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Abstract

• We say that a group G has a finite covering if G is a set theoretical union of 
finitely many proper subgroups. By a result of B.Neumann this is true iff the group 
has a finite non-cyclic homomorphic image. Thus, it suffices to restrict our 
attention to finite groups. The minimal number of subgroups needed for such a 
covering is called the covering number of G denoted by ϭ(G). 

• Let Sn be the symmetric group on n letters. For odd n Maroti determined 
ϭ(Sn)= 2n-1 with the exception of n = 9, and gave estimates for n even showing that 
ϭ(Sn) ≤ 2n-2. Using GAP calculations, as well as incidence matrices and linear 
programming, we show that ϭ(S8) = 64, ϭ(S10) = 221, ϭ(S12) = 761. We also show that 
Maroti ’s result for odd n holds without exception proving that ϭ(S9)=256 

• We establish in addition that, the Mathieu group m12 has covering number 
208, and improve the estimate for the Janko group J1 given by P.E. Holmes. (L-C K., 
D.N., E.S.)

• We also determine ϭ(A9)=157, ϭ(A11)=2751 (S.M., D.N., M.E.)
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The Covering Number

• Theorem 1 (Tomkinson,1997): Let G be a 
finite soluble group and let pα be the order of 
the smallest chief factor having more that one 
complement. Then  σ(G) = pα +1.

• The author suggested the investigation of the 
covering number of simple groups.
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Linear Groups

• Theorem 2 (Bryce, Fedri, Serena, 1999)

• σ(G)=1/2 q(q+1) when q is even, 

• σ(G)=1/2 q(q+1)+1 when q is odd, 

where G=PSL(2,q), PGL(2,q), or GL(2,q), 

and q   ≠ 2, 5, 7, 9.
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Suzuki Groups

• Theorem 3 (Lucido, 2001)

• σ(Sz(q)) = ½ q2(q2+1),

where q = 22m+1.
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Sporadic Simple Groups

Theorem 6 (P.E. Holmes, 2006)

σ(m11)=23, σ(m22)= 771, σ(m23)=41079,

σ(Ly) = 112845655268156,

σ(O’N) = 36450855

5165 ≤ σ(J1) ≤ 5415

24541 ≤ σ(McL) ≤ 24553.

The author has used GAP, the ATLAS, and Graph 
Theory.
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Symmetric and Alternating Groups

• Theorem 4 (Maroti, 2005) 

• σ(Sn) = 2n-1 if n is odd, n ≠ 9

• σ(Sn) ≤ 2n-2 if n is even.

• σ(An)≥ 2n-2 if n ≠7,9, and σ(An)= 2n-2 if n is even 
but not divisible by 4.

• σ(A7) ≤ 31, and σ(A9) ≥ 80.
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Alternating Groups

• Theorem 5 (Luise-Charlotte Kappe, Joanne 
Redden, 2009)

• σ(A7)= 31

• σ(A8) = 71

• 127 ≤ σ(A9) ≤ 157

• σ(A10) = 256.
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Recent results

• We can now prove  the exact numbers:

• σ(S8) = 64

• σ(S9) = 256

• σ(S10)=221

• σ(S12)=761

• σ(A9) = 157 (M.E., S.M., D.N.)

• σ(A11) = 2751 (M.E.,S.M.,D.N.)

• 5316 ≤σ(J1) ≤ 5413.
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• It is sufficient to consider the number of maximal 
subgroups of G needed to cover all maximal cyclic 
subgroups of G.

• We used GAP for the distribution of the elements 
in the maximal subgroups

• We first estimated the limits by a Greedy 
Algorithm.

Starting point
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Note:

• Easy case: When the elements are partitioned 
into the subgroups of a conjugacy class.

• Harder case: When the elements of a certain 
cyclic structure are not partitioned. 

