On primitivity of group algebras of non-noetherian groups

Tsunekazu Nishinaka*
(University of Hyogo)

Groups St Andrews 2017 in Birmingham
5—13 August , 2017
University of Birmingham, Edgbaston Birmingham UK

*Partially supported by KAKEN:
Grants-in-Aid for Scientific Research under grant no. 17K05207



1. Primitive group rings

/ Definition (a primitive ring)




1. Primitive group rings

/ Definition (a primitive ring)

Let R be a ring with the identity element,




1. Primitive group rings

/ Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive




1. Primitive group rings

/ Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

~

/




1. Primitive group rings

/ Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which

K contains no non-trivial ideals

~

/




M: a faithful right R-module :

r €eR; Mr=0= r=0

M: an irreducible (simple) right R-module :

N =M = N=0or N=M



1. Primitive group rings

/ Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which

K contains no non-trivial ideals

~

/




1. Primitive group rings

/ Definition (a primitive ring)

\

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which
contains no non-trivial ideals

~

/

» R: commutative primitive = R is a field.



1. Primitive group rings

/ Definition (a primitive ring) \

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which
K contains no non-trivial ideals /

» R: commutative primitive = R is a field.

» R is simple = R is primitive.



1. Primitive group rings

/ Definition (a primitive ring) \

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which
K contains no non-trivial ideals /

» R: commutative primitive = R is a field.
» R is simple = R is primitive.

» Ris artinian simple = R = M, (D) = End,(V), dim,(V) <.



1. Primitive group rings

/ Definition (a primitive ring) \

Let R be a ring with the identity element,

R is right primitive < 3Mj a faithful irreducible right R-module

<  dp: amaximal right ideal of R which
K contains no non-trivial ideals /

» R: commutative primitive = R is a field.
» R is simple = R is primitive.

» Ris artinian simple = R = M, (D) = End,(V), dim,(V) <.

dimp(V) =
R = End,(V) —— R is a primitive ring.
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For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

-G is a free product of non-trivial groups (except G=-,*~, )
—(1973, Formanek)

- G is an amalgamated free product satisfying certain conditions

—(1989, Balogun)

* G is an ascending HNN extension of a free group (2007, N)

- Gis alocally free group  —(2010, N)



We would like to determine the primitivity of group algebras of
non-noetherian groups as generally as possible. To do this, we
consider a condition satisfied by many class of groups.

We first explain the notations needed.

2. Main Results

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by M the symmetric closure of M; M = M U {x~1| x € M},

and by M~ , the set {x'fx | f€ M}, where x € G.

For non-empty subsets M, M,, ..., M of G, consisting of elements # 1,

we say that M,, M, . .., M, are mutually reduced in G, if for each finite number

of elements g,, g,,...9, € UL, M,
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We here consider the following condition:

For any non-empty subsets M of G consisting of finite number of elements # 1,

(*)

there exist x4, x,, x; € G such that M'*, M2, M"® are mutually reduced.

Theorem 1 ([Nishinaka and Alexander, 2017])

4 )

If G is a countable infinite group and G satisfies (*),

then KG is primitive for any K.

This is true even if the cardinality of G is general
provided G has a free subgroup whose cardinality

1s same as that of G itself.
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Most infinite groups are non-Noetherian except for polycyclic by finite

groups, and they satisfy ().

For example:

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

a non-elementary hyperbolic group
< [B. Solie, 2017, arXiv:1706.03905]
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3. SR-graphs

We consider a Two-edge coloured graph which is simple graph
(an undirected graph without loops or multi-edges).

V= {vp Uy ooy vn} E = {ep €5 05 €y }/ F= {f;’fz ’ﬁ }/

’ An SR-graph
S =(V, E, F) is an SR-graph

\

if every component of ¢= (V,E)

\_ isa conllplete graph. y

|
VAN

[ (@= (vs, v6}]




In an SR-graph, we call an alternating cycle an SR-cycle.

[ an SR-cycle: f, e, f,e.f, 67]




We would like to know when an SR-graph has an SR-cycle.
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Suppose that there is a SR-cycle in § as follows:

V11
. V00 f191 = 292
61
f392 = f49s3
V32 /
Vg3 fe91 = [593
V43

fithafs afs e =1

Recall that f;’s are supports of a= Y%, «;f;. So, if we prepare f;’s so

as not to satisfy the above equation, then we can conclude ab¢ K.
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[ 9 92 -+ m = Ul'3=lmi’ 995" "G = 1 = ai: ] s.L. 9i> i1 Eij. ]
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t=1(2s

Let (,lt = Z?;tl atifti and bt = Z;lil ﬁt]gt] be in KG.
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We can choose £(a;) sothat r =Y!_ (33, yi A, +1)b,.

_ -1 -1 -1
where x5, Y5 € G, Ap = X1 QX1 X7 ArXa+Xeg AXes.

All we have to do is to show, r = 3L (33 . yis4y + Db, # 1.
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and y;; (1<t <1[,1<s < 3) are also mutually reduced, then we have
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In fact, suppose, to the contrary, that r = 1.

1,3 3 3 3
r= ) O +Dbe = ) (isrby +by) + ok ) (b +b) -+ ) oAby + by) = 1.
s=1 s=1 s=1

t,s=1

Recall:

_ -1 -1 -1
Ap be=Xq Qrxe X5 QXX QX3
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If M*st = { x5 fraXse, =, X5 frm,Xse} (s = 1,2,3) are mutually reduced
and y;; (1<t <1[,1<s < 3) are also mutually reduced, then we have
r=Yt=1(Xiz1 VesAe + Dby # 1.
In fact, suppose, to the contrary, that r = 1.

1,3 3 3 3
r= ) O +Dbe = ) (isrby +by) + ok ) (b +b) -+ ) oAby + by) = 1.
s=1 s=1 s=1

t,s=1

By Theorem G2, |Supp(A; b;)|> n; .
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If M*st = { x5 fraXse, =, X5 frm,Xse} (s = 1,2,3) are mutually reduced
and y;; (1<t <1[,1<s < 3) are also mutually reduced, then we have
r=Yt=1(Xiz1 VesAe + Dby # 1.
In fact, suppose, to the contrary, that r = 1.

1,3 3 3 3
r= ) O +Dbe = ) (isrby +by) + ok ) (b +b) -+ ) oAby + by) = 1.
s=1 s=1 s=1

t,s=1

By Theorem G2, |Supp(A; b;)|> n; .

By this result and Theorem G1

Recall:
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If M*st = { x5 fraXse, =, X5 frm,Xse} (s = 1,2,3) are mutually reduced
and y;; (1<t <1[,1<s < 3) are also mutually reduced, then we have
r=Yt=1(Xiz1 VesAe + Dby # 1.
In fact, suppose, to the contrary, that r = 1.
1,3 3 3 3
r= ) O +Dbe = ) (isrby +by) + ok ) (b +b) -+ ) oAby + by) = 1.
t,s=1 s=1 s=1 s=1

By Theorem G2, |Supp(A; b;)|> n; .

By this result and Theorem G1 [ implies > Vis Vit Vip Yig = 1

for (i,s) # (j,t),---, (k,p) # (I, q);

Recall: a contradiction.

_ -1 -1 -1
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m n
ar = Zi;l @i fy; and by = Zji1 ,Btjgtj°



Thank you!
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