Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets, the double Burnside ring, and the subgroups of a direct product

Götz Pfeiffer

School of Mathematics, Statistics and Applied Mathematics NUI, Galway

Groups St Andrews in Birmingham 2017

Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets.

Let G, H be finite groups, acting on a finite set X:
 (g.x).h = g.(x.h), then _GX_H is called a (G, H)-biset.

Example

 $_{\rm G}X_{\rm H} = \{ {\rm f} \colon {\rm A} \to {\rm B} \},$

- Disjoint unions of (G, H)-bisets are (G, H)-bisets.
- The **double Burnside group** B(G, H) is the Grothendieck group of the category of (G, H)-bisets, [X] + [Y] = [X II Y].
- Setting g.x.h = x.(g⁻¹, h), yields B(G, H) ≅ B(G × H), as abelian groups, with basis Sub(G × H)/(G × H).

Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets.

Let G, H be finite groups, acting on a finite set X:
 (g.x).h = g.(x.h), then _GX_H is called a (G, H)-biset.

Example

 $_{\rm G}X_{\rm H} = \{ {\rm f} \colon {\rm A} \to {\rm B} \},$

- Disjoint unions of (G, H)-bisets are (G, H)-bisets.
- The **double Burnside group** B(G, H) is the Grothendieck group of the category of (G, H)-bisets, [X] + [Y] = [X II Y].
- Setting g.x.h = x.(g⁻¹, h), yields B(G, H) ≃ B(G × H), as abelian groups, with basis Sub(G × H)/(G × H).

Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets.

• Let G, H be finite groups, acting on a finite set X: (g.x).h = g.(x.h), then $_{G}X_{H}$ is called a (G, H)-biset.

Example

 $_{\rm G}X_{\rm H} = \{ {\rm f} \colon {\rm A} \to {\rm B} \},$

- Disjoint unions of (G, H)-bisets are (G, H)-bisets.
- The **double Burnside group** B(G, H) is the Grothendieck group of the category of (G, H)-bisets, [X] + [Y] = [X II Y].
- Setting g.x.h = x.(g⁻¹, h), yields B(G, H) ≅ B(G × H), as abelian groups, with basis Sub(G × H)/(G × H).

Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets.

Let G, H be finite groups, acting on a finite set X:
 (g.x).h = g.(x.h), then _GX_H is called a (G, H)-biset.

Example

 $_{\rm G}X_{\rm H} = \{ {\rm f} \colon {\rm A} \to {\rm B} \},$

- Disjoint unions of (G, H)-bisets are (G, H)-bisets.
- The double Burnside group B(G, H) is the Grothendieck group of the category of (G, H)-bisets, $[X] + [Y] = [X \amalg Y]$.
- Setting g.x.h = x.(g⁻¹, h), yields B(G, H) ≅ B(G × H), as abelian groups, with basis Sub(G × H)/(G × H).

Subgroups of a Direct Product.

The Double Burnside Ring.

Bisets.

Let G, H be finite groups, acting on a finite set X:
 (g.x).h = g.(x.h), then _GX_H is called a (G, H)-biset.

Example

 $_{\rm G}X_{\rm H} = \{ {\rm f} \colon {\rm A} \to {\rm B} \},$

- Disjoint unions of (G, H)-bisets are (G, H)-bisets.
- The **double Burnside group** B(G, H) is the Grothendieck group of the category of (G, H)-bisets, [X] + [Y] = [X II Y].
- Setting g.x.h = x.(g⁻¹, h), yields B(G, H) ≅ B(G × H), as abelian groups, with basis Sub(G × H)/(G × H).

Subgroups of a Direct Product.

The Double Burnside Ring.

Tensor Products and the Double Burnside Ring.

• The tensor product of $_{G}X_{H}$ and $_{H}Y_{K}$ is the (G, K)-biset $X \times_{H} Y = (X \times Y)/H$

of H-orbits under the action $(x, y).h = (x.h, h^{-1}.y).$

Example

$$\begin{split} \{f\colon A\to B\}\times_{Sym(B)}\{g\colon B\to C\} &= \{g\circ f\colon A\to C\},\\ g\circ f &= (g\circ \alpha)\circ (\alpha^{-1}\circ f),\, \alpha\in Sym(B). \end{split}$$

The tensor product yields a bi-additive map
 {}·_H _: B(G, H) × B(H, K) → B(G, K), mapping ([X], [Y]) to
 _[X] ·_H [Y] = [X ×_H Y].

• In particular, B(G, G) is a ring with multiplication \cdot_G .

Problem.

What is the structure of $QB(G, G) = Q \otimes_Z B(G, G)$, the **rational** double Burnside algebra of G?

Subgroups of a Direct Product.

The Double Burnside Ring.

Tensor Products and the Double Burnside Ring.

• The tensor product of $_{G}X_{H}$ and $_{H}Y_{K}$ is the (G, K)-biset $X \times_{H} Y = (X \times Y)/H$

of H-orbits under the action $(x, y).h = (x.h, h^{-1}.y).$

Example

$$\begin{split} \{f\colon A\to B\}\times_{Sym(B)}\{g\colon B\to C\} &= \{g\circ f\colon A\to C\},\\ g\circ f &= (g\circ \alpha)\circ (\alpha^{-1}\circ f),\, \alpha\in Sym(B). \end{split}$$

The tensor product yields a bi-additive map
 {}·_H _: B(G, H) × B(H, K) → B(G, K), mapping ([X], [Y]) to
 _[X] ·_H [Y] = [X ×_H Y].

• In particular, B(G, G) is a ring with multiplication \cdot_G .

Problem.

What is the structure of $QB(G, G) = Q \otimes_Z B(G, G)$, the **rational** double Burnside algebra of G?

The Double Burnside Ring.

Tensor Products and the Double Burnside Ring.

• The tensor product of $_{G}X_{H}$ and $_{H}Y_{K}$ is the (G, K)-biset $X \times_{H} Y = (X \times Y)/H$

of H-orbits under the action $(x, y).h = (x.h, h^{-1}.y).$

Example

$$\begin{split} \{f\colon A\to B\}\times_{Sym(B)}\{g\colon B\to C\} &= \{g\circ f\colon A\to C\},\\ g\circ f &= (g\circ \alpha)\circ (\alpha^{-1}\circ f),\, \alpha\in Sym(B). \end{split}$$

• The tensor product yields a bi-additive map $_\cdot_H _: B(G, H) \times B(H, K) \rightarrow B(G, K)$, mapping ([X], [Y]) to $[X] \cdot_H [Y] = [X \times_H Y]$.

• In particular, B(G, G) is a ring with multiplication \cdot_G .

Problem.

What is the structure of $QB(G, G) = Q \otimes_Z B(G, G)$, the **rational** double Burnside algebra of G?

Subgroups of a Direct Product.

The Double Burnside Ring.