• Further Approaches:

➢Incidence matrices and Combinatorics

➢Linear programming
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Maximal subgroups Order of Class Representative Size
MS1 = A_7 2520 1

MS2 = S_6 720 7

MS3 = S_3 x S_4 144 35

MS4 = C_2 x S_5 240 21

MS5 = (C_7:C_3):C_2 42 120

S7
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Ord
er

Cyclic 
Structure

Size MS1=A_7 MS2 MS3 MS4 MS5

1 1 1 1
2 (12) 21 0 15 9 11 0
2 (12)(34) X
2 (12)(34)(56) 105 0 15,P 9 15 7
3 (123) X
3 (123)(456) X
4 (1234) 210 0 90 6,P 30 0
4 (1234)(56) X
5 (12345) X
6 (123456) 840 0 120,P 0 0 14

6 (123)(45) 420 0 120 36 40 0
6 (123)(45)(67) X

7 (1234567) 720 X
10 (12345)(67) 504 0 0 0 24,P 0
12 (1234)(567) 420 0 0 12,P 0 0

Distribution of the Elements of S7:
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S7

• It is clear from the table why σ= 27-1

• The group is covered by A7 (MS1), the 7 
groups S6 in MS2, the 35 groups in MS3, and 
the 21 groups in MS4: 1+7+35+21=64=26.

• σ(S7) = 64.
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Maximal subgroups Order of Class Representative Size

MS1 = A_8 20160 1

MS2 = S_3 x S_5 720 56

MS3 = C_2 x S_6 1440 28

MS4 = S_7 5040 8

MS5=((((C_2xD_8):C_2):C_3):C_2):C_2 384 105

MS6 = (S_4 x S_4): C_2 1152 35

MS7 = PSL(3,2): C_2 336 120

S8
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Order Cyclic Structure Size MS1 MS2 MS3 MS4 MS5 MS6 MS7

1 1 1 1 1 1 1 1 1 1

2 21 28 0 13(26) 16(16) 21(6) 4(15) 12(15) 0

2 22 210 210, P 45(12) 60(8) 105(4) 18(9) 42(7) 0

2 23 420 0 45(6) 60(4) 105(2) 28(7) 36(3) 28(8)

2 24 105 105, P 0 15(4) 0 25(25) 33(11) 21(24)

3 31 112 112, P 22(11) 40(10) 70(5) 0 16(5) 0

4 2x4 2520 2520,P 90(2) 180(2) 630(2) 24,P 72,P 0

4 41 420 0 30(4) 90(6) 210(4) 12(3) 12,P 0

4 22x 4 1260 0 0 90(2) 0 36(3) 180(5) 0

4 42 1260 1260,P 0 0 0 60(5) 108(3) 42(4)

5 5 1344 1344,P 24,P 144(3) 504(3) 0 0 0

6 2x3 1120 0 100(5) 160(4) 420(3) 0 96(3) 0

6 2x2x3 1680 1680,P 90(3) 120(2) 210,P 0 48,P 0

6 2x32 1120 0 40(2) 40,P 0 32(3) 0 0

6 6 3360 0 0 120,P 840(2) 32,P 0 56(2)

6 2 x 6 3360 3360,P 0 120,P 0 32,P 192(2) 0

7 7 5760 5760,P 0 0 720,P 0 0 48,P

8 8 5040 0 0 0 0 48,P 144,P 84(2)

10 2 x 5 4032 0 72,P 144,P 504,P 0 0 0

12 3 x 4 3360 0 60,P 0 420,P 0 96,P 0

15 3 x 5 2688 2688,P 48,P 0 0 0 0 0

Distribution of Elements:
S8
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S8

• Here are the maximal subgroups and the distribution of the 
elements of S8 in the representatives of the maximal subgroups. In 
parentheses the small numbers mean in how many representatives 
each element is to be found.

• Example:   Each element of order 6 of type 2x3 i.e. (1,2)(3,4,5) is to 
be found in 3 representatives of MS4, and in each representative of 
MS4 there are 420 such elements.

• The group is covered by A8 (MS1), the 28 groups in MS3, and the 35 
groups in MS6, i.e. 1+28+35 = 64 = 26.

