On primitivity of group algebras of non-noetherian groups

Tsunekazu Nishinaka* (University of Hyogo)

Groups St Andrews 2017 in Birmingham 5—13 August , 2017 University of Birmingham, Edgbaston Birmingham UK

*Partially supported by KAKEN: Grants-in-Aid for Scientific Research under grant no. 17K05207

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals}$

► *R*: commutative primitive \Rightarrow *R* is a field.

▶ *R* is simple \Rightarrow *R* is primitive.

► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

- $\Leftrightarrow \quad \exists \rho : a maximal right ideal of R which$ contains no non-trivial ideals
- ► *R*: commutative primitive \Rightarrow *R* is a field.
- ▶ *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

```
Let R be a ring with the identity element,
```

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a maximal right ideal of R which$ contains no non-trivial ideals

► *R*: commutative primitive \Rightarrow *R* is a field.

- ▶ *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals}$

► *R*: commutative primitive \Rightarrow *R* is a field.

▶ *R* is simple \Rightarrow *R* is primitive.

► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals}$

► *R*: commutative primitive \Rightarrow *R* is a field.

▶ *R* is simple \Rightarrow *R* is primitive.

► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

M: a faithful right *R*-module :

$$r \in R; Mr=0 \Rightarrow r=0$$

M: an irreducible (simple) right *R*-module :

 $N \leq M \Rightarrow N=0 \text{ or } N=M$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals}$

► *R*: commutative primitive \Rightarrow *R* is a field.

▶ *R* is simple \Rightarrow *R* is primitive.

► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals}$

- ► *R*: commutative primitive \Rightarrow *R* is a field.
- ▶ *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals} \end{cases}$

- ► *R*: commutative primitive \Rightarrow *R* is a field.
- *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R is a primitive ring.$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals} \end{cases}$

- ► *R*: commutative primitive \Rightarrow *R* is a field.
- *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

$$dim_D(V) = \infty$$

$$R = End_D(V)$$

$$R = End_D(V)$$

$$R = End_D(V)$$

Definition (a primitive ring)

Let *R* be a ring with the identity element,

R is right primitive $\Leftrightarrow \exists M_R$ a faithful irreducible right *R*-module

 $\Leftrightarrow \quad \exists \rho : a \text{ maximal right ideal of } R \quad \text{which} \\ \text{contains no non-trivial ideals} \end{cases}$

- ► *R*: commutative primitive \Rightarrow *R* is a field.
- *R* is simple \Rightarrow *R* is primitive.
- ► *R* is artinian simple \Rightarrow $R \simeq M_n(D) \simeq End_D(V)$, $dim_D(V) < \infty$.

▶ $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

<u>Definition (Norhterian groups)</u>

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

<u>Definition (Norhterian groups)</u>

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

<u>Definition (Norhterian groups)</u>

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

G is polycyclic \Leftrightarrow *G*=*G*₀ \triangleright *G*₁ \triangleright ··· \triangleright *G*_n=1, *G*_{*i*}/*G*_{*i*+1}: cyclic

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- *G* is noetherian \Rightarrow *G* is often polycyclic by finite; it is not easy

to finid noetherian but not polycyclic by finite.

► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.

► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

 $\Delta(G)$: the finite conjugate center of G; $\Delta(G) = \{ g \in G \mid [G:C_G(g)] \leq \infty \}$

• $G \neq 1$: finite or abelian \Rightarrow *KG* is never primitive.

For the case of noetherian groups

Definition (Norhterian groups)

A group *G* is noetherian provided any subgroup of *G* is finitely generated.

- *G* is polycyclic by finite \Rightarrow *G* is noetherian.
- ► G is noetherian ⇒ G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.
- ► *G* is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, *K* is not algebraic over a finite field

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

• *G* is a free product of non-trivial groups (except $G=Z_2*Z_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

• *G* is a free product of non-trivial groups (except $G=Z_2*Z_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

•*G* is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

•*G* is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

• *G* is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

If *G* is one of the following types of groups, then *KG* is primitive for any field *K*:

• *G* is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) \rightarrow (1973, Formanek)

• *G* is an amalgamated free product satisfying certain conditions \rightarrow (1989, Balogun)

• *G* is an ascending HNN extension of a free group \rightarrow (2007, N)

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*. We denote by \widetilde{M} the symmetric closure of *M*; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of *G*, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$,

$$g_1g_2 \cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*. We denote by \widetilde{M} the symmetric closure of M; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of *G*, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in *G*, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$,

$$g_1g_2 \cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*.