Tensor Products and the Double Burnside Ring.

• The tensor product of $_{G}X_{H}$ and $_{H}Y_{K}$ is the (G, K)-biset $X \times_{H} Y = (X \times Y)/H$

of H-orbits under the action $(x, y).h = (x.h, h^{-1}.y).$

Example

$$\begin{split} \{f\colon A\to B\}\times_{Sym(B)}\{g\colon B\to C\} &= \{g\circ f\colon A\to C\},\\ g\circ f &= (g\circ \alpha)\circ (\alpha^{-1}\circ f),\, \alpha\in Sym(B). \end{split}$$

• The tensor product yields a bi-additive map $_\cdot_H _: B(G, H) \times B(H, K) \rightarrow B(G, K)$, mapping ([X], [Y]) to $[X] \cdot_H [Y] = [X \times_H Y]$.

• In particular, B(G, G) is a ring with multiplication \cdot_{G} .

Problem.

What is the structure of $\mathbb{Q}B(G, G) = \mathbb{Q} \otimes_{\mathbb{Z}} B(G, G)$, the **rational** double Burnside algebra of G?

Subgroups of a Direct Product.

The Double Burnside Ring.

Tensor Products and the Double Burnside Ring.

• The tensor product of $_{G}X_{H}$ and $_{H}Y_{K}$ is the (G, K)-biset $X \times_{H} Y = (X \times Y)/H$

of H-orbits under the action $(x, y).h = (x.h, h^{-1}.y).$

Example

$$\begin{split} \{f\colon A\to B\}\times_{Sym(B)}\{g\colon B\to C\} &= \{g\circ f\colon A\to C\},\\ g\circ f &= (g\circ \alpha)\circ (\alpha^{-1}\circ f),\, \alpha\in Sym(B). \end{split}$$

- The tensor product yields a bi-additive map $_\cdot_H _: B(G, H) \times B(H, K) \rightarrow B(G, K)$, mapping ([X], [Y]) to $[X] \cdot_H [Y] = [X \times_H Y]$.
- In particular, B(G, G) is a ring with multiplication \cdot_G .

Problem.

What is the structure of $\mathbb{Q}B(G, G) = \mathbb{Q} \otimes_{\mathbb{Z}} B(G, G)$, the **rational** double Burnside algebra of G?

Subgroups of a Direct Product.

The Double Burnside Ring.

- As algebras, QB(G, G) ≠ QB(G × G), since QB(G, G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] ⋅ [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable \iff B(G) has only trivial idempotents ±1 (Dress 1969).

The Double Burnside Ring.

- As algebras, QB(G,G) ≠ QB(G × G), since QB(G,G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] ⋅ [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable \iff B(G) has only trivial idempotents ±1 (Dress 1969).

The Double Burnside Ring.

- As algebras, QB(G, G) ≠ QB(G × G), since QB(G, G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] ⋅ [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable \iff B(G) has only trivial idempotents ±1 (Dress 1969).

The Double Burnside Ring.

- As algebras, QB(G, G) ≠ QB(G × G), since QB(G, G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] · [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable \iff B(G) has only trivial idempotents ± 1 (Dress 1969).

The Double Burnside Ring.

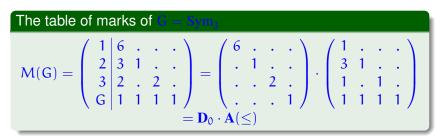
- As algebras, QB(G, G) ≠ QB(G × G), since QB(G, G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] · [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable \iff B(G) has only trivial idempotents ± 1 (Dress 1969).

The Double Burnside Ring.

- As algebras, QB(G, G) ≠ QB(G × G), since QB(G, G) is semisimple iff G is cyclic (Boltje-Danz 2013).
- In contrast, $\mathbb{Q}B(G) = \mathbb{Q}^r = \bigoplus \mathbb{Q}^{1 \times 1}$, r = |Sub(G)/G|.
- Recall that the Burnside ring B(G) is the Grothendieck group of the category of finite (right) G-sets, with multiplication [X] · [Y] = [X × Y].
- The mark homomorphism $\beta_G \colon B(G) \to \mathbb{Z}^r$, $[X] \mapsto X^H$, $H \leq G$, embeds B(G) into its ghost ring \mathbb{Z}^r .
- The table of marks M(G) is the matrix of β_G relative to the transitive G-sets as basis of B(G), and the standard basis of Z^r.
- G is solvable $\iff B(G)$ has only trivial idempotents ± 1 (Dress 1969).

The Double Burnside Ring.

Example.



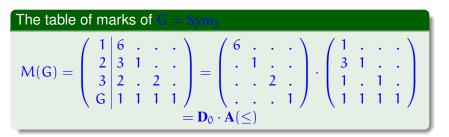
- $|(G/H)^{H'}| = |N_G(H): H| \cdot \# \{H' \le H^g : g \in G\}.$
- $A(\leq)$ is the class incidence matrix of poset $(Sub(G), \leq)$.

Plan.

Find a base change matrix $\mathcal{M}'(G \times G)$, relative to a suitable partial order, that reveals the structure of $\mathbb{Q}B(G,G)$.

The Double Burnside Ring.

Example.



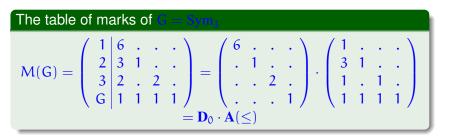
- $|(G/H)^{H'}| = |N_G(H):H| \cdot \#\{H' \le H^g: g \in G\}.$
- $A(\leq)$ is the class incidence matrix of poset $(Sub(G), \leq)$.

Plan.

Find a base change matrix $\mathcal{M}'(G \times G)$, relative to a suitable partial order, that reveals the structure of $\mathbb{Q}B(G,G)$.

The Double Burnside Ring.

Example.



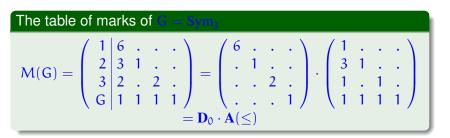
- $|(G/H)^{H'}| = |N_G(H): H| \cdot \# \{H' \le H^g : g \in G\}.$
- $A(\leq)$ is the class incidence matrix of poset $(Sub(G), \leq)$.

Plan.

Find a base change matrix $\mathcal{M}'(G \times G)$, relative to a suitable partial order, that reveals the structure of $\mathbb{QB}(G,G)$.

The Double Burnside Ring.

Example.



- $|(G/H)^{H'}| = |N_G(H): H| \cdot \# \{H' \le H^g : g \in G\}.$
- A(≤) is the class incidence matrix of poset (Sub(G), ≤).

→ Plan.

Find a base change matrix $M'(G \times G)$, relative to a suitable partial order, that reveals the structure of $\mathbb{QB}(G, G)$.

