

Groups where the twisted conjugacy class of the unit element is a subgroup

Timur Nasybullov
KU Leuven, Campus KULAK

Groups St Andrews, Birmingham, August 6, 2017

Daciberg Lima Gonçalves (USP)

Let G be a group, φ be an automorphism of G.

Let G be a group, φ be an automorphism of G.

Definition

Two elements $x, y \in G$ are called (twisted) φ -conjugated if there exists an element $z \in G$ such that

$$x = zy\varphi(z)^{-1}$$
.

Let G be a group, φ be an automorphism of G.

Definition

Two elements $x, y \in G$ are called (twisted) φ -conjugated if there exists an element $z \in G$ such that

$$x=zy\varphi(z)^{-1}.$$

 $[x]_{\varphi} - \varphi$ -conjugacy class of the element x.

Let G be a group, φ be an automorphism of G.

Definition

Two elements $x, y \in G$ are called (twisted) φ -conjugated if there exists an element $z \in G$ such that

$$x=zy\varphi(z)^{-1}.$$

 $[x]_{\varphi} - \varphi$ -conjugacy class of the element x.

 $R(\varphi)$ – number of φ -conjugacy classes (Reidemeister number).

Fixed point theory

Let *X* be a finite polyhedron, $f: X \to X$ be a homeomorphism.

Definition

Two points $x, y \in Fix(f)$ belong to the same fixed point class of f if there exists a path c connecting x and y such that $c \simeq f \circ c$.

Fixed point theory

Let *X* be a finite polyhedron, $f: X \to X$ be a homeomorphism.

Definition

Two points $x, y \in Fix(f)$ belong to the same fixed point class of f if there exists a path c connecting x and y such that $c \simeq f \circ c$.

R(f) – number of fixed point classes of f.

Fixed point theory

Let *X* be a finite polyhedron, $f: X \to X$ be a homeomorphism.

Definition

Two points $x, y \in Fix(f)$ belong to the same fixed point class of f if there exists a path c connecting x and y such that $c \simeq f \circ c$.

R(f) – number of fixed point classes of f.

Denote by φ the automorphism of $\pi_1(X)$ induced by f.

Then $R(f) = R(\varphi)$.

Group theory

Group theory

Conjecture (Fel'shtyn-Troitsky, 2012)

Let G be a finitely generated residually finite group. If G possesses an automorphism φ with $R(\varphi) < \infty$, then G is almost solvable.

Group theory

Conjecture (Fel'shtyn-Troitsky, 2012)

Let G be a finitely generated residually finite group. If G possesses an automorphism φ with $R(\varphi) < \infty$, then G is almost solvable.

This conjecture is known to be correct when

- φ has prime order (Jabara, 2008).
- ► G is linear (Fel'shtyn-N., 2016).
- other very specific conditions hold (Fel'shtyn-N., 2016).

$$[e]_{\varphi} = \{x^{-1}\varphi(x) \mid x \in G\} - \varphi$$
-conjugacy class of the unit element.

 $[e]_{\varphi} = \{x^{-1}\varphi(x) \mid x \in G\} - \varphi$ -conjugacy class of the unit element.

Proposition (Fel'shtyn-Troitsky)

The twisted conjugacy class $[e]_{\varphi}$ of the unit element e is a subgroup of an abelian group G. The other ones are cosets $[x]_{\varphi} = x[e]_{\varphi}$.

 $[e]_{\varphi} = \{x^{-1}\varphi(x) \mid x \in G\} - \varphi$ -conjugacy class of the unit element.

Proposition (Fel'shtyn-Troitsky)

The twisted conjugacy class $[e]_{\varphi}$ of the unit element e is a subgroup of an abelian group G. The other ones are cosets $[x]_{\varphi} = x[e]_{\varphi}$.

Question

For which groups the twisted conjugacy class of the unit element is a subgroup for every automorphism?

$$[e]_{\varphi} = \{x^{-1}\varphi(x) \mid x \in G\} - \varphi$$
-conjugacy class of the unit element.

Proposition (Fel'shtyn-Troitsky)

The twisted conjugacy class $[e]_{\varphi}$ of the unit element e is a subgroup of an abelian group G. The other ones are cosets $[x]_{\varphi} = x[e]_{\varphi}$.

Question

For which groups the twisted conjugacy class of the unit element is a subgroup for every automorphism?

Is it true that such group must be abelian?

Conjecture

Conjecture (Bardakov-N.-Neshchadim, 2013)

If in group *G* the twisted conjugacy class of the unit element is a subgroup for every automorphism, then this group is nilpotent.

