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@ Let G, H be finite groups, acting on a finite set X:
(g.x).h = g.(x.h), then Xy is called a (G, H)-biset.

GXH = {f: A — B},

where G < Sym(A) and H < Sym(B), for finite sets A, B.

@ Disjoint unions of (G, H)-bisets are (G, H)-bisets.
@ The double Burnside group B(G, H) is the Grothendieck
group of the category of (G, H)-bisets, [X] 4+ [Y] = [XITY].

@ Setting g.x.h =x.(g" ', h), yields B(G,H) = B(G x H), as
abelian groups, with baS|s Sub(G x H)/(G x H).
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@ The tensor product of ;X and Yk is the (G, K)-biset
XxpY=(XxY)/H
of H-orbits under the action (x,y).h = (x.h,h~.y).

{f: A — B} xgym@®){9: B = C}={gof: A — C},
gof=(goa)o(ax'of), « € Sym(B).

@ The tensor product yields a bi-additive map
_1_: B(G,H) x B(H,K) — B(G, K), mapping (IX], []) to
(X1 Y] = X g Y.
@ In particular, B(G, G) is a ring with multiplication -¢.

Problem.

What is the structure of QB(G, G) = Q ®z B(G, G), the rational
double Burnside algebra of G?
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The Burnside Ring.

@ As algebras, QB(G, G) % QB(G x G), since QB(G, G) is
semisimple iff G is cyclic (Boltje-Danz 2013).

@ In contrast, QB(G =P Q"™ r=|Sub(G)/G|.

@ Recall that the Burn5|de ring B(G) is the Grothendieck
group of the category of finite (right) G-sets, with
multiplication [X] - [Y] = [X x Y].

@ The mark homomorphism B¢: B(G) — Z", [X] — XH,
H < G, embeds B(G) into its ghost ring 7.

@ The table of marks M(G) is the matrix of 3 relative to
the transitive G-sets as basis of B(G), and the standard
basis of Z".

@ G is solvable < B(G) has only trivial idempotents +1
(Dress 1969).
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The table of marks of

M) = .2 . 2

111 o
=Dy - A(<)

6 . . . .
31 .. o
2
1
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D—

1
2
3
G

@ [(G/H)"'|=[Ng(H): H| - #{H' <HY:g € G}.
@ A(<) is the class incidence matrix of poset (Sub(G), <).

Find a base change matrix M’(G x G), relative to a suitable
partial order, that reveals the structure of QB(G, G).
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Subgroups of a Direct Product.

Theorem (Goursat’s Lemma, 1889)

Subgroups of G x G, are isomorphisms between a section of
G7 and a section of G;.

@ A subgroup L < G; x G; is a difunctional relation, the
graph of a bijection between section quotients P;/K; of G;:
L ={(p1,p2) € P1 x P2: (Kip1)® = Kap2}.
@ Write p;(L) = P, k(L) =Ky and L = (0: P;/K; — P,/K3).
o IfL < G; x Gy and M < G, x Gj then the relation product
LoM ={(g,k):(g,h) € L, (h,k) € M for some h € G;}
is a subgroup of G; x G3.

Theorem (Bouc)
[(G1 x G2)/L g, (G2 x G3)/M] = }_4pl(Gy x Gp)/ (LMY o M)].
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The Sections Lattice.

@ Sec(G) :={(P,K) : K< P < G}, the set of all sections of G.
@ Set (P/,K’) < (P,K): & P/’ <Pand K’ <K.
@ (Sec(G), <) inherits the lattice property from (Sub(G), <).

Central Observation

| e If (P/,K’) < (P,K) thenK’p — Kpisa
P/K homomorphism ¢: P//K’ — P/K.
@ Like every homomorphism,

¢ = ¢3 0 s o ¢, where
K ¢1: P//K' — P//(KNP’) is epi,
KA P ¢2: P’/(KNP') — P'’K/K is iso, and
¢3: P’K/K — P/K is mono.
K’ @ Hence, there exist two uniquely

determined intermediate sections!
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A Decomposition of the Class Incidence Matrix.

