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1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive ⇔ ∃MR a faithful irreducible right R-module 

⇔ ∃⍴: a maximal right ideal of R which

contains no non-trivial ideals

▶ R: commutative primitive⇒ R is a field.

▶ R is simple ⇒ R is primitive.

R ⋍ Mn(D) ⋍ EndD(V),   dimD(V) ＜∞.

dimD(V) ＝∞

R ＝ EndD(V) R is a primitive ring.

▶ R is artinian simple ⇒
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M: a faithful right R-module :

r ∊ R;  Mr=0⇒ r=0

M: an irreducible (simple) right R-module :

N ≤ M ⇒ N=0 or  N=M
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For the case of noetherian groups

▶ G is a polycyclic by finite group

KG: primitive ⇔ ∆(G)=1, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade )

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

▶ G is polycyclic by finite ⇒ G is noetherian.

▶ G is noetherian⇒ G is often polycyclic by finite; it is not easy 

to finid noetherian but not polycyclic by finite.

KG is the group algebra of a group G over a field K.

▶ G≠1: finite or abelian ⇒ KG is never primitive.



For the case of noetherian groups

▶ G is a polycyclic by finite group

KG: primitive ⇔ ∆(G)=1, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade )

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

▶ G is polycyclic by finite ⇒ G is noetherian.

▶ G is noetherian⇒ G is often polycyclic by finite; it is not easy 

to finid noetherian but not polycyclic by finite.

▶ G≠1: finite or abelian ⇒ KG is never primitive.

KG is the group algebra of a group G over a field K.



For the case of noetherian groups

▶ G is a polycyclic by finite group

KG: primitive ⇔ ∆(G)=1, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade )

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

▶ G is polycyclic by finite ⇒ G is noetherian.

▶ G is noetherian⇒ G is often polycyclic by finite; it is not easy 

to finid noetherian but not polycyclic by finite.

▶ G≠1: finite or abelian ⇒ KG is never primitive.

KG is the group algebra of a group G over a field K.



For the case of noetherian groups

▶ G is a polycyclic by finite group

KG: primitive ⇔ ∆(G)=1, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade )

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

▶ G is polycyclic by finite ⇒ G is noetherian.

▶ G is noetherian⇒ G is often polycyclic by finite; it is not easy 

to finid noetherian but not polycyclic by finite.

▶ G≠1: finite or abelian ⇒ KG is never primitive.

KG is the group algebra of a group G over a field K.



For the case of noetherian groups

▶ G is a polycyclic by finite group

KG: primitive ⇔ ∆(G)=1, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade )

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

▶ G is polycyclic by finite ⇒ G is noetherian.

▶ G is noetherian⇒ G is often polycyclic by finite; it is not easy 

to finid noetherian but not polycyclic by finite.

▶ G≠1: finite or abelian ⇒ KG is never primitive.

KG is the group algebra of a group G over a field K.



G is polycyclic ⇔ G=G0▷G1▷ ∙ ∙ ∙ ▷ Gn=1,  Gi/Gi+1: cyclic
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∆(G): the finite conjugate center of G; ∆(G)={ g∊G | [G:CG(g)]<∞}
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・G is a free product 0f non-trivial groups (except G=Z2∗Z2 )

If G is one of the following types of groups, then KG is primitive  for any field K:

・ G is an amalgamated free product satisfying certain conditions

→(1989, Balogun)

・ G is an ascending HNN extension of a free group →(2007, N)

・ G is a locally free group →(2010, N)

→(1973, Formanek)
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Let G be a group and M a subset of G. 

We denote by ෩𝑀 the symmetric closure of M; ෩𝑀 = M∪ {𝑥−1| x∈M},

and by Mx , the set {x-1fx | f∈M}, where x∈ G.

For non-empty subsets M1, M2, . . . , Mn of G, consisting of elements ≠ 1, 

we say that M1, M2, . . . , Mn are mutually reduced in G, if for each finite number 

of elements g1,  g2, . . ., gm ∈ 𝑖=1ڂ
𝑛 ෩𝑀𝑖, 

g1g2・・・gm = 1 ⇒ ∃i,  j s.t. gi , gi+1 ∈ ෩𝑀𝑗.

Mutually reduced sets

2. Main Results

We would like to determine the primitivity of group algebras of 
non-noetherian groups as generally as possible. To do this, we 
consider a condition satisfied by many class of groups. 
We first explain the notations needed.
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For any non-empty subsets M of G consisting of finite number of elements ≠ 1,

there exist 𝑥1, 𝑥2, 𝑥3 ∈ G such that M
𝑥1, M

𝑥2, M
𝑥3 are mutually reduced.

(∗)

We here consider the following condition: 

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies       ,

then KG is primitive for any K.