We denote by \widetilde{M} the symmetric closure of M; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*. We denote by \widetilde{M} the symmetric closure of *M*; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of *G*, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in *G*, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*. We denote by \widetilde{M} the symmetric closure of *M*; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of *G*, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in *G*, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$, $g_1g_2 \cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_i$.

2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let *G* be a group and *M* a subset of *G*. We denote by \widetilde{M} the symmetric closure of *M*; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x , the set $\{x^{-1}fx | f \in M\}$, where $x \in G$. For non-empty subsets M_1, M_2, \ldots, M_n of *G*, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in *G*, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \widetilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$

We here consider the following condition:

(*) For any non-empty subsets *M* of *G* consisting of finite number of elements $\neq 1$, there exist $x_1, x_2, x_3 \in G$ such that $M^{x_1}, M^{x_2}, M^{x_3}$ are mutually reduced.

. Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (*),

then *KG* is primitive for any *K*.

This is true even if the cardinality of *G* is general provided *G* has a free subgroup whose cardinality is same as that of *G* itself. We here consider the following condition:

(*) For any non-empty subsets *M* of *G* consisting of finite number of elements $\neq 1$, there exist $x_1, x_2, x_3 \in G$ such that $M^{x_1}, M^{x_2}, M^{x_3}$ are mutually reduced.

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (*),

then *KG* is primitive for any *K*.

This is true even if the cardinality of *G* is general provided *G* has a free subgroup whose cardinality is same as that of G itself.

We here consider the following condition:

(*) For any non-empty subsets *M* of *G* consisting of finite number of elements $\neq 1$, there exist $x_1, x_2, x_3 \in G$ such that $M^{x_1}, M^{x_2}, M^{x_3}$ are mutually reduced.

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (*),

then *KG* is primitive for any *K*.

This is true even if the cardinality of *G* is general provided *G* has a free subgroup whose cardinality is same as that of G itself.

For example;

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

a non-elementary hyperbolic group ← [B. Solie, 2017, arXiv:1706.03905]

For example;

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

```
a non-elementary hyperbolic group
← [B. Solie, 2017, arXiv:1706.03905]
```

For example;

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

```
a non-elementary hyperbolic group
← [B. Solie, 2017, arXiv:1706.03905]
```

For example;

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

a non-elementary hyperbolic group ← [B. Solie, 2017, arXiv:1706.03905]

For example;

a free group, a free product,

a locally free group,

an amalgamated free product,

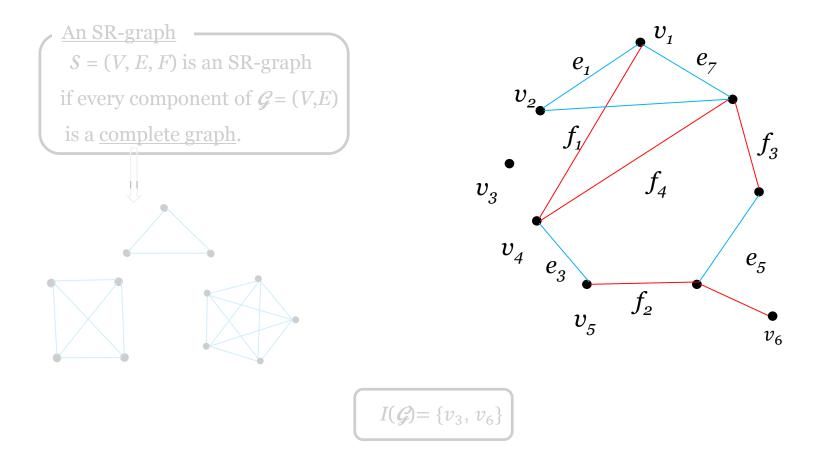
an HNN-extension,

a one relator group with torsion ...

```
a non-elementary hyperbolic group
← [B. Solie, 2017, arXiv:1706.03905]
```

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

$$V = \{v_1, v_2, ..., v_n\} \qquad E = \{e_1, e_2, ..., e_m\} \qquad F = \{f_1, f_2, ..., f_l\}$$