• σ(S8) = 64.
• The difficulty consists to prove that this is a minimal covering.
• We first did that computationally using GAP and Gurobi optimizer

that we confirm later by a paper proof.
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The Covering Number of 𝑆10

• To determine a minimal covering by maximal 
subgroups, it suffices to find a minimal 
covering of the conjugacy classes of maximal 
cyclic subgroups by maximal subgroups of the 
group.
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Maximal subgroups

Maximal subgroups (3977) Order of Class Representative Size

MS1 = A_10 1814400 1

MS2=S_4 x S_6 17280 210

MS3 = S_3 x S_7 30240 120

MS4 = C_2 x S_8 80640 45

MS5 = S_9 362880 10

MS6=   C_2 x (((C_2xC_2xC_2xC_2):A_5):C_2 3840 945

MS7 = (S_5 x S_5):C_2 28800 126

MS8 = (A_6.C_2):C_2 1440 2520
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Distribution of elements generating maximal cyclic subgroups:
Order Cyclic Structure Size MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8

ODD

4 22x 4 56700 0 10804 18904 37803 113402 1803 9002 0

4 2x42 56700 0 5402 0 1260,P 0 3005 18004 904

6 23x3 25200 0 4804 8404 16803 2520, P 0 6003 0

6 2x32 50400 0 12005 16804 22402 100802 1603 8002 0

6 22x6 75600 0 360,P 0 33602 0 2403 24004 0

6 3x6 201600 0 960,P 1680,P 0 20160,P 0 0 2403

8 8 226800 0 0 0 5040,P 45360 240,P 0 180

10 362880 0 0 0 0 0 384,P 2880,P 144,P

12 324 50400 0 240,P 8402 0 0 1603 0 0
14 2x7 259200 0 0 2160,P 5760,P 25920,P 0 0 0

20 4x5 181440 0 964,P 0 0 18144,P 0 1440,P 0

30 2x3x5 120960 0 0 1008,P 2688,P 0 0 960,P 0

-EVEN------ ---------- --------- -------- --------- -------- --------- --------- ------- -------- ------

6 2 x 6 151200 P 720, P 25202 67202 302402 160 P 0 0

9 9 403200 P 0 0 0 40320, P 0 0 0

12 4x6 151200 P 720, P 0 0 0 160, P 2400x2 0

12 2x3x4 151200 P 14402 25202 3360 P 15120 P 0 1200 P 0

21 3 x 7 172800 P 0 1440 P 0 0 0 0 0

8 8x2 226800 P 0 0 5040,P 0 240,P 36002 180220



S10

• We first found that the Covering number has upper bound: 
MS1+MS3+MS5+MS7 =1+120+10+126=257.

• However, we ran a Greedy algorithm on MS3 and found out that 84 groups 
only from MS3 are sufficient to cover the elements of type 32x4. So:

• σ ≤ 1+84+10+126=221. 

• The upper bound was reduced.

•

• The lower bound: The elements of type 32 x 4 are 50400. If they were 
partitioned in MS3 we would have needed 50400/840 = 60. 

• So, we need at least 61 from them.

• 1+61+10+126= 198.

•

• Hence 198 ≤ σ ≤221.
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Theorem 1:
The Covering Number of S10 is 221.

• Sketch of the Proof:

• It is not difficult to see from the Inventory that the groups 
from MS3, MS5, and MS7 represent a covering of the odd 
permutations, and MS1={A10} covers the even. 

• We want to minimize this covering.

• The problematic elements are of structure 3x3x4, of order 12. 

• The proof further involves Incidence matrices, and 
Combinatorics.
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Incidence matrices
• Let V, and U are two collections of objects. Call the objects in V elements, and the 

objects in U sets.

• The incidence structure between U and V can be represented by the incidence 
matrix A(aij) of 

• (V, U):

• 𝑎𝑖𝑗= ൝
1 𝑖𝑓 𝑣𝑖 ∊ 𝑈𝑗
0 𝑖𝑓 𝑣𝑖 ¬∈ 𝑈𝑗

• Let W be a sub-collection of U. We define a vector 𝑥 𝑊 = (𝑥1, 𝑥2, … 𝑥∣𝑈∣)
𝑇

as 
follows

• 𝑥𝑗= ቊ
1 𝑖𝑓 𝑢𝑗 ∊ 𝑊

0 𝑖𝑓 𝑢¬∈ 𝑊

• Let 𝑨 ∗ 𝒙 𝑾 = 𝒚 𝑾 = (𝒚𝟏, 𝒚, …𝒚∣𝑽∣)
𝑻
, 𝒘𝒉𝒆𝒓𝒆 𝒚𝒊 ≥ 0.