Theorem (Goursat's Lemma, 1889)

Subgroups of $G_1 \times G_2$ are isomorphisms between a section of G_1 and a section of G_2 .

- A subgroup $L \leq G_1 \times G_2$ is a **difunctional relation**, the **graph** of a bijection between section quotients P_i/K_i of G_i : $L = \{(p_1, p_2) \in P_1 \times P_2 : (K_1p_1)^{\theta} = K_2p_2\}.$
- Write $p_i(L) = P_i$, $k_i(L) = K_i$ and $L = (\theta: P_1/K_1 \rightarrow P_2/K_2)$.
- If $L \leq G_1 \times G_2$ and $M \leq G_2 \times G_3$ then the relation product $L \circ M = \{(g, k) : (g, h) \in L, (h, k) \in M \text{ for some } h \in G_2\}$ is a subgroup of $G_1 \times G_3$.

Theorem (Bouc)

 $[(G_1 \times G_2)/L]_{:G_2} [(G_2 \times G_3)/M] = \sum_{d \in D} [(G_1 \times G_2)/(L^{(1,d)} \circ M)].$

Theorem (Goursat's Lemma, 1889)

Subgroups of $G_1 \times G_2$ are isomorphisms between a section of G_1 and a section of G_2 .

- A subgroup $L \leq G_1 \times G_2$ is a **difunctional relation**, the **graph** of a bijection between section quotients P_i/K_i of G_i : $L = \{(p_1, p_2) \in P_1 \times P_2 : (K_1p_1)^{\theta} = K_2p_2\}.$
- Write $p_i(L) = P_i$, $k_i(L) = K_i$ and $L = (\theta: P_1/K_1 \rightarrow P_2/K_2)$.
- If $L \leq G_1 \times G_2$ and $M \leq G_2 \times G_3$ then the relation product $L \circ M = \{(g, k) : (g, h) \in L, (h, k) \in M \text{ for some } h \in G_2\}$ is a subgroup of $G_1 \times G_3$.

Theorem (Bouc)

 $[(G_1 \times G_2)/L]_{:G_2} [(G_2 \times G_3)/M] = \sum_{d \in D} [(G_1 \times G_2)/(L^{(1,d)} \circ M)].$

Theorem (Goursat's Lemma, 1889)

Subgroups of $G_1 \times G_2$ are isomorphisms between a section of G_1 and a section of G_2 .

- A subgroup $L \leq G_1 \times G_2$ is a **difunctional relation**, the **graph** of a bijection between section quotients P_i/K_i of G_i : $L = \{(p_1, p_2) \in P_1 \times P_2 : (K_1p_1)^{\theta} = K_2p_2\}.$
- Write $p_i(L) = P_i$, $k_i(L) = K_i$ and $L = (\theta: P_1/K_1 \rightarrow P_2/K_2)$.
- If $L \leq G_1 \times G_2$ and $M \leq G_2 \times G_3$ then the relation product $L \circ M = \{(g, k) : (g, h) \in L, (h, k) \in M \text{ for some } h \in G_2\}$ is a subgroup of $G_1 \times G_3$.

Theorem (Bouc)

 $[(G_1 \times G_2)/L] \cdot_{G_2} [(G_2 \times G_3)/M] = \sum_{d \in D} [(G_1 \times G_2)/(L^{(1,d)} \circ M)].$

Theorem (Goursat's Lemma, 1889)

Subgroups of $G_1 \times G_2$ are isomorphisms between a section of G_1 and a section of G_2 .

- A subgroup $L \leq G_1 \times G_2$ is a **difunctional relation**, the **graph** of a bijection between section quotients P_i/K_i of G_i : $L = \{(p_1, p_2) \in P_1 \times P_2 : (K_1p_1)^{\theta} = K_2p_2\}.$
- Write $p_i(L) = P_i$, $k_i(L) = K_i$ and $L = (\theta: P_1/K_1 \rightarrow P_2/K_2)$.
- If $L \leq G_1 \times G_2$ and $M \leq G_2 \times G_3$ then the relation product $L \circ M = \{(g, k) : (g, h) \in L, (h, k) \in M \text{ for some } h \in G_2\}$ is a subgroup of $G_1 \times G_3$.

Theorem (Bouc)

 $[(G_1 \times G_2)/L] \cdot_{G_2} [(G_2 \times G_3)/M] = \sum_{d \in D} [(G_1 \times G_2)/(L^{(1,d)} \circ M)].$

Theorem (Goursat's Lemma, 1889)

Subgroups of $G_1 \times G_2$ are isomorphisms between a section of G_1 and a section of G_2 .

- A subgroup $L \leq G_1 \times G_2$ is a **difunctional relation**, the **graph** of a bijection between section quotients P_i/K_i of G_i : $L = \{(p_1, p_2) \in P_1 \times P_2 : (K_1p_1)^{\theta} = K_2p_2\}.$
- Write $p_i(L) = P_i$, $k_i(L) = K_i$ and $L = (\theta: P_1/K_1 \rightarrow P_2/K_2)$.
- If $L \leq G_1 \times G_2$ and $M \leq G_2 \times G_3$ then the relation product $L \circ M = \{(g, k) : (g, h) \in L, (h, k) \in M \text{ for some } h \in G_2\}$ is a subgroup of $G_1 \times G_3$.

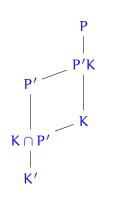
Theorem (Bouc)

 $[(G_1 \times G_2)/L] \cdot_{G_2} [(G_2 \times G_3)/M] = \sum_{d \in D} [(G_1 \times G_2)/(L^{(1,d)} \circ M)].$

The Double Burnside Ring.

The Sections Lattice.

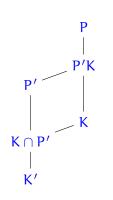
- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the **lattice** property from $(Sub(G), \leq)$.



Central Observation

- If $(P', K') \le (P, K)$ then $K'p \mapsto Kp$ is a homomorphism $\phi: P'/K' \to P/K$.
- Like every homomorphism,
 - $\phi = \phi_3 \circ \phi_2 \circ \phi_1, \text{ where}$ $\phi_2 \cdot P'/K' \rightarrow P'/(K \cap P') \text{ is e}$
 - $\phi_2: P'/(K \cap P') \rightarrow P'K/K$ is iso, and $\phi_3: P'K/K \rightarrow P/K$ is mono.
- Hence, there exist two uniquely determined intermediate sections!

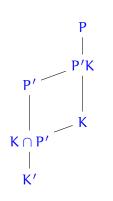
- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) : \iff P' \le P$ and $K' \le K$.
- (Sec(G), ≤) inherits the **lattice** property from (Sub(G), ≤).