We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

 $V = \{v_1, v_2, ..., v_n\} \qquad E = \{e_1, e_2, ..., e_m\} \qquad F = \{f_1, f_2, ..., f_l\}$ <u>An SR-graph</u> v_1 S = (V, E, F) is an SR-graph e_7 e_1 if every component of $\mathcal{G} = (V, E)$ v_2 is a <u>complete graph</u>. f_3 f_4 v_3 v_4 e_5 e_3 f_2 v_5

 $I(\mathcal{G}) = \{v_3, v_6\}$

 v_6

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

 $V = \{v_1, v_2, ..., v_n\} \qquad E = \{e_1, e_2, ..., e_m\} \qquad F = \{f_1, f_2, ..., f_l\}$ <u>An SR-graph</u> v_1 S = (V, E, F) is an SR-graph e_7 e_1 if every component of $\mathcal{G} = (V, E)$ v_{2} is a <u>complete graph</u>. f_3 f_4 v_3 v_4 e_5 e_3 f_2 v_5 v_6

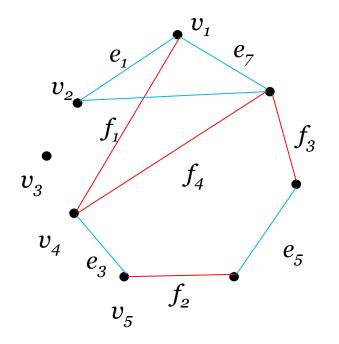
 $I(\mathcal{G}) = \{v_3, v_6\}$

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

 $V = \{v_1, v_2, ..., v_n\} \qquad E = \{e_1, e_2, ..., e_m\} \qquad F = \{f_1, f_2, ..., f_l\}$ <u>An SR-graph</u> v_1 S = (V, E, F) is an SR-graph e_7 e_1 if every component of $\mathcal{G} = (V, E)$ v_2 is a <u>complete graph</u>. f_3 f_4 v_3 v_4 e_5 e_3 f_2 v_5 v_6

$$I(\mathcal{G}) = \{v_3, v_6\}$$

In an SR-graph, we call an alternating cycle an SR-cycle.



an SR-cycle: $f_1 e_3 f_2 e_5 f_3 e_7$

We would like to know when an SR-graph has an SR-cycle.

 $S = (V, E, F), \quad \mathcal{G} = (V, E), \quad \mathcal{H} = (V, F).$

c(*G*): the number of the set of components of *G* c(*H*): the number of the set of components of *H*

Theorem G1 ([Nishinaka and Alexander, 2017]) *S* is connected and each component of *H* is complete.
Then *S* has an SR-cycle if and only if c(*G*) + c(*H*) < |V| + 1.

 $\mathcal{H}_i = (V_i, F_i) \ (i=1,...,n)$ are the components of \mathcal{H} . For $\mathcal{H}_i \cong K_{m_1,\cdots,m_t}$, let μ_i be max $\{m_1, \cdots, m_t\}$.

Theorem G2 ([Nishinaka and Alexander, 2017]) Suppose that \mathscr{H}_i is a complete multipartite graph for each *i*. $|I(\mathscr{G})| \leq n$ and $|V_i| > 2\mu_i$ for each $i \Rightarrow S$ has an SR-cycle.

 $K_{2,3}, |V_i| < 2\mu_i$

 $S = (V, E, F), \quad \mathcal{G} = (V, E), \quad \mathcal{H} = (V, F).$

c(\mathcal{G}): the number of the set of components of \mathcal{G} c(\mathcal{H}): the number of the set of components of \mathcal{H}

Theorem G1 ([Nishinaka and Alexander, 2017]) *S* is connected and each component of \mathcal{H} is complete. Then *S* has an SR-cycle if and only if $c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1$.

 $\mathcal{H}_i = (V_i, F_i) \ (i=1,...,n)$ are the components of \mathcal{H} . For $\mathcal{H}_i \cong K_{m_1,\cdots,m_t}$, let μ_i be max $\{m_1, \cdots, m_t\}$.

Theorem G2 ([Nishinaka and Alexander, 2017]) Suppose that \mathscr{H}_i is a complete multipartite graph for each *i*. $|I(\mathscr{G})| \leq n$ and $|V_i| > 2\mu_i$ for each $i \Rightarrow S$ has an SR-cycle.