Kourovka notebook, Problem 18.14, 2014.

Known result

Let $g \in G$ and $\varphi : x \mapsto x^g = g^{-1}xg$ be an inner automorphism. Denote the class $[e]_{\varphi}$ by $[e]_g$.

Known result

Let $g \in G$ and $\varphi : x \mapsto x^g = g^{-1}xg$ be an inner automorphism. Denote the class $[e]_{\varphi}$ by $[e]_g$.

Theorem (Bardakov-N.-Neshchadim, 2013)

Let G be a group such that the class $[e]_g$ is a subgroup of G for every $g \in G$. If G satisifies both descending and ascending chain conditions for normal subgroups, then G is nilpotent.

Known result

Let $g \in G$ and $\varphi : x \mapsto x^g = g^{-1}xg$ be an inner automorphism. Denote the class $[e]_{\varphi}$ by $[e]_g$.

Theorem (Bardakov-N.-Neshchadim, 2013)

Let G be a group such that the class $[e]_g$ is a subgroup of G for every $g \in G$. If G satisifies both descending and ascending chain conditions for normal subgroups, then G is nilpotent.

If *G* is finite, then *G* is nilpotent.

Is it possible to prove the conjecture using only inner automorphisms?

Is it possible to prove the conjecture using only inner automorphisms?

Let
$$G_n = \mathbb{Z}_{3^n} \rtimes \mathbb{Z}_{3^{n-1}} = \langle x, y \mid x^{3^n} = 1, y^{3^{n-1}} = 1, x^y = x^4 \rangle$$
.

Is it possible to prove the conjecture using only inner automorphisms?

Let
$$G_n = \mathbb{Z}_{3^n} \rtimes \mathbb{Z}_{3^{n-1}} = \langle x, y \mid x^{3^n} = 1, y^{3^{n-1}} = 1, x^y = x^4 \rangle$$
.

 $G = \prod_n G_n$ is not nilpotent.

Is it possible to prove the conjecture using only inner automorphisms?

Let
$$G_n = \mathbb{Z}_{3^n} \rtimes \mathbb{Z}_{3^{n-1}} = \langle x, y \mid x^{3^n} = 1, y^{3^{n-1}} = 1, x^y = x^4 \rangle$$
.

 $G = \prod_n G_n$ is not nilpotent.

Question

Let *G* be a group such that $[e]_g$ is a subgroup of *G* for every $g \in G$. Is it true that *G* is residually nilpotent?

New result

$$[e]_{g_1} > [e]_{[g_1,g_2]} > [e]_{[g_1,g_2,g_3]} > \dots$$

New result

$$[e]_{g_1} > [e]_{[g_1,g_2]} > [e]_{[g_1,g_2,g_3]} > \dots$$

Question

Let *G* be a finitely generated group such that $[e]_g \leq G$ for every $g \in G$. Is it true that $\bigcap_n [e]_{[q_1,...,q_n]} = \{e\}$ for every $g_1, g_2,...$?

New result

$$[e]_{g_1} > [e]_{[g_1,g_2]} > [e]_{[g_1,g_2,g_3]} > \dots$$

Question

Let *G* be a finitely generated group such that $[e]_g \leq G$ for every $g \in G$. Is it true that $\bigcap_n [e]_{[g_1, \dots, g_n]} = \{e\}$ for every g_1, g_2, \dots ?

Theorem (Gonçalves-N.,2017)

Let G be a finitely generated group such that $[e]_g \leq G$ for every g. If $\cap_n[e]_{[g_1,\ldots,g_n]}=\{e\}$ for every sequence g_1,g_2,\ldots , then either $\gamma_n(G)=\{e\}$ or $\gamma_n(G)\neq\gamma_{n+1}(G)$.

$$[e]_{g_1} > [e]_{[g_1,g_2]} > [e]_{[g_1,g_2,g_3]} > \dots$$

Let *G* be a finitely generated group such that $[e]_g \leq G$ for every $g \in G$. Is it true that $\bigcap_n [e]_{[g_1, \dots, g_n]} = \{e\}$ for every g_1, g_2, \dots ?

Theorem (Gonçalves-N.,2017)

Let G be a finitely generated group such that $[e]_g \leq G$ for every g. If $\cap_n[e]_{[g_1,\ldots,g_n]}=\{e\}$ for every sequence g_1,g_2,\ldots , then either $\gamma_n(G)=\{e\}$ or $\gamma_n(G)\neq\gamma_{n+1}(G)$.

If *G* satisfies the descending chain condition, then *G* is nilpotent.

Let
$$w(x_1, \ldots, x_n) \in F_n = \langle x_1, \ldots x_n \rangle$$
.