Central Observatior

- If (P', K') ≤ (P, K) then K'p → Kp is a homomorphism φ: P'/K' → P/K.
 Like every homomorphism, φ = φ₃ ∘ φ₂ ∘ φ₁, where
- $\phi_1: P'/K' \rightarrow P'/(K \cap P')$ is epi, $\phi_2: P'/(K \cap P') \rightarrow P'K/K$ is iso, and $\phi_3: P'K/K \rightarrow P/K$ is mono.
- Hence, there exist two uniquely determined intermediate sections!

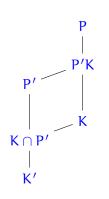
- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the lattice property from $(Sub(G), \leq)$.



Central Observatior

- If (P', K') ≤ (P, K) then K'p → Kp is a homomorphism φ: P'/K' → P/K.
 Like every homomorphism, φ = φ₃ φ₂ φ₁, where φ₁: P'/K' → P'/(K ∩ P') is epi, φ₂: P'/(K ∩ P') → P'K/K is iso, and φ₃: P'K/K → P/K is mono.
 Hence, there exist two uniquely
 - determined intermediate sections

- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the lattice property from $(Sub(G), \leq)$.

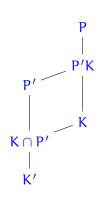


Central Observation

- If $(P', K') \le (P, K)$ then $K'p \mapsto Kp$ is a homomorphism $\phi \colon P'/K' \to P/K$.
- Like every homomorphism, $\phi = \phi_3 \circ \phi_2 \circ \phi_1$, where $\phi_1: P'/K' \rightarrow P'/(K \cap P')$ is epi
 - ϕ_2 : P'/(K \cap P') \rightarrow P'K/K is **iso**, and ϕ_3 : P'K/K \rightarrow P/K is **mono**.

 Hence, there exist two uniquely determined intermediate sections!

- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the lattice property from $(Sub(G), \leq)$.

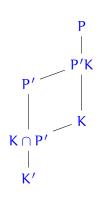


Central Observation

- If $(P', K') \le (P, K)$ then $K'p \mapsto Kp$ is a homomorphism $\phi \colon P'/K' \to P/K$.
- Like every homomorphism, $\phi = \phi_3 \circ \phi_2 \circ \phi_1$, where $\phi_1: P'/K' \to P'/(K \cap P')$ is epi, $\phi_2: P'/(K \cap P') \to P'K/K$ is iso, and $\phi_3: P'K/K \to P/K$ is mono.

 Hence, there exist two uniquely determined intermediate sections!

- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the lattice property from $(Sub(G), \leq)$.

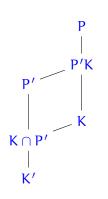


Central Observation

- If $(P', K') \le (P, K)$ then $K'p \mapsto Kp$ is a homomorphism $\phi \colon P'/K' \to P/K$.
- Like every homomorphism, $\phi = \phi_3 \circ \phi_2 \circ \phi_1$, where $\phi_1: P'/K' \rightarrow P'/(K \cap P')$ is epi, $\phi_2: P'/(K \cap P') \rightarrow P'K/K$ is iso, and $\phi_3: P'K/K \rightarrow P/K$ is mono.

 Hence, there exist two uniquely determined intermediate sections!

- $Sec(G) := \{(P, K) : K \leq P \leq G\}$, the set of all sections of G.
- Set $(P', K') \le (P, K) :\iff P' \le P$ and $K' \le K$.
- $(Sec(G), \leq)$ inherits the lattice property from $(Sub(G), \leq)$.



Central Observation

- If $(P', K') \le (P, K)$ then $K'p \mapsto Kp$ is a homomorphism $\phi \colon P'/K' \to P/K$.
- Like every homomorphism,
 - $\phi = \phi_3 \circ \phi_2 \circ \phi_1$, where
 - $\varphi_1\colon P'/K'\to P'/(K\cap P') \text{ is epi},$
 - $\phi_2: P'/(K \cap P') \rightarrow P'K/K$ is iso, and $\phi_3: P'K/K \rightarrow P/K$ is mono.
- Hence, there exist two uniquely determined intermediate sections!

The Double Burnside Ring.

A Decomposition of the Class Incidence Matrix.

• Accordingly, $\leq = \leq_{K} \circ \leq_{P/K} \circ \leq_{P}$, where: $(P', K') \leq_{K} (P, K) : \iff K = K' \text{ and } P' \leq P;$ $(P', K') \leq_{P} (P, K) : \iff P = P' \text{ and } K' \leq K;$ $(P', K') \leq_{P/K} (P, K) : \iff (P', K') \leq (P, K), P'/K' \cong P/K.$

Theorem (Masterson-Pf, 2017)

 $\mathbf{A}(\leq) = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}}),$

where

$$\begin{split} \bullet \ \mathbf{A}(\leq_{\mathsf{K}}) &= \bigoplus_{|\mathsf{K}|} \mathbf{A}_{\mathsf{K}}(\leq), \ (\mathsf{N}_{\mathsf{G}}(\mathsf{K}) \curvearrowright \{\mathsf{P} \in \mathsf{Sub}(\mathsf{G}) : \mathsf{K} \trianglelefteq \mathsf{P}\}); \\ \bullet \ \mathbf{A}(\leq_{\mathsf{P}}) &= \bigoplus_{|\mathsf{P}|} \mathbf{A}_{\mathsf{P}}(\leq), \ (\mathsf{N}_{\mathsf{G}}(\mathsf{P}) \frown \{\mathsf{K} \in \mathsf{Sub}(\mathsf{G}) : \mathsf{K} \trianglelefteq \mathsf{P}\}); \\ \bullet \ \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) &= \bigoplus_{\mathsf{U} \sqsubseteq \mathsf{G}} \mathbf{A}_{\mathsf{U}}(\leq_{\mathsf{P}/\mathsf{K}}). \end{split}$$

The Double Burnside Ring.

A Decomposition of the Class Incidence Matrix.

• Accordingly,
$$\leq = \leq_{K} \circ \leq_{P/K} \circ \leq_{P}$$
, where:

$$(P', K') \leq_{K} (P, K) : \iff K = K' \text{ and } P' \leq P;$$

$$(P', K') \leq_{P} (P, K) : \iff P = P' \text{ and } K' \leq K;$$

$$(P', K') \leq_{P/K} (P, K) : \iff (P', K') \leq (P, K), P'/K' \cong P/K.$$

Theorem (Masterson-Pf, 2017)

$$\mathbf{A}(\leq) = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}}),$$

where

(

• $\mathbf{A}(\leq_{K}) = \bigoplus_{[K]} \mathbf{A}_{K}(\leq)$, $(N_{G}(K) \frown \{P \in Sub(G) : K \leq P\})$; • $\mathbf{A}(\leq_{P}) = \bigoplus_{[P]} \mathbf{A}_{P}(\leq)$, $(N_{G}(P) \frown \{K \in Sub(G) : K \leq P\})$; • $\mathbf{A}(\leq_{P/K}) = \bigoplus_{U \subseteq G} \mathbf{A}_{U}(\leq_{P/K})$.