@ Accordingly, < = <y o <p/x o <p, Where:
(P, K') <k (P,K):&= K=K’ and P’ < P;
(P',K’) <p (P,K) :&= P =P’and K’ <K;
(P,K") <pc (P,K): &= (P/,K') < (P,K), P//K" = P/K.

Theorem (Masterson-Pf, 2017)

A(S) = A(Zx) - A(Spx) - A(Zp),
where
@ A(<k) =Dy Ax(=), (NG(K) ~ {P € Sub(G) : K I P});
@ A(<p) = D Ar(Z), (Ng(P) ~ {K € Sub(G) : KIP});
0 A(<Spk) = @u;e Au(<p/x)-
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Example G = Syms;.

oLnl 1 : : :
U - |1 : :
(2,2) 1 : :
3,1 [ :
A(<p) = 33) 11 :
(G, : 1 :
(G,3) 1 1 :
(6,6)] - : : : : 1 1 1
(LN 2,29]6,1) 3,3)](6,1) (G,3) (G,G6)
(1L 1 : SR :
20| 3 7 : : : : :
G| 1 1 : . : :
G| 1 1 1 : : : :
A(<k) =22 - L
(3’3) . 1 . .
(G,3) 1 1 .
(G,G)] - . . . . . . 1
(LD 2,1 3,1 (6,1](2,2)](3,3) (G6,3]](G,G)
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Example G = Sym;, cont'd.

RN : : S
2,2)| 3 1 . . . .
3.3) | 1 ! ‘ S
Gel| 1 1 1 1| .
Al<on) = @D : i T
(<p/x) ol R
(3,1) 1 -
(G1 | - - . . - . : 1
(1,1) (2,2) (3,3) (G,G)[(2,1) (G,3)[(3,D](G,T)
(1,1 ] 1
22| 3 1
3.3) | 1 ! . !
Gael 1 1 1 11 1
AL)="n 3 - [T
(G.3)] 1 R T T R
G T
R IR R T B R
(1,1 (2,2) (3,3) (G,G)|(2,1) (G,3)](3,1)](G,1)




Subgroups of a Direct Product.
0O0000e00

Conjugacy Classes of Subgroups.

@ For U C G, set Mory(G) := g{08: P/K = Ujayu (biset!).



Subgroups of a Direct Product.
0O0000e00

Conjugacy Classes of Subgroups.

@ For U C G, set Mory(G) := g{08: P/K = Ujayu (biset!).
@ Then Sub(G; x G3)/(G1 x Gy) =
[ TuMoru(G1)/G1 X auuy (Mory(Gz)/G2)P



Subgroups of a Direct Product.
0O0000e00

Conjugacy Classes of Subgroups.

@ For U C G, set Mory(G) := g{08: P/K = Ujayu (biset!).
@ Then Sub(G; x G2)/(Gy x Gy) =
[ TuMoru(G1)/G1 X auuy (Mory(Gz)/G2)P

/1 |1|2(3|4
2/2 [5|6|7]8
3/3 [9]10[11]12
G/G [13]14|15]16

2/1 17|18
G/3 19|20
3/1 21

G/1 g




Subgroups of a Direct Product.
0O0000e00

Conjugacy Classes of Subgroups.

@ For U C G, set Mory(G) := g{08: P/K = Ujayu (biset!).
@ Then Sub(G; x G2)/(Gy x Gy) =
[ TuMoru(G1)/G1 X auuy (Mory(Gz)/G2)P

/1 [1]2]3]4
2/2 [5]6]7]8
@ InG x G, the. gffects of 33 ooz
Aut(U) are trivial. G/G [13[14]15]16
2/1 1718
G/3 19]20
3/1 21

G/1 g




Subgroups of a Direct Product.
0O0000e00

Conjugacy Classes of Subgroups.