Definition

The group $w(G) = \langle w(g_1, \dots, g_n) \mid g_1, \dots, g_n \in G \rangle$ is called the verbal subgroup of G defined by the word $w \in F_n$.

Let
$$w(x_1, \ldots, x_n) \in F_n = \langle x_1, \ldots x_n \rangle$$
.

Definition

The group $w(G) = \langle w(g_1, \dots, g_n) \mid g_1, \dots, g_n \in G \rangle$ is called the verbal subgroup of G defined by the word $w \in F_n$.

If
$$w = [x_1, \dots, x_n]$$
, then $w(G) = \gamma_n(G)$.

Let
$$w(x_1, \ldots, x_n) \in F_n = \langle x_1, \ldots x_n \rangle$$
.

Definition

The group $w(G) = \langle w(g_1, \dots, g_n) \mid g_1, \dots, g_n \in G \rangle$ is called the verbal subgroup of G defined by the word $w \in F_n$.

If
$$w = [x_1, \ldots, x_n]$$
, then $w(G) = \gamma_n(G)$.

For
$$g \in w(G)$$
 let $l_w(g) = \min\{k \mid g = \prod_{i=1}^k w(g_{1i}, \dots, g_{ni})^{\epsilon_i}\}$.

Let
$$w(x_1, \ldots, x_n) \in F_n = \langle x_1, \ldots x_n \rangle$$
.

Definition

The group $w(G) = \langle w(g_1, \dots, g_n) \mid g_1, \dots, g_n \in G \rangle$ is called the verbal subgroup of G defined by the word $w \in F_n$.

If
$$w = [x_1, \dots, x_n]$$
, then $w(G) = \gamma_n(G)$.

For
$$g \in w(G)$$
 let $l_w(g) = \min\{k \mid g = \prod_{i=1}^k w(g_{1i}, \dots, g_{ni})^{\epsilon_i}\}.$

Definition

The (verbal) width of the verbal subgroup w(G) of a group G is the value $wid(w(G)) = \sup\{l_w(g) \mid g \in w(G)\}.$

If
$$w = [x_1, \dots, x_n]$$
, then $w(G) = \gamma_n(G)$.

Denote by
$$\gamma_n(x_1, ..., x_n) = [x_1, ..., x_n].$$

If
$$w = [x_1, ..., x_n]$$
, then $w(G) = \gamma_n(G)$.

Denote by
$$\gamma_n(x_1, ..., x_n) = [x_1, ..., x_n].$$

Theorem (Gonçalves-N., 2017)

Let G be a group with n generators such that $[e]_g \leq G$ for every $g \in G$. Then

- 1. wid($\gamma_2(G)$) $\leq n 1$,
- 2. $wid(\gamma_k(G)) \le n^{k-2}(n-1)/2$ for $k \ge 3$.

If
$$w = [x_1, \ldots, x_n]$$
, then $w(G) = \gamma_n(G)$.

Denote by
$$\gamma_n(x_1, ..., x_n) = [x_1, ..., x_n].$$

Theorem (Gonçalves-N., 2017)

Let G be a group with n generators such that $[e]_g \leq G$ for every $g \in G$. Then

- 1. wid($\gamma_2(G)$) $\leq n 1$,
- 2. $wid(\gamma_k(G)) \le n^{k-2}(n-1)/2$ for $k \ge 3$.

If
$$n = 2$$
, then $wid(\gamma_2(G)) \le 1$, $wid(\gamma_3(G)) \le 1$.

Question

Is it possible to improve the estimation of $wid(\gamma_k(G))$ for k > 3?

Question

Is it possible to improve the estimation of wid($\gamma_k(G)$) for k > 3?

Proposition (Gonçalves-N., 2017)

Let G be a metabelian group with n generators such that $[e]_g \le G$ for every $g \in G$. Then for k > 1

$$\operatorname{wid}(\gamma_{k+2}(G)) \leq \frac{n(n-1)}{2} \binom{n+k-2}{k-1}.$$

Open problems

- 1. Let *G* be a finitely generated group such that $[e]_g \leq G$ for every $g \in G$. Is it true that *G* is residually nilpotent?
- 2. Let *G* be a finitely generate group such that $[e]_g \leq G$ for every $g \in G$. Is it true that $\bigcap_n [e]_{[g_1,\dots,g_n]} = \{e\}$ for every sequence g_1,g_2,\dots ?
- 3. Let *G* be a finitely generated group such that $[e]_g \leq G$ for every $g \in G$. Find a sharp estimation of wid $(\gamma_k(G))$ for k > 3?