• If 𝑦𝑖=0, then 𝑣𝑖¬∈ ,𝑢𝜖𝑊ڂ and
• if 𝑦𝑖 > 0, ∀𝑖, then every 𝑣𝑖 is contained in at least one member of W. We say 

that W covers V.

• Our goal is to minimize ∣W∣,  s. t.  W  covers V, i.e. maximize the number of the 
0-entries in 𝒙 𝑾 .
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The elements of type 3*3*4

• There are 50,400 elements of type 3*3*4 in S10. They are to be found in MS3, but are not 
partitioned. 

• Each class of MS3 contains 840 such elements, and each element is in exactly 2 subgroups of MS3.
• Because the subgroups of MS3 are isomorphic to S3xS7, we can label them by the letters fixed by 

the respective S7, i.e.
• MS3 = {H(k1,k2,k3), k1,k2,k3 ϵ {0,1,2,3,4,5,6,7,8,9}, k1<k2<k3}. 
• So, our incidence matrix will contain 120 columns, labeled by the members of MS3.
• The rows are the maximal cyclic subgroups generated by our elements. There are 6 cyclic subgroups 

of order 12 in the intersection of H(𝑖1, 𝑖2, 𝑖3) and H(𝑖4, 𝑖5, 𝑖6) generated by:
• (𝑖1, 𝑖2, 𝑖3)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖8, 𝑖9, 𝑖10),
• (𝑖1, 𝑖3, 𝑖2)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖8, 𝑖9, 𝑖10),
• (𝑖1, 𝑖2, 𝑖3)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖9, 𝑖8, 𝑖10),
• (𝑖1, 𝑖3, 𝑖2)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖9, 𝑖8, 𝑖10),
• (𝑖1, 𝑖2, 𝑖3)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖8, 𝑖10, 𝑖9),
• (𝑖1, 𝑖3, 𝑖2)(𝑖4, 𝑖5, 𝑖6)(𝑖7, 𝑖8, 𝑖10, 𝑖9),

• and each one of them contains 4 elements of type 3*3*4: thus the 50,400 elements of type 3*3*4 
are partitioned into 50,400/24=2100 equivalence classes. Our incidence matrix will have 2100 
rows.
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Confirming the result of the Greedy algorithm

• We have an incidence (0 -1) matrix A of size 2100 x 120 with 
exactly 2 entries equal to 1 in each row. 

• If 𝑥 𝑊 = (1,1,…1)𝑇, y(W)=𝐴 ∗ 𝑥 𝑊 = (2,2,… , 2)𝑇. 

• We want to determine the maximum numbers of 0-s entries 
contained in a 𝑥(W) vector, so that the y(W) vector has all 
non-zero entries. 

• We can achieve that by removing the maximal 
subset{𝑼𝟏,𝑼𝟐,…𝑼𝒕} of U with pairwise non-trivial 

intersection. 
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Combinatorics

• THEOREM (Erdos, Ko, Rado): The maximal number m of k-
subsets 𝑨𝟏, 𝑨𝟐, …𝑨𝒎 of an n-set S that are pairwise non-

disjoint is 𝒎 ≤ 𝒏−𝟏
𝒌−𝟏

. 

• The upper bound is best possible, and it is attained when 𝑨𝒊
are precisely those k-subsets of S which contain a chosen 
fixed element of S.
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Corollary

Proposition:

The elements of type 3*3*4 in S10 are covered by 84 groups 
from MS3, and this is a minimal covering. In particular,

M = MS3\ D, where 

𝑫 = {𝑯(𝟎, 𝒌𝟏,𝒌𝟐); 𝒌𝟏,𝒌𝟐∊ {1, 2, …9}, 𝒌𝟐 < 𝒌𝟑} 

is a minimal covering.

Proof:

According to the Theorem (n=10, k=3), the maximal 
subset{𝑈1,𝑈2, …𝑈𝑡} of U with pairwise non-trivial intersection 

has cardinality: m= 9
2

=36. Therefore,

• 120-36=84.
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Proof of Theorem 1

• We shall see that   ϭ(S10)  = |MS1|+|MS5|+|MS7|+84= 221 .

• The elements of order 21 are only to be found in MS1 and MS3, in 
both they are partitioned, so we take MS1={A10}, size 1.

• The elements of order 10 are partitioned in MS6, MS7, and MS8. 
MS7 has the least size: 126.