(∗)

This is true even if the cardinality of G is general 

provided G has a free subgroup whose cardinality 

is same as that of G itself. 
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For example;

a free group, a free product,

a locally free group,

an amalgamated free product, 

an HNN-extension, 

a one relator group with torsion ...

a non-elementary hyperbolic group 
← [B. Solie, 2017, arXiv:1706.03905]

Most infinite groups are non-Noetherian except for polycyclic by finite 

groups,  and they satisfy      .(∗)
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E = {e1, e2, …, em } F = {f1, f2, …, fl } 

S = (V, E, F) is an SR-graph

if every component of G = (V,E)

is a complete graph.

I(G)= {𝑣3, 𝑣6}
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3. SR-graphs

An SR-graph

(an undirected graph without loops or multi-edges). 
We consider  a Two-edge coloured graph which is simple graph  

V = {v1, v2, …, vn } 
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S = (V, E, F) is an SR-graph

if every component of G = (V,E)

is a complete graph.

I(G)= {𝑣3, 𝑣6}
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3. SR-graphs

An SR-graph

(an undirected graph without loops or multi-edges). 
We consider  a Two-edge coloured graph which is simple graph  

V = {v1, v2, …, vn } 



In an SR-graph, we call an alternating cycle an SR-cycle.
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an SR-cycle: f1 e3 f2 e5 f3 e7



We would like to know when an SR-graph has an SR-cycle. 



S is connected and each component of H is complete.

Then S has an SR-cycle if and only if c(G) + c(H) < |V | + 1. 

Theorem G1 ([Nishinaka and Alexander, 2017])

G = (V,E), H = (V,F). S = (V, E, F), 

c(G): the number of the set of components of G

c(H): the number of the set of components of H

Results on SR-graphs 

Suppose that H i is a complete multipartite graph for each i.

|I(G)|≤n and |Vi |>2𝜇𝑖 for each i  ⇒ S has an SR-cycle. 

Theorem G2 ([Nishinaka and Alexander, 2017])

For Hi ≅ 𝐾𝑚1,⋯,𝑚𝑡
, let 𝜇𝑖 be max{𝑚1, ⋯ ,𝑚𝑡} .  

Hi =(Vi, Fi) (i=1,…,n) are the components of H. 

𝐾2,3, |Vi |<2𝜇𝑖

𝐾2,2,2, |Vi |>2𝜇𝑖
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Let KG be the group algebra of a group G over a field K.

𝑓𝑖, 𝑔𝑗 ∈ Gwhere with  𝑓𝑖 ≠ 𝑓𝑗 , 𝑔𝑖 ≠ 𝑔𝑗 𝑖 ≠ 𝑗 and 𝛼𝑖, 𝛽𝑗 ∈ 𝐾 ∖ {0}.

Suppose ab∈ K .   Then 

𝑖=1

𝑚


𝑗=1

𝑛

𝛼𝑖𝛽𝑗𝑓𝑖𝑔𝑗 ∈ K .

𝑓𝑖𝑔𝑗 ∉ K ,If  ∃𝑘, 𝑙, s. t. 𝑓𝑖𝑔𝑗 = 𝑓𝑘𝑔𝑙 .

Then S = (V, E, F) is an SR-graph. 

Let a= σ𝑖=1
𝑚 𝛼𝑖𝑓𝑖 and  b= σ𝑗=1

𝑛 𝛽𝑗𝑔𝑗 be  in KG,

4. An application of SR-graphs to group algebras 

Now, let V= 𝑣𝑖𝑗 | 𝑖, 𝑗 and let E be the set  defined by 𝑣𝑖𝑗𝑣𝑘𝑙 ∈ E

if 𝑓𝑖𝑔𝑗 = 𝑓𝑘𝑔𝑙 , and also F the set done by    𝑣𝑖𝑗𝑣𝑠𝑡 ∈ F if  j = t .

𝑣𝑠𝑗

𝑣𝑘𝑙

𝑣𝑖𝑗𝑣𝑘𝑙

𝑣𝑖𝑗𝑣𝑠𝑗
𝑣𝑖𝑗
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Suppose  that there is a SR-cycle in S as follows:

𝑣11

𝑣22

𝑣32

𝑣43

𝑣53

𝑣61
𝑓1𝑔1 = 𝑓2𝑔2

𝑓3𝑔2 = 𝑓4𝑔3

𝑓6𝑔1 = 𝑓5𝑔3

𝑓1
−1𝑓2𝑓3

−1𝑓4𝑓5
−1𝑓6 = 1

Recall that fi’s are supports of  a= σ𝑖=1
𝑚 𝛼𝑖𝑓𝑖. So, if we prepare fi’s so 

as not to satisfy the above equation, then we can conclude ab∉ K.
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For any non-empty subsets M of G consisting of finite number of elements ≠ 1,

there exist 𝑥1, 𝑥2, 𝑥3 ∈ G such that M
𝑥1, M

𝑥2, M
𝑥3 are mutually reduced.