The Double Burnside Ring.

A Decomposition of the Class Incidence Matrix.

• Accordingly,
$$\leq = \leq_{K} \circ \leq_{P/K} \circ \leq_{P}$$
, where:

$$(P', K') \leq_{K} (P, K) : \iff K = K' \text{ and } P' \leq P;$$

$$(P', K') \leq_{P} (P, K) : \iff P = P' \text{ and } K' \leq K;$$

$$(P', K') \leq_{P/K} (P, K) : \iff (P', K') \leq (P, K), P'/K' \cong P/K.$$

Theorem (Masterson-Pf, 2017)

$$\mathbf{A}(\leq) = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}}),$$

where

• $\mathbf{A}(\leq_{K}) = \bigoplus_{[K]} \mathbf{A}_{K}(\leq)$, $(N_{G}(K) \frown \{P \in Sub(G) : K \leq P\})$;

• $\mathbf{A}(\leq_{P}) = \bigoplus_{[P]} \mathbf{A}_{P}(\leq)$, $(N_{G}(P) \frown \{K \in Sub(G) : K \leq P\})$;

• $\mathbf{A}(\leq_{P/K}) = \bigoplus_{U \sqsubset G} \mathbf{A}_U(\leq_{P/K}).$

The Double Burnside Ring.

A Decomposition of the Class Incidence Matrix.

• Accordingly,
$$\leq = \leq_{K} \circ \leq_{P/K} \circ \leq_{P}$$
, where:

$$(P', K') \leq_{K} (P, K) : \iff K = K' \text{ and } P' \leq P;$$

$$(P', K') \leq_{P} (P, K) : \iff P = P' \text{ and } K' \leq K;$$

$$(P', K') \leq_{P/K} (P, K) : \iff (P', K') \leq (P, K), P'/K' \cong P/K.$$

Theorem (Masterson-Pf, 2017)

$$\mathbf{A}(\leq) = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}}),$$

where

• $\mathbf{A}(\leq_{K}) = \bigoplus_{[K]} \mathbf{A}_{K}(\leq)$, $(N_{G}(K) \frown \{P \in Sub(G) : K \leq P\})$;

• $\mathbf{A}(\leq_{\mathbf{P}}) = \bigoplus_{[\mathbf{P}]} \mathbf{A}_{\mathbf{P}}(\leq)$, $(N_{\mathbf{G}}(\mathbf{P}) \frown \{K \in Sub(\mathbf{G}) : K \leq \mathbf{P}\})$;

• $\mathbf{A}(\leq_{P/K}) = \bigoplus_{U \sqsubseteq G} \mathbf{A}_U(\leq_{P/K}).$

The Double Burnside Ring.

A Decomposition of the Class Incidence Matrix.

• Accordingly,
$$\leq = \leq_{K} \circ \leq_{P/K} \circ \leq_{P}$$
, where:

$$(P', K') \leq_{K} (P, K) : \iff K = K' \text{ and } P' \leq P;$$

$$(P', K') \leq_{P} (P, K) : \iff P = P' \text{ and } K' \leq K;$$

$$(P', K') \leq_{P/K} (P, K) : \iff (P', K') \leq (P, K), P'/K' \cong P/K.$$

Theorem (Masterson-Pf, 2017)

$$\mathbf{A}(\leq) = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}}),$$

where

(

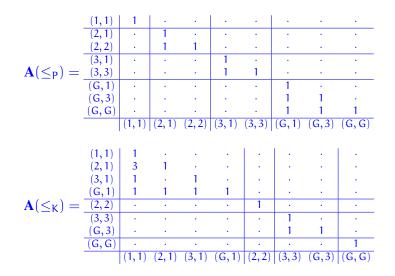
• $\mathbf{A}(\leq_{K}) = \bigoplus_{[K]} \mathbf{A}_{K}(\leq)$, $(N_{G}(K) \frown \{P \in Sub(G) : K \leq P\})$;

• $\mathbf{A}(\leq_{P}) = \bigoplus_{[P]} \mathbf{A}_{P}(\leq)$, $(N_{G}(P) \frown \{K \in Sub(G) : K \leq P\})$;

• $\mathbf{A}(\leq_{P/K}) = \bigoplus_{U \sqsubseteq G} \mathbf{A}_U(\leq_{P/K}).$

Subgroups of a Direct Product.

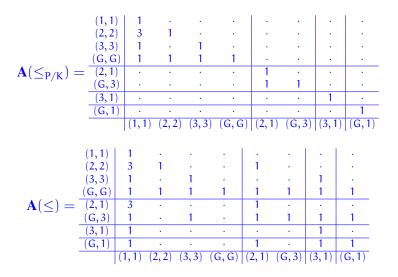
The Double Burnside Ring.



Subgroups of a Direct Product.

The Double Burnside Ring.

Example $G = Sym_3$, cont'd.



• For $U \sqsubseteq G$, set $Mor_U(G) := {}_{G} \{ \theta \colon P/K \xrightarrow{\sim} U \}_{Aut(U)}$ (biset!). • Then $Sub(G_1 \times G_2)/(G_1 \times G_2) =$ $\coprod_{U} Mor_U(G_1)/G_1 \times_{Aut(U)} (Mor_U(G_2)/G_2)^{op}$

- In G × G, the effects of Aut(U) are trivial.
- G × G has 22 classes of subgroups.

• For $U \sqsubseteq G$, set $Mor_U(G) := {}_{G} \{ \theta \colon P/K \xrightarrow{\sim} U \}_{Aut(U)}$ (biset!). • Then $Sub(G_1 \times G_2)/(G_1 \times G_2) =$

 $\coprod_{\mathsf{U}} \operatorname{Mor}_{\mathsf{U}}(\mathsf{G}_1)/\mathsf{G}_1 \times_{\operatorname{Aut}(\mathsf{U})} (\operatorname{Mor}_{\mathsf{U}}(\mathsf{G}_2)/\mathsf{G}_2)^{\operatorname{op}}$

Example $G = Sym_3$. • In $G \times G$, the effects of Aut(U) are trivial. • $G \times G$ has 22 classes of subgroups. 2/1 1 1 2/2 3/3 6/G 2/1 17 18 6/3 3/1 21 6/1

- For $U \sqsubseteq G$, set $Mor_U(G) := {}_{G} \{ \theta \colon P/K \xrightarrow{\sim} U \}_{Aut(U)}$ (biset!).
- Then $Sub(G_1 \times G_2)/(G_1 \times G_2) =$

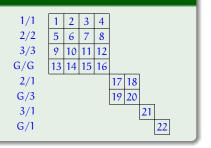
 $\coprod_{U} Mor_{U}(G_{1})/G_{1} \times_{Aut(U)} (Mor_{U}(G_{2})/G_{2})^{op}$

- In G × G, the effects of Aut(U) are trivial.
- G × G has 22 classes of subgroups.