@ For U C G, set Mory(G) := g{08: P/K = Ujayu (biset!).
@ Then Sub(G; x G2)/(Gy x Gy) =
[ TuMoru(G1)/G1 X auuy (Mory(Gz)/G2)P

11 [1]2]3]4
2/2
@ In G x G, the effects of 3% 2 160 ]71 182
Aut(U) are trivial. G/G [13[1a]15]16
@ G x G has 22 classes of GZ;; 1718
19]20
subgroups. 31 7

G/1 g
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Subgroup Lattice.

(6”: P{/Kj — P3/K3) < (0: P1/Ky — P2/K3)

iff (P{,K!) < (Pi,Ky) and the diagram commutes:

0
P/ Ky ———— Py/K;

¢1T (DJ
o/

PI/Kj —— s Py/K

@ As in the case of sections, for X = K, P and P/K, define a
partial order <x on Sub(G; x G;,) as:

0/ <x 0:= 0’ <0and (P/,K!/) <x (P;,Ki),i=1,2.
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Table of Marks.

@ Again, < = <y o <p/k o <p, 0n Sub(G; x G3).

Theorem (Masterson-Pf. 2017)
M(Gq x G2) =Dy - A(Zk) - A(ZSpx) - A(Zp),

where:

o A(<Zk) @@AKl,Kz

[Kq] [K2]
Ng, (K1) x Ng, (K2) »~ {L € Sub(Gy x G2) : ki(L) = Ky},

@ A(<p) @@Aphpz

[P1] [P2]
Ng, (P1) X Ng,(P2) »~ {L € Sub(Gy x Gz) : pi(L) = Pi};

0 A(<Spk) = @A <) ®auu AP (L), Gi ~ Mory(Gy).
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Sections Lattice Revisited.

@ (P/,K’) < (P,K) does not imply |P’/K’| < |P/K|.

@ Define a relation
<= <g o <y o>p.

o <’ s a partial order on Sec(G).
@ (P,K)<'(P,K) &= P'<PandKnP’' <K'
@ A(<") = A(Zk) - A(<Spjx) - A(>p).

@ (P/,K’) <’ (P,K) does imply |P’/K'| < [P/K]...
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The Double Burnside Ring of Sym;.

@ Let G = Sym;. Then QB(G, G) has a basis {by, by,..., b2}
of transitive G x G-sets, labelled by the conjugacy classes
of subgroups of G x G.

@ Use Bouc’s Mackey formula to compute matrices for the
(right) regular representation of Q(B, B) in terms of the b;.

@ Set
M’ =Dg - A(>x) - A(Zp/x) - D1 - A(<p) - Dy
for certain diagonal matrices D; and D,.
@ Then define elements c; € QB(G, G) by the equations
bi = Zj m{jC]‘.
@ Computing the regular representation in terms of the c;

then shows that QB(G, G) is quasi-hereditary with a
cellular structure as follows:
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The Double Burnside Ring of Sym;, cont'd.

Let G = Syms;. Then the map Bf..q: QB(G, G) — Q<8 defined
by

X1 X2 X3 X4

X5 X X7 X8
X9 X10 X111 X712
’ o 0 o X22 0 o o 0
BGXG(; chl) o . . . . X17 X18 o . ’
. . . . . X22 .
X21
X13 X14 X115 X16 | X19 X20 | . | X22

xi € Q, is an injective homomorphism of algebras.
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Further Results and Open Questions.

@ Does B(G, G) always have a cellular structure?

@ In general, the situation is more complicated, and
computing examples is a challenge as direct products have
many (classes of) subgroups ...

@ G = C, cylic: QB(G, G) is semisimple (Boltje-Danz).

@ G = D,, dihedral, n squarefree, is essentially like G = Sym;
(jt. with S. Park).

@ Further examples: 22, A4, As.

@ G = As: QB(G, G) has infinite global dimension
(Rognerut).

e G= Dg?
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