 $K_{2,3}, |V_i| < 2\mu_i$

 $S = (V, E, F), \quad \mathcal{G} = (V, E), \quad \mathcal{H} = (V, F).$

c(\mathcal{G}): the number of the set of components of \mathcal{G} c(\mathcal{H}): the number of the set of components of \mathcal{H}

Theorem G1 ([Nishinaka and Alexander, 2017]) *S* is connected and each component of \mathcal{H} is complete. Then *S* has an SR-cycle if and only if $c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1$.

$$\begin{split} \mathcal{H}_{i} = & (V_{i}, F_{i}) \ (i=1,...,n) \text{ are the components of } \mathcal{H}. \\ \text{For } \mathcal{H}_{i} \cong K_{m_{1},\cdots,m_{t}} \text{ , let } \mu_{i} \text{ be } \max\{m_{1},\cdots,m_{t}\} \text{ .} \end{split}$$

Theorem G2 ([Nishinaka and Alexander, 2017]) Suppose that \mathcal{H}_i is a complete multipartite graph for each *i*. $|I(\mathcal{G})| \leq n$ and $|V_i| > 2\mu_i$ for each $i \Rightarrow S$ has an SR-cycle.

 $K_{2,3}, |V_i| < 2\mu_i$

 $S = (V, E, F), \quad \mathcal{G} = (V, E), \quad \mathcal{H} = (V, F).$

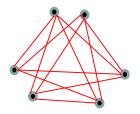
c(\mathcal{G}): the number of the set of components of \mathcal{G} c(\mathcal{H}): the number of the set of components of \mathcal{H}

Theorem G1 ([Nishinaka and Alexander, 2017]) *S* is connected and each component of \mathcal{H} is complete. Then *S* has an SR-cycle if and only if $c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1$.

$$\begin{split} \mathcal{H}_{i} = & (V_{i}, F_{i}) \ (i=1,...,n) \text{ are the components of } \mathcal{H}. \\ \text{For } \mathcal{H}_{i} \cong K_{m_{1},\cdots,m_{t}} \text{ , let } \mu_{i} \text{ be } \max\{m_{1},\cdots,m_{t}\} \text{ .} \end{split}$$

Theorem G2 ([Nishinaka and Alexander, 2017]) Suppose that \mathcal{H}_i is a complete multipartite graph for each *i*. $|I(\mathcal{G})| \leq n$ and $|V_i| > 2\mu_i$ for each $i \Rightarrow S$ has an SR-cycle.

 $K_{2,3}, |V_i| < 2\mu_i$



Let *KG* be the group algebra of a group *G* over a field *K*.

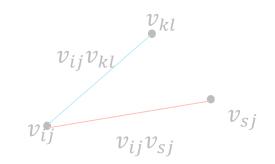
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in *KG*,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j \ (i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_kg_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

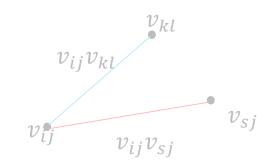
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in *KG*,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j \ (i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_kg_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

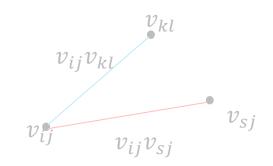
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j$, $g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_kg_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

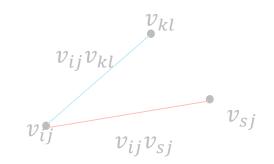
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in *KG*,

where $f_i, g_j \in G$ with $f_i \neq f_j$, $g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

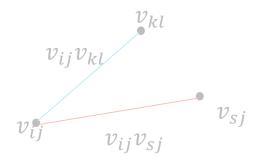
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j$, $g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

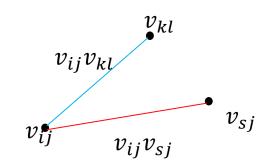
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j$, $g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.



Let *KG* be the group algebra of a group *G* over a field *K*.

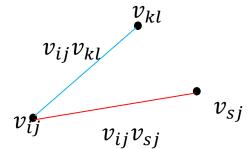
Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j$, $g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

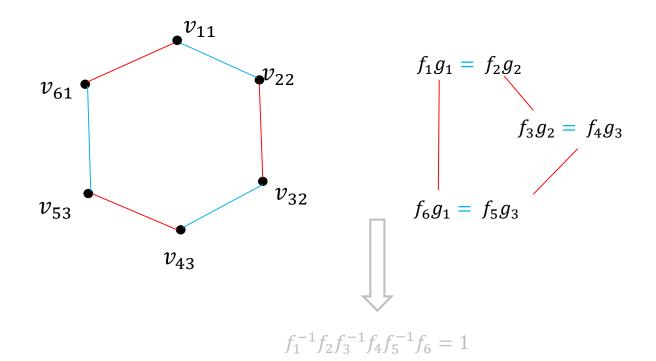
Suppose
$$ab \in K$$
. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let *E* be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_kg_l$, and also *F* the set done by $v_{ij}v_{st} \in F$ if j = t.