• The elements of order 14, type 2*7 are partitioned in MS3, and 
MS5. If H(0,k1,k2) is removed from MS3, they will no longer be 
covered by MS3. They can only be covered by all 10 members of 
MS5.

• Together with the result for the elements of type 3*3*4, we have:

• ϭ(S10)= 1+ 126+ 10+ 84 = 221.
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S9
Maximal subgroups (1376) Order of Class 

Representative
Size

MS1 = A_9 181440 1

MS2 = S_4 x S_5 2880 126

MS3 = S_3 x S_6 4320 84

MS4 = C_2 x S_7 10080 36

MS5=   S_8 40320 9

MS6 = ((((C_3x((C_3xC_3):C_2)):C_2):C_3):C_2):C_2 1296 280

MS7 = (((C_3xC_3):Q_8):C_3):C_2 432 840
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S9

Order Cyclic Structure Size MS1 MS2 MS3 MS4 MS5 MS6 MS7

1 1 1 1 1 1 1 1 1 1
2 21 0
2 22

2 23 0
2 24

3 31

3 32

3 33

4 2x4 7560 7560,P

4 41 756 0 36(6) 90(10) 210(10) 420(5) 0 0

4 22x 4 11340 0 180(2) 270(2) 630(2) 1260,P 162(4) 0

4 42
=8^2

5 5 3024 3024,P

6 2x3 2520 0 220(11) 270(9) 490(7) 1120(4) 36(4) 0

6 22x3 7560 7560,P

6 2x32 10080 0 160(2) 360(3) 280,P 1120,P 36, P 0

6 6 10080 0 0 120,P 840(3) 3360(3) 36, P 56(2)

6 2 x 6 30240 30240,P

6 233 2520 0 60(3) 30, P 210(3) 0 36(4) 0

6 3x6 20160 0 0 240,P 0 0 288(4) 72(3)

7 7 25920 25920,P

8 8 45360 0 0 0 0 5040,P 0 108(2)

9 9 40320 40320,P

10 2 x 5 18144 0 144,P 432(2) 1008(2) 4032(2) 0 0

10 225 9072 9072,P

12 3 x 4 15120 0 360 180,P 420,P 3360 0 0

14 2x7 25920 0 0 0 720,P 0 0 0

15 3 x 5 24192 24192,P

20 4x5 18144 0 144,P 0 0 0 0 0

Distribution of Elements:
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S9

• Here is the distribution of the elements of S9 in the representatives of the 
maximal subgroups. Here is how the lower and the upper bound  are 
clearly to be seen:

• We definitely need:
• MS1=A_9 (1 group)
• MS2 (126 groups) to cover the elements of order 20.
• MS4 (36 groups) to cover the elements of order 14, and 12.
• MS5 (9 groups) to cover the elements of order 8, and ((1,2,3)(4,5,6)(7,8).
• Then, if you take all the 84 groups of MS3, we’ll cover 3 types of elements 

of order 6. So, 84 more groups add up to 256: the upper bound.
• The lower bound.:
• If we cover the elements of type 3x6 (20160) by groups from MS6 instead 

(where they are not partitioned), we would have needed at least 
20160/288=70 groups. So, 1+126+36+9+71=243 ≥ σ

• Hence, 243 ≤ σ ≤ 256.
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Linear Programming
• Theorem:The covering number ϭ(S9) = 256.
• Proposition: The elements 3x6 have a minimal covering by 

84 subgroups.
• Proof:  Computational  GAP and Gurobi.
• Using the GAP program we are setting equations readable 

by GUROBI. The GUROBI output shows that a minimal 
covering of these elements consists of 84 subgroups from 
MS3, MS6, and MS7. Since these elements are partitioned 
in MS3, these 84 subgroups constitute a minimal covering 
of these elements.