- For $U \sqsubseteq G$, set $Mor_U(G) := {}_{G} \{ \theta \colon P/K \xrightarrow{\sim} U \}_{Aut(U)}$ (biset!).
- Then $Sub(G_1 \times G_2)/(G_1 \times G_2) =$

 $\coprod_{U} Mor_{U}(G_{1})/G_{1} \times_{Aut(U)} (Mor_{U}(G_{2})/G_{2})^{op}$

- In G × G, the effects of Aut(U) are trivial.
- G × G has 22 classes of subgroups.



- For $U \sqsubseteq G$, set $Mor_U(G) := {}_{G} \{ \theta \colon P/K \xrightarrow{\sim} U \}_{Aut(U)}$ (biset!).
- Then $Sub(G_1 \times G_2)/(G_1 \times G_2) =$

 $\coprod_{U} Mor_{U}(G_{1})/G_{1} \times_{Aut(U)} (Mor_{U}(G_{2})/G_{2})^{op}$

- In G × G, the effects of Aut(U) are trivial.
- G × G has 22 classes of subgroups.

Subgroups of a Direct Product.

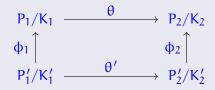
The Double Burnside Ring.

Subgroup Lattice.

Theorem

 $(\theta'\colon P_1'/K_1'\to P_2'/K_2')\leq (\theta\colon P_1/K_1\to P_2/K_2)$

iff $(P'_i, K'_i) \le (P_i, K_i)$ and the diagram commutes:



As in the case of sections, for X = K, P and P/K, define a partial order ≤_X on Sub(G₁ × G₂) as:
 θ' ≤_Y θ : ↔ θ' ≤ θ and (P' K') ≤_Y (P_i K_i) i = 1.2

Subgroups of a Direct Product.

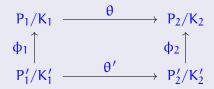
The Double Burnside Ring.

Subgroup Lattice.

Theorem

 $(\theta'\colon P_1'/K_1'\to P_2'/K_2')\leq (\theta\colon P_1/K_1\to P_2/K_2)$

iff $(P'_i, K'_i) \le (P_i, K_i)$ and the diagram commutes:



As in the case of sections, for X = K, P and P/K, define a partial order ≤_X on Sub(G₁ × G₂) as:

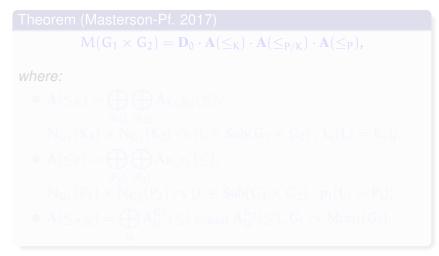
 $\theta' \leq_X \theta : \iff \theta' \leq \theta \text{ and } (\mathsf{P}'_i,\mathsf{K}'_i) \leq_X (\mathsf{P}_i,\mathsf{K}_i), i = 1,2.$

Subgroups of a Direct Product.

The Double Burnside Ring.

Table of Marks.

• Again, $\leq = \leq_K \circ \leq_{P/K} \circ \leq_P$, on $Sub(G_1 \times G_2)$.



Subgroups of a Direct Product.

The Double Burnside Ring.

Table of Marks.

• Again, $\leq = \leq_K \circ \leq_{P/K} \circ \leq_P$, on $Sub(G_1 \times G_2)$.

Theorem (Masterson-Pf. 2017) $M(G_1 \times G_2) = \mathbf{D}_0 \cdot \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\leq_P),$

where:

$$\begin{split} \bullet & \mathbf{A}(\leq_{\mathsf{K}}) = \bigoplus_{[\mathsf{K}_1]} \bigoplus_{[\mathsf{K}_2]} \mathbf{A}_{\mathsf{K}_1,\mathsf{K}_2}(\leq), \\ & \mathsf{N}_{\mathsf{G}_1}(\mathsf{K}_1) \times \mathsf{N}_{\mathsf{G}_2}(\mathsf{K}_2) \curvearrowright \{\mathsf{L} \in \mathsf{Sub}(\mathsf{G}_1 \times \mathsf{G}_2) : \mathsf{k}_i(\mathsf{L}) = \mathsf{K}_i\}; \\ \bullet & \mathbf{A}(\leq_{\mathsf{P}}) = \bigoplus_{[\mathsf{P}_1]} \bigoplus_{[\mathsf{P}_2]} \mathbf{A}_{\mathsf{P}_1,\mathsf{P}_2}(\leq), \\ & \mathsf{N}_{\mathsf{G}_1}(\mathsf{P}_1) \times \mathsf{N}_{\mathsf{G}_2}(\mathsf{P}_2) \curvearrowright \{\mathsf{L} \in \mathsf{Sub}(\mathsf{G}_1 \times \mathsf{G}_2) : \mathsf{p}_i(\mathsf{L}) = \mathsf{P}_i\}; \\ \bullet & \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) = \bigoplus_{\mathsf{U}} \mathbf{A}_{\mathsf{U}}^{\mathsf{G}_1}(\leq) \otimes_{\mathsf{Aut}\mathsf{U}} \mathbf{A}_{\mathsf{U}}^{\mathsf{G}_2}(\leq), \\ & \mathsf{G}_i \curvearrowright \mathsf{Mor}_{\mathsf{U}}(\mathsf{G}_i). \end{split}$$

Subgroups of a Direct Product.

The Double Burnside Ring.

Table of Marks.

• Again, $\leq = \leq_K \circ \leq_{P/K} \circ \leq_P$, on $Sub(G_1 \times G_2)$.

Theorem (Masterson-Pf. 2017) $M(G_1 \times G_2) = \mathbf{D}_0 \cdot \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\leq_P),$ where:

$$\begin{split} \bullet \ \mathbf{A}(\leq_{\mathsf{K}}) &= \bigoplus_{[\mathsf{K}_1]} \bigoplus_{[\mathsf{K}_2]} \mathbf{A}_{\mathsf{K}_1,\mathsf{K}_2}(\leq), \\ \mathsf{N}_{\mathsf{G}_1}(\mathsf{K}_1) \times \mathsf{N}_{\mathsf{G}_2}(\mathsf{K}_2) \curvearrowright \{\mathsf{L} \in \mathsf{Sub}(\mathsf{G}_1 \times \mathsf{G}_2) : \mathsf{k}_i(\mathsf{L}) = \mathsf{K}_i\}; \\ \bullet \ \mathbf{A}(\leq_{\mathsf{P}}) &= \bigoplus_{[\mathsf{P}_1]} \bigoplus_{[\mathsf{P}_2]} \mathbf{A}_{\mathsf{P}_1,\mathsf{P}_2}(\leq), \\ \mathsf{N}_{\mathsf{G}_1}(\mathsf{P}_1) \times \mathsf{N}_{\mathsf{G}_2}(\mathsf{P}_2) \curvearrowright \{\mathsf{L} \in \mathsf{Sub}(\mathsf{G}_1 \times \mathsf{G}_2) : \mathsf{p}_i(\mathsf{L}) = \mathsf{P}_i\}; \\ \bullet \ \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) &= \bigoplus_{\mathsf{U}} \mathbf{A}_{\mathsf{U}}^{\mathsf{G}_1}(\leq) \otimes_{\mathsf{Aut}\mathsf{U}} \mathbf{A}_{\mathsf{U}}^{\mathsf{G}_2}(\leq), \mathsf{G}_i \curvearrowright \mathsf{Mor}_{\mathsf{U}}(\mathsf{G}_i). \end{split}$$

Subgroups of a Direct Product.

