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Definitions

Let G be a group, ϕ be an automorphism of G.

Definition

Two elements x , y ∈ G are called (twisted) ϕ-conjugated if there
exists an element z ∈ G such that

x = zyϕ(z)−1.

[x ]ϕ – ϕ-conjugacy class of the element x .

R(ϕ) – number of ϕ-conjugacy classes (Reidemeister number).
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Fixed point theory

Let X be a finite polyhedron, f : X → X be a homeomorphism.

Definition

Two points x , y ∈ Fix(f ) belong to the same fixed point class of f if
there exists a path c connecting x and y such that c ' f ◦ c.

x y
c

f ◦ c

R(f ) – number of fixed point classes of f .

Denote by ϕ the automorphism of π1(X ) induced by f .

Then R(f ) = R(ϕ).
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Group theory

Conjecture (Fel’shtyn-Troitsky, 2012)

Let G be a finitely generated residually finite group. If G possesses
an automorphism ϕ with R(ϕ) <∞, then G is almost solvable.

This conjecture is known to be correct when

I ϕ has prime order (Jabara, 2008).

I G is linear (Fel’shtyn-N., 2016).

I other very specific conditions hold (Fel’shtyn-N., 2016).
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Question

[e]ϕ = {x−1ϕ(x) | x ∈ G} – ϕ-conjugacy class of the unit element.

Proposition (Fel’shtyn-Troitsky)

The twisted conjugacy class [e]ϕ of the unit element e is a subgroup
of an abelian group G. The other ones are cosets [x ]ϕ = x [e]ϕ.

Question

For which groups the twisted conjugacy class of the unit element is a
subgroup for every automorphism?

Is it true that such group must be abelian?
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Conjecture

Conjecture (Bardakov-N.-Neshchadim, 2013)

If in group G the twisted conjugacy class of the unit element is a
subgroup for every automorphism, then this group is nilpotent.

Kourovka notebook, Problem 18.14, 2014.
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Known result

Let g ∈ G and ϕ : x 7→ xg = g−1xg be an inner automorphism.
Denote the class [e]ϕ by [e]g .

Theorem (Bardakov-N.-Neshchadim, 2013)

Let G be a group such that the class [e]g is a subgroup of G for every
g ∈ G. If G satisifies both descending and ascending chain
conditions for normal subgroups, then G is nilpotent.

If G is finite, then G is nilpotent.
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Example

Is it possible to prove the conjecture using only inner automorphisms?

Let Gn = Z3n o Z3n−1 = 〈x , y | x3n
= 1, y3n−1

= 1, xy = x4〉.

G =
∏

n Gn is not nilpotent.

Question

Let G be a group such that [e]g is a subgroup of G for every g ∈ G. Is
it true that G is residually nilpotent?
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New result

[e]g1 > [e][g1,g2] > [e][g1,g2,g3] > . . .

Question

Let G be a finitely generated group such that [e]g ≤ G for every
g ∈ G. Is it true that ∩n[e][g1,...,gn] = {e} for every g1,g2, . . .?

Theorem (Gonçalves-N.,2017)

Let G be a finitely generated group such that [e]g ≤ G for every g. If
∩n[e][g1,...,gn] = {e} for every sequence g1,g2, . . . , then either
γn(G) = {e} or γn(G) 6= γn+1(G).

If G satisfies the descending chain condition, then G is nilpotent.
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Verbal width

Let w(x1, . . . , xn) ∈ Fn = 〈x1, . . . xn〉.

Definition

The group w(G) = 〈w(g1, . . . ,gn) | g1, . . . ,gn ∈ G〉 is called the verbal
subgroup of G defined by the word w ∈ Fn.

If w = [x1, . . . , xn], then w(G) = γn(G).

For g ∈ w(G) let lw (g) = min{k | g =
∏k

j=1 w(g1i , . . . ,gni)
εi}.

Definition

The (verbal) width of the verbal subgroup w(G) of a group G is the
value wid(w(G)) = sup{lw (g) | g ∈ w(G)}.
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Verbal width

If w = [x1, . . . , xn], then w(G) = γn(G).

Denote by γn(x1, . . . , xn) = [x1, . . . , xn].

Theorem (Gonçalves-N., 2017)

Let G be a group with n generators such that [e]g ≤ G for every
g ∈ G. Then

1. wid(γ2(G)) ≤ n − 1,

2. wid(γk (G)) ≤ nk−2(n − 1)/2 for k ≥ 3.

If n = 2, then wid(γ2(G)) ≤ 1, wid(γ3(G)) ≤ 1.
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Verbal width

Question

Is it possible to improve the estimation of wid(γk (G)) for k > 3?

Proposition (Gonçalves-N., 2017)

Let G be a metabelian group with n generators such that [e]g ≤ G for
every g ∈ G. Then for k > 1

wid(γk+2(G)) ≤ n(n − 1)
2

(
n + k − 2

k − 1

)
.
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Open problems

1. Let G be a finitely generated group such that [e]g ≤ G for every g ∈ G.
Is it true that G is residually nilpotent?

2. Let G be a finitely generate group such that [e]g ≤ G for every g ∈ G. Is
it true that ∩n[e][g1,...,gn ] = {e} for every sequence g1, g2, . . . ?

3. Let G be a finitely generated group such that [e]g ≤ G for every g ∈ G.
Find a sharp estimation of wid(γk (G)) for k > 3?