(∗)

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies       ,

then KG is primitive for any K.

(∗)

5. How to prove primitivity of group algebras: 
Outline of the proof of Theorem 1

where,

g1,  g2, . . ., gm 𝑖=1ڂ∋
3 ෪𝑀𝑥𝑖 , g1g2・・・gm = 1 ⇒ ∃i,  j s.t. gi , gi+1∈

෪𝑀𝑥𝑗.
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ρ ≠ KG ⇒ KG is primitive

a ∊ KG╲{0}, ε(a) ∊ KGaKG, ρ =     a∊ KG╲{0} (ε(a)+1)KG.

Formanek’s Method

We can choose  ε(𝑎𝑡)  so that 𝑟 = σ𝑡=1
𝑙 (σ𝑠=1

3 𝑦𝑡𝑠𝐴𝑡+1)𝑏𝑡.

where  𝑥𝑡𝑠, 𝑦𝑡𝑠 ∈ 𝐺, 𝐴𝑡 = 𝑥𝑡1
−1𝑎𝑡𝑥𝑡1+𝑥𝑡2

−1𝑎𝑡𝑥𝑡2+𝑥𝑡3
−1𝑎𝑡𝑥𝑡3.

All we have to do is to show, 𝑟 = σ𝑡=1
𝑙 (σ𝑠=1

3 𝑦𝑡𝑠𝐴𝑡 + 1)𝑏𝑡 ≠ 1.

The main difficulty here is how to choose elements ε(a)’s so as to make ρ be proper.

𝑓𝑖, 𝑔𝑗 ∈ Gwhere with  𝑓𝑖 ≠ 𝑓𝑗 , 𝑔𝑖 ≠ 𝑔𝑗 𝑖 ≠ 𝑗 and 𝛼𝑖, 𝛽𝑗 ∈ 𝐾 ∖ {0}.

Let 𝑎𝑡 = σ𝑖=1
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and 𝑦𝑡𝑠 (1 ≤ 𝑡 ≤ 𝑙, 1 ≤ 𝑠 ≤ 3) are also mutually reduced, then we have 

𝑟 = σ𝑡=1
𝑙 (σ𝑠=1

3 𝑦𝑡𝑠𝐴𝑡 + 1)𝑏𝑡 ≠ 1.



𝑟 = 

𝑡,𝑠=1

𝑙,3

(𝑦𝑡𝑠𝐴𝑡 +1)𝑏𝑡 =

𝑠=1

3

(𝑦1𝑠𝐴1𝑏1 + 𝑏1) + ⋯+

𝑠=1

3

(𝑦𝑡𝑠𝐴𝑡𝑏𝑡 + 𝑏𝑡) + ⋯+

𝑠=1

3

(𝑦𝑙𝑠𝐴𝑙𝑏𝑙 + 𝑏𝑙) = 1.

𝐴𝑡 𝑏𝑡= 𝑥𝑡1
−1𝑎𝑡𝑥𝑡1+𝑥2

−1𝑎𝑡𝑥𝑡2+𝑥𝑡3
−1𝑎𝑡𝑥𝑡3, 

By Theorem G2, |Supp(𝐴𝑡 𝑏𝑡)|> 𝑛𝑡 .

𝑎𝑡 = σ𝑖=1
𝑚𝑡 𝛼𝑡𝑖𝑓𝑡𝑖 and 𝑏𝑡 = σ𝑗=1

𝑛𝑡 𝛽𝑡𝑗𝑔𝑡𝑗.

a contradiction.

In fact, suppose, to the contrary, that r = 1.

𝑦𝑖𝑠
−1𝑦𝑗𝑡⋯𝑦𝑘𝑝

−1𝑦𝑙𝑞 = 1Theorem G1

for 𝑖, 𝑠 ≠ 𝑗, 𝑡 , ⋯ , 𝑘, 𝑝 ≠ (𝑙, 𝑞);

By this result and implies

Recall:

If 𝑀𝑥𝑠𝑡 = 𝑥𝑠𝑡
−1𝑓𝑡1𝑥𝑠𝑡, ∙∙∙ , 𝑥𝑠𝑡

−1𝑓𝑡𝑚𝑡
𝑥𝑠𝑡 𝑠 = 1,2,3 are mutually reduced 

and 𝑦𝑡𝑠 (1 ≤ 𝑡 ≤ 𝑙, 1 ≤ 𝑠 ≤ 3) are also mutually reduced, then we have 

𝑟 = σ𝑡=1
𝑙 (σ𝑠=1

3 𝑦𝑡𝑠𝐴𝑡 + 1)𝑏𝑡 ≠ 1.



Thank you!
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