The Double Burnside Ring.

Table of Marks.

• Again, $\leq = \leq_K \circ \leq_{P/K} \circ \leq_P$, on $Sub(G_1 \times G_2)$.

Theorem (Masterson-Pf. 2017) $M(G_1 \times G_2) = \mathbf{D}_0 \cdot \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\leq_P),$ where: • $\mathbf{A}(\leq_{\mathsf{K}}) = \bigoplus \bigoplus \mathbf{A}_{\mathsf{K}_1,\mathsf{K}_2}(\leq),$ $[K_1]$ $[K_2]$ $N_{G_1}(K_1) \times N_{G_2}(K_2) \curvearrowright \{L \in Sub(G_1 \times G_2) : k_i(L) = K_i\};$ • $\mathbf{A}(\leq_{\mathbf{P}}) = \bigoplus \bigoplus \mathbf{A}_{\mathbf{P}_1,\mathbf{P}_2}(\leq),$ $[P_1]$ $[P_2]$ $N_{G_1}(P_1) \times N_{G_2}(P_2) \curvearrowright \{L \in Sub(G_1 \times G_2) : p_i(L) = P_i\};$ • $\mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) = \bigoplus \mathbf{A}_{\mathsf{H}}^{\mathsf{G}_1}(\leq) \otimes_{\mathsf{Aut}\sqcup} \mathbf{A}_{\mathsf{H}}^{\mathsf{G}_2}(\leq), \, \mathsf{G}_i \curvearrowright \mathsf{Mor}_{\mathsf{U}}(\mathsf{G}_i).$

Subgroups of a Direct Product.

The Double Burnside Ring.

Table of Marks.

• Again, $\leq = \leq_K \circ \leq_{P/K} \circ \leq_P$, on $Sub(G_1 \times G_2)$.

Theorem (Masterson-Pf. 2017) $M(G_1 \times G_2) = \mathbf{D}_0 \cdot \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\leq_P),$ where: • $\mathbf{A}(\leq_{\mathsf{K}}) = \bigoplus \bigoplus \mathbf{A}_{\mathsf{K}_1,\mathsf{K}_2}(\leq),$ $[K_1]$ $[K_2]$ $N_{G_1}(K_1) \times N_{G_2}(K_2) \curvearrowright \{L \in Sub(G_1 \times G_2) : k_i(L) = K_i\};$ • $\mathbf{A}(\leq_{\mathbf{P}}) = \bigoplus \bigoplus \mathbf{A}_{\mathbf{P}_1,\mathbf{P}_2}(\leq),$ $[P_1]$ $[P_2]$ $N_{G_1}(P_1) \times N_{G_2}(P_2) \curvearrowright \{L \in Sub(G_1 \times G_2) : p_i(L) = P_i\};$ • $\mathbf{A}(\leq_{P/K}) = \bigoplus \mathbf{A}_{U}^{G_{1}}(\leq) \otimes_{AutU} \mathbf{A}_{U}^{G_{2}}(\leq), G_{i} \frown Mor_{U}(G_{i}).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

• $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.

• Define a relation

 $\leq':=\leq_K\circ\leq_U\circ\geq_P.$

Theorem

• \leq' is a partial order on Sec(G).

• $(P', K') \leq ' (P, K) \iff P' \leq P \text{ and } K \cap P' \leq K'.$ • $\mathbf{A}(\leq') = \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\geq_P).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

• $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.

• Define a relation

 $\leq' := \leq_K \circ \leq_U \circ \geq_P.$

Theorem

• \leq' is a partial order on Sec(G).

• $(P', K') \leq ' (P, K) \iff P' \leq P \text{ and } K \cap P' \leq K'.$ • $\mathbf{A}(\leq') = \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\geq_P).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

 $\leq':=\leq_K\circ\leq_U\circ\geq_P.$

Theorem

● ≤' is a partial order on Sec(G).

- $(\mathsf{P}',\mathsf{K}') \leq '(\mathsf{P},\mathsf{K}) \iff \mathsf{P}' \leq \mathsf{P}$ and $\mathsf{K} \cap \mathsf{P}' \leq \mathsf{K}'.$
- $\mathbf{A}(\leq') = \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\geq_P).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

$$\leq':=\leq_K\circ\leq_U\circ\geq_P.$$

Theorem

≤' is a partial order on Sec(G).
 (P', K') ≤' (P, K) ⇔ P' ≤ P and K ∩ P' ≤ K'.
 A(≤') = A(≤_K) ⋅ A(≤_{P/K}) ⋅ A(≥_P).

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

$$\leq' := \leq_{\mathsf{K}} \circ \leq_{\mathsf{U}} \circ \geq_{\mathsf{P}}.$$

Theorem

- \leq' is a partial order on Sec(G).
- $(P', K') \leq '(P, K) \iff P' \leq P \text{ and } K \cap P' \leq K'.$ • $\mathbf{A}(\leq') = \mathbf{A}(\leq_K) \cdot \mathbf{A}(\leq_{P/K}) \cdot \mathbf{A}(\geq_P).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

$$\leq':=\leq_K\circ\leq_U\circ\geq_P.$$

Theorem

- \leq' is a partial order on Sec(G).
- $\bullet \ (\mathsf{P}',\mathsf{K}') \leq' (\mathsf{P},\mathsf{K}) \iff \mathsf{P}' \leq \mathsf{P} \text{ and } \mathsf{K} \cap \mathsf{P}' \leq \mathsf{K}'.$
- $\mathbf{A}(\leq') = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\geq_{\mathsf{P}}).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

$$\leq' := \leq_{\mathsf{K}} \circ \leq_{\mathsf{U}} \circ \geq_{\mathsf{P}}.$$

Theorem

- \leq' is a partial order on Sec(G).
- $(P', K') \leq '(P, K) \iff P' \leq P \text{ and } K \cap P' \leq K'.$
- $\mathbf{A}(\leq') = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\geq_{\mathsf{P}}).$

The Double Burnside Ring.

Sections Lattice Revisited.