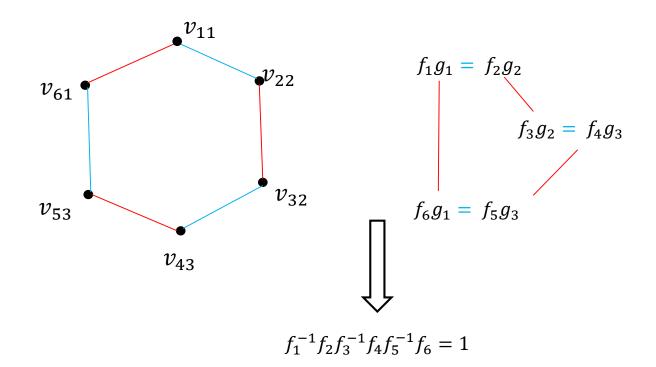


Suppose that there is a SR-cycle in *S* as follows:



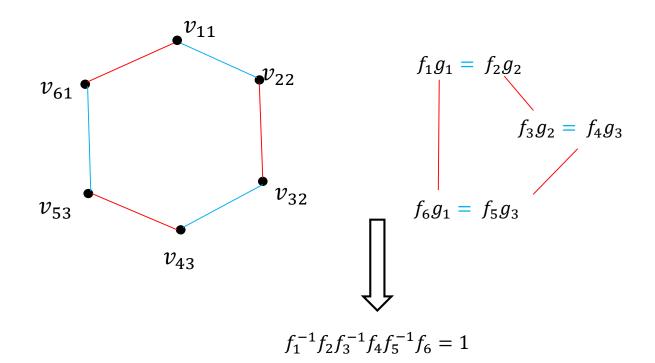
Recall that f_i 's are supports of $a = \sum_{i=1}^m \alpha_i f_i$. So, if we prepare f_i 's so as not to satisfy the above equation, then we can conclude $ab \notin K$.

Suppose that there is a SR-cycle in *S* as follows:



Recall that f_i 's are supports of $a = \sum_{i=1}^m \alpha_i f_i$. So, if we prepare f_i 's so as not to satisfy the above equation, then we can conclude $ab \notin K$.

Suppose that there is a SR-cycle in *S* as follows:



Recall that f_i 's are supports of $a = \sum_{i=1}^m \alpha_i f_i$. So, if we prepare f_i 's so as not to satisfy the above equation, then we can conclude $ab \notin K$.

5. How to prove primitivity of group algebras: Outline of the proof of Theorem 1

Recall:

→ Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (*),

then *KG* is primitive for any *K*.

where,

5. How to prove primitivity of group algebras: Outline of proof of Theorem 1

Recall:

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (*),

then *KG* is primitive for any *K*.

where,

The main difficulty here is how to choose elements $\varepsilon(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let $a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$ and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*. where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

The main difficulty here is how to choose elements $\mathcal{E}(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let $a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$ and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*. where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

The main difficulty here is how to choose elements $\mathcal{E}(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let $a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$ and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*. where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

The main difficulty here is how to choose elements $\mathcal{E}(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let
$$a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$$
 and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*.
where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

The main difficulty here is how to choose elements $\mathcal{E}(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let
$$a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$$
 and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*.
where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

The main difficulty here is how to choose elements $\mathcal{E}(a)$'s so as to make ρ be proper.

Note that if $r \in \rho$, then $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t$ for some a_t, b_t in KG.

Let
$$a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$$
 and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$ be in *KG*.
where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ $(i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

We can choose $\varepsilon(a_t)$ so that $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t$.

where $x_{ts}, y_{ts} \in G$, $A_t = x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}$.