• The calculations were done on a Dell desktop machine with 
16 GB of RAM and a Core i-7 processor. The calculation 
took 453 s.
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J1 and KoKo

Similar approach was used for the Mathieu group M12 and the 
Janko group J1.
• The paper can be found at: http://arxiv.org/abs/1409.2292
• However, we wanted to achieve the best possible (the 

smallest) range for J1 on more powerful machines. Which 
we did on the new super computer KoKo installed by Max 
Plank at the FAU Harbor branch. Here below are some 
characteristics of KoKo:

• 400 Intel Xeon Cores; 1000’s of Intel Xeon Phi Cores; 128GB 
of RAM per node; Scientific Linux 6.5; 160 terabites
memory. For more details see: http://hpc.fau.edu
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J1

• It was determined by Holmes that all 1540 
maximal subgroups isomorphic to 𝐶19:𝐶6 and all 
2926 maximal subgroups isomorphic to 
𝑆3x𝐷10are needed in a minimal covering. The 
only remaining elements generating maximal 
cyclic subgroups that need to be covered are 
those of order 11 (type 11A), and 7 (type 7A). 

• Only maximal subgroups isomorphic to PSL(2,11) 
are needed to cover 11A; and only 𝐶2

3:𝐶7:𝐶3 are 
needed for type 7A.
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GAP and GUROBI

• GAP is used to create a system of linear inequalities, 
the optimal solution to which corresponds to a minimal 
cover.

• GUROBI then performs a linear optimization on this 
system of linear inequalities.

• Any time the “best objective” (best actual solution) and 
the “best bound”(the size of the best lower bound) 
found by GUROBI get identical, GUROBI has found a 
minimal subgroup cover.

• The codes can be found at:
• http://www.math.Binghamton.edu/menger/coverings/.
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J1 and Koko calculations

• The program for the elements of order 11 finished in about 2 1/2 hour. It took 196 subgroups 
to cover the elements of order 11 in J1.

• However, although powerful parallel computing was done on the super-computer, with 
optimal parameters, and using 8 nodes, it took a while to get to:

•
253860990 231372205 99% 0% 0% 752.00000 653.04421 13.2% 476 2244640s  

• Interpretation: The lower bound we got for the elements of order 7 is 654, the upper bound 
– 751, and the discrepancy between the two numbers is 13.2%.

• The last calculation took 476 2244640s = 26.3 days…
• With the newest results, we can claim now that the covering number for J1 is between:
• 1540+2926+196+654=5316 and
• 1540+2926+196+751=5413, i.e.:
• 5316 ≤  σ( J1)  ≤ 5413
• We also tried MINION, but the problem has no better solution than the one GUROBI 

provided. This is as far as we can push the bounds for J1 with current techniques.
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The covering number of A9, and A11. 

• In another paper with Spyros Magliveras, and Michael Epstein we 
establish the covering number of A9 , and A11 to be respectively  
157, and 2751.

• For A9 we used again incidence matrices and linear programming. 
Problematic here were the elements of order 9 covered by 2 conjugacy 
classes isomorphic to PSL2(8), but also by another conjugacy class of 
maximal subgroups. Computation of the incidence matrix of order 
40902 x 1615  was done by the software system KNUTH developed by 
SM in APL to compute with permutation groups and combinatorial 
objects. The large LP using  GUROBI took one day to confirm the 
minimal covering number.

• As of now, the smallest values of n for which the covering 
numbers of Sn, and An are not known are n = 14, and n = 12 
respectively. 

37



Summary

• At this stage, we may want to raise the question 
whether further results on covering numbers can 
only be established one at a time, or if one can 
find methods to give general results for larger 
classes. Eric Swartz established some general 
results for larger classes of symmetric groups 
(having degree divisible by 6) that hold only when 
if n is sufficiently large. It is our hope that the 
unknown cases can be resolved with similar 
techniques, leaving only a small number of cases 
for small values of n to be resolved using 
computation, or individual inspection. 
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J1 and KoKo

• The program for the elements of order 11 finished in about 2 1/2 hour. It took 196 
subgroups to cover the elements of order 11 in J1.

• However, although powerful parallel computing was done on the super-computer, 
with optimal parameters, and using 8 nodes, it took a while to get to:
253860990 231372205 99% 0% 0% 752.00000 653.04421 13.2% 476 
2244640s about 26.3 days…

• Interpretation: The lower bound we got for the elements of order 7 is 654, the 
upper bound – 751, and the discrepancy between the two numbers is 13.2%.

• 5316 ≤  σ( J1)  ≤ 5413

• We also tried MINION, but the problem has no better solution than the one 
GUROBI provided. This is as far as we can push the bounds for J1 with current 
techniques.
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THANK YOU ! ☺
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