ]〉;

(iv) The quotient group G/N , where N is a normal subgroup of G
such that N = 〈[a, b][c , d ], [a, c][b, d ][c , d ]〉.
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Let’s summerize the results on finite p-groups of conjugate type
(1, pn).

For p = 2, such groups have nilpotency class exactly 2.

For odd prime p, such groups can have nilpotency class 2 or 3.

For class 2, there are many known examples.

For class 3, there does not exist any p-group of conjugate type
(1, pn), when n = 1 or 3.

For class 3, there is only one example known, that too when n is
even.

All these information lead to the following natural questions.

Question 6
Does there exist a finite p-group of nilpotency class 3 and
conjugate type {1, pn}, for odd prime p and odd integer n ≥ 5?

Question 7
For given even integer n, does there exist more groups of
conjugate type (1, pn), other than the example constucted by
Dark and Scoppola ?
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Recently, we prove following as an answer to these problems.

Theorem(Naik, Kitture and Yadav)
Let p be an odd prime. Then the following holds;

There does not exist any p-group of conjugate type {1, pn} and
nilpotency class 3, for odd integer n.

There exists a unique (up to isoclinism) p-group of conjugate
type (1, p2n) and class 3.

In particular, it is isoclinic to the group constructed by Dark and
Scoppola.
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