Note

- $(P', K') \le (P, K)$ does not imply $|P'/K'| \le |P/K|$.
- Define a relation

$$\leq':=\leq_K\circ\leq_U\circ\geq_P.$$

Theorem

- \leq' is a partial order on Sec(G).
- $(P', K') \leq '(P, K) \iff P' \leq P \text{ and } K \cap P' \leq K'.$
- $\mathbf{A}(\leq') = \mathbf{A}(\leq_{\mathsf{K}}) \cdot \mathbf{A}(\leq_{\mathsf{P}/\mathsf{K}}) \cdot \mathbf{A}(\geq_{\mathsf{P}}).$
- $(P', K') \leq '(P, K)$ does imply $|P'/K'| \leq |P/K| \dots$

```
Introduction.
```

- Let $G = Sym_3$. Then $\mathbb{Q}B(G, G)$ has a basis $\{b_1, b_2, \dots, b_{22}\}$ of transitive $G \times G$ -sets, labelled by the conjugacy classes of subgroups of $G \times G$.
- Use Bouc's Mackey formula to compute matrices for the (right) regular representation of Q(B, B) in terms of the b_i.
- Set

 $M' = \textbf{D}_0 \cdot \textbf{A}(\geq_K) \cdot \textbf{A}(\geq_{P/K}) \cdot \textbf{D}_1 \cdot \textbf{A}(\leq_P) \cdot \textbf{D}_2$

for certain diagonal matrices D_1 and D_2 .

• Then define elements $c_i \in \mathbb{QB}(G,G)$ by the equations

$$b_i = \sum_j m'_{ij} c_j.$$

```
Introduction.
```

- Let G = Sym₃. Then QB(G, G) has a basis {b₁, b₂,..., b₂₂} of transitive G × G-sets, labelled by the conjugacy classes of subgroups of G × G.
- Use Bouc's Mackey formula to compute matrices for the (right) regular representation of Q(B, B) in terms of the b_i.
 Set

 $M' = \textbf{D}_0 \cdot \textbf{A}(\geq_K) \cdot \textbf{A}(\geq_{P/K}) \cdot \textbf{D}_1 \cdot \textbf{A}(\leq_P) \cdot \textbf{D}_2$

for certain diagonal matrices D_1 and D_2 .

• Then define elements $c_i \in \mathbb{QB}(G,G)$ by the equations

$$b_i = \sum_j m'_{ij} c_j.$$

```
Introduction.
```

- Let G = Sym₃. Then QB(G, G) has a basis {b₁, b₂,..., b₂₂} of transitive G × G-sets, labelled by the conjugacy classes of subgroups of G × G.
- Use Bouc's Mackey formula to compute matrices for the (right) regular representation of Q(B, B) in terms of the b_i.
- Set

 $\mathcal{M}' = \textbf{D}_0 \cdot \textbf{A}(\geq_K) \cdot \textbf{A}(\geq_{P/K}) \cdot \textbf{D}_1 \cdot \textbf{A}(\leq_P) \cdot \textbf{D}_2$

for certain diagonal matrices D_1 and D_2 .

 \bullet Then define elements $c_j \in \mathbb{Q}B(G,G)$ by the equations

 $b_i = \sum_j m'_{ij} c_j.$

```
Introduction.
```

- Let G = Sym₃. Then QB(G, G) has a basis {b₁, b₂,..., b₂₂} of transitive G × G-sets, labelled by the conjugacy classes of subgroups of G × G.
- Use Bouc's Mackey formula to compute matrices for the (right) regular representation of Q(B, B) in terms of the b_i.
- Set

 $\mathcal{M}' = \textbf{D}_0 \cdot \textbf{A}(\geq_K) \cdot \textbf{A}(\geq_{P/K}) \cdot \textbf{D}_1 \cdot \textbf{A}(\leq_P) \cdot \textbf{D}_2$

for certain diagonal matrices \mathbf{D}_1 and \mathbf{D}_2 .

• Then define elements $c_j \in \mathbb{QB}(G, G)$ by the equations

 $b_i = \sum_j m'_{ij} c_j.$

```
Introduction.
```

- Let G = Sym₃. Then QB(G, G) has a basis {b₁, b₂,..., b₂₂} of transitive G × G-sets, labelled by the conjugacy classes of subgroups of G × G.
- Use Bouc's Mackey formula to compute matrices for the (right) regular representation of Q(B, B) in terms of the b_i.
- Set

 $\mathcal{M}' = \textbf{D}_0 \cdot \textbf{A}(\geq_K) \cdot \textbf{A}(\geq_{P/K}) \cdot \textbf{D}_1 \cdot \textbf{A}(\leq_P) \cdot \textbf{D}_2$

for certain diagonal matrices D_1 and D_2 .

• Then define elements $c_i \in \mathbb{QB}(G, G)$ by the equations

 $b_i = \sum_j m'_{ij} c_j.$

The Double Burnside Ring.

The Double Burnside Ring of Sym_3 , cont'd.

Theorem									
Let $G = Sym_3$. Then by	n the r	map (B′ _{G×G}	: QB(G, G	$) \rightarrow ($	₽ ^{8×8}	define	d
$\beta'_{G\times G}\Bigl(\sum_i x_i c_i\Bigr) =$	(x ₁	x ₂	x 3	x 4				. \	
	\mathbf{x}_{5}	\mathbf{x}_{6}	\mathbf{x}_7	x ₈		• • •		•	
	x 9	x ₁₀	x ₁₁	x ₁₂	•	•	•	•	
	•	•		x ₂₂	•	•	•	•	
	•	•	•	•	x ₁₇	x ₁₈		•	,
	•	•	•	•		x ₂₂		•	
	•	•	•	•	•	•	x ₂₁	•	
	\mathbf{x}_{13}	x_{14}	x ₁₅	x ₁₆	x ₁₉	x ₂₀		x_{22} /	/

 $x_i \in \mathbb{Q}$, is an injective homomorphism of algebras.

The Double Burnside Ring.

Further Results and Open Questions.

• Does B(G, G) always have a cellular structure?

- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups . . .
- $G = C_n$ cylic: QB(G, G) is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G, G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: $\mathbb{Q}B(G, G)$ is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G, G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: $\mathbb{Q}B(G, G)$ is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G, G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: QB(G, G) is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G, G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: $\mathbb{Q}B(G, G)$ is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G, G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: QB(G, G) is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?

- Does B(G,G) always have a cellular structure?
- In general, the situation is more complicated, and computing examples is a challenge as direct products have many (classes of) subgroups ...
- $G = C_n$ cylic: QB(G, G) is semisimple (Boltje-Danz).
- $G = D_n$ dihedral, n squarefree, is essentially like $G = Sym_3$ (jt. with S. Park).
- Further examples: 2^2 , A_4 , A_5 .
- G = A₅: QB(G, G) has infinite global dimension (Rognerut).
- $G = D_8$?