If
$$M^{x_{st}} = \{x_{st}^{-1}f_{t1}x_{st}, \dots, x_{st}^{-1}f_{tm_t}x_{st}\}$$
 ($s = 1,2,3$) are mutually reduced
and y_{ts} ($1 \le t \le l, 1 \le s \le 3$) are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1.$$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt}\cdots y_{kp}^{-1}y_{lq} = 1$

for $(i, s) \neq (j, t), \dots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$A_t \ b_t = x_{t1}^{-1} a_t x_{t1} + x_2^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3},$$
$$a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.$$

If
$$M^{x_{st}} = \{ x_{st}^{-1} f_{t1} x_{st}, \dots, x_{st}^{-1} f_{tm_t} x_{st} \}$$
 ($s = 1,2,3$) are mutually reduced
and y_{ts} ($1 \le t \le l, 1 \le s \le 3$) are also mutually reduced, then we have
 $r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \ne 1.$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt}\cdots y_{kp}^{-1}y_{lq} = 1$

for $(i, s) \neq (j, t), \dots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$A_t \ b_t = x_{t1}^{-1} a_t x_{t1} + x_2^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3},$$
$$a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.$$

If
$$M^{x_{st}} = \{x_{st}^{-1} f_{t1} x_{st}, \dots, x_{st}^{-1} f_{tm_t} x_{st}\}$$
 (*s* = 1,2,3) are mutually reduced

and $y_{ts} \ (1 \le t \le l, 1 \le s \le 3)$ are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1.$$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt} \cdots y_{kp}^{-1}y_{lq} = 1$

for $(i, s) \neq (j, t), \dots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$\begin{pmatrix}
A_t \ b_t = x_{t1}^{-1} a_t x_{t1} + x_2^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3}, \\
a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.
\end{cases}$$

If
$$M^{x_{st}} = \{x_{st}^{-1} f_{t1} x_{st}, \dots, x_{st}^{-1} f_{tm_t} x_{st}\}$$
 (*s* = 1,2,3) are mutually reduced

and y_{ts} ($1 \le t \le l, 1 \le s \le 3$) are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1.$$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt} \cdots y_{kp}^{-1}y_{lq} = 1$ for $(i, s) \neq (j, t), \cdots, (k, p) \neq (l, q)$; a contradiction. $A_t b_t = x_{t1}^{-1}a_t x_{t1} + x_2^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3},$ $a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti}$ and $b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}$.

If
$$M^{x_{st}} = \{ x_{st}^{-1} f_{t1} x_{st}, \dots, x_{st}^{-1} f_{tm_t} x_{st} \} (s = 1, 2, 3)$$
 are mutually reduced

and y_{ts} ($1 \le t \le l, 1 \le s \le 3$) are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1.$$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt} \cdots y_{kp}^{-1}y_{lq} = 1$

for $(i, s) \neq (j, t), \dots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$\begin{pmatrix}
A_t \ b_t = x_{t1}^{-1} a_t x_{t1} + x_2^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3}, \\
a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.
\end{cases}$$

If
$$M^{x_{st}} = \{x_{st}^{-1}f_{t1}x_{st}, \dots, x_{st}^{-1}f_{tm_t}x_{st}\}$$
 (*s* = 1,2,3) are mutually reduced

and y_{ts} ($1 \le t \le l, 1 \le s \le 3$) are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1.$$

In fact, suppose, to the contrary, that r = 1.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^3 (y_{1s}A_1b_1 + b_1) + \dots + \sum_{s=1}^3 (y_{ts}A_tb_t + b_t) + \dots + \sum_{s=1}^3 (y_{ls}A_lb_l + b_l) = 1.$$

By Theorem G2, $|Supp(A_t b_t)| > n_t$.

 $\boxed{\text{implies}} \quad y_{is}^{-1} y_{jt} \cdots y_{kp}^{-1} y_{lq} = 1$ By this result and Theorem G1 for $(i, s) \neq (j, t), \dots, (k, p) \neq (l, q);$ a contradiction. Recall: $\begin{pmatrix}
A_t \ b_t = x_{t1}^{-1} a_t x_{t1} + x_2^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3}, \\
a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.
\end{pmatrix}$ Recall:

Thank you!

[N, 2016] "Uncountable locally free groups and their group rings" arXiv:1601.00295

[N and A, 2017] "Non-noetherian groups and primitivity of their group algebras" J. Algebra Vol. 473

[N, 2011] "Group rings of countable non-abelian locally free groups are primitive" Int. J. alg. and comp Vol 21

[N,2007] "Group rings of proper ascending HNN extensions of countably infinite free groups are primitive" J. Algebra Vol. 317

