Primitive permutation groups and generalised quadrangles

Tomasz Popiel (QMUL & UWA)

Joint work with John Bamberg and Cheryl E. Praeger

Groups St. Andrews in Birmingham

8 August 2017

A I > A = A A

Generalised quadrangle (GQ): point–line geometry \mathcal{Q} such that

- (i) two distinct points are incident with at most one common line;
- (ii) if a point and line are not incident, they are joined by a unique line.

Example 1 Take points, lines to be the totally isotropic 1, 2 spaces w.r.t. a nondegenerate alternating form on \mathbb{F}_q^4 , with natural incidence. Then \mathcal{Q} is a GQ with Aut(\mathcal{Q}) = P Γ Sp(4, q) acting primitively on points and lines, and transitively on flags (incident point–line pairs).

Example 2 Other "classical" examples, admitting (overgroups of) $\overline{PSU(4,q)}$ or PSU(5,q). Also point- and line-primitive, flag-transitive.

Example 3 Various 'synthetic' constructions (due to Payne, Tits, Ahrens–Szekeres, Hall ...). Typically point- and/or line-intransitive.

Conjecture (e.g. Kantor, 1990) The only flag-transitive GQs are the classical families and two (known, small) examples with affine groups.

All these examples are also point-primitive (up to duality) so one might seek to classify the point-primitive GQs.

Theorem (Bamberg et. al, 2012) If $G \leq Aut(Q)$ is point- and line-primitive and flag-transitive, then G is almost simple of Lie type.

Theorem (BPP & Glasby, 2016) If G is affine, point-primitive, line-transitive then Q is one of the two examples in the conjecture.

Theorem (BPP, 2017) If G is point-primitive, line-transitive then its $\overline{O'Nan}$ -Scott type is not HS or HC.

Suppose now that $G \leq Aut(Q)$ acts primitively on points.

The affine case seems hard without line-transitivity, amounting to a classification of certain "hyperovals" in $PG(2, 2^{f})$.

For non-affine *G*, we can say a lot without assuming line-transitivity, by considering the *fixity* of the point action.

<u>Theorem (BPP, 2017+)</u> Let $\theta \neq 1$ be any automorphism of any Q. Then either θ fixes less than $|\mathcal{P}|^{4/5}$ points, or Q is the unique GQ of order (2, 4) and θ fixes exactly 15 of the 27 points of Q.

Remark: Babai (2015) shows that an automorphism of a strongly regular graph on ℓ vertices can fix at most $O(\ell^{7/8})$ vertices, but the improvement $7/8 \rightarrow 4/5$ in our special case turns out to be useful.

<u>O'Nan–Scott types HS, HC, SD, CD</u> Here for some non-abelian finite simple group *T* and $k \ge 2$, $H = T^k$ acts on $\Omega = T^{k-1} \times \{1\} \le H$ via

$$(y_1,\ldots,y_{k-1},1)^{(x_1,\ldots,x_{k-1},x_k)} = (x_k^{-1}y_1x_1,\ldots,x_k^{-1}y_{k-1}x_{k-1},1),$$

we can identify $\mathcal{P} = \Omega^r$ for some $r \ge 1$, and *G* has a subgroup $N = H^r$ with product action on \mathcal{P} . (Type HS, HC: k = 2. Type SD, CD: k > 2.)

<u>Lemma</u> If $G \leq Aut(Q)$ is as above, then $r \leq 3$.

Proof. Choose $x \in T$ with 'large' centraliser, say $|C_T(x)| > |T|^{1/3}$. Then $\hat{x} := (x, ..., x) \in T^k = H$ fixes $(y_1, ..., y_{k-1}, 1) \in T^{k-1} = \Omega$ iff $y_1, ..., y_{k-1} \in C_T(x)$, so $\theta = (\hat{x}, 1, ..., 1) \in H^r = N \leq G \leq \operatorname{Aut}(Q)$ fixes $|C_T(x)|^{k-1}|T^{k-1}|^{r-1} > (|T|^{k-1})^{r-1+1/3}$ elements of $\mathcal{P} = \Omega^r$. By our theorem, θ cannot fix more than $|\mathcal{P}|^{4/5} = |T^{(k-1)}|^{4r/5}$ points, so it follows that r - 1 + 1/3 < 4r/5, and hence $r \leq 3$. \Box

We can usually do better by choosing *x* with larger centraliser, and for k = 2 we can also restrict the involution structure of *T*.

We are able to conclude that type HC does not arise, and the following:

Туре	T must be one of the following
HS	Lie type A_5^{\pm} , A_6^{\pm} , B_3 , C_2 , C_3 , D_4^{\pm} , D_5^{\pm} , D_6^{\pm} , E_6^{\pm} , E_7 or F_4
SD	sporadic, or Alt _n with $n \leq 18$, or exceptional Lie type, or
	type A_n^{\pm} or D_n^{\pm} with $n \leq 8$, or type B_n or C_n with $n \leq 4$
CD, <i>r</i> = 2	sporadic (with six exceptions), or Alt _n with $n \leq 9$, or
	Lie type A_1 , A_2^{\pm} , A_3^{\pm} , B_2 , 2B_2 , 2F_4 , G_2 or 2G_2
CD, <i>r</i> = 3	J_1 , or Lie type A_1 or 2B_2

It should be possible to complete type HS using the involution structure of the remaining candidates for T. SD and CD seem harder to finish.

<u>O'Nan–Scott type PA Here</u> $T^r \leq G \leq H \wr \text{Sym}_r$ for some almost simple primitive group $H \leq \text{Sym}(\Omega)$ and some $r \geq 2$ (or r = 1 when G is AS). Our 'fixity theorem' implies that every non-identity element of H must fix less than $|\Omega|^{1-r/5}$ elements of Ω , and in particular that $r \leq 4$.

Most primitive actions H^{Ω} have $f(H) \ge |\Omega|^{4/9}$, realised by an involution. The exceptions are classified by Covato (classical, alternating, sporadic groups) and Burness–Thomas (exceptional groups).

Since 4/9 > 1 - 3/5 = 2/5, we can use this to restrict the possibilities for H^{Ω} when $r \in \{3, 4\}$, e.g. if *T* is alternating or sporadic then $H = T \cong \text{Alt}_p$ for $p \equiv 3 \pmod{4}$ a prime, with point stabiliser $p \cdot \frac{p-1}{2}$.

The 4/9 exponent can sometimes be improved, but is best possible in infinitely many cases. Improving to 3/5 would leave a list of exceptions for r = 2. (Moreover, we don't need involutions for our application.)

O'Nan–Scott type TW The twisted wreath product case seems hard.

Here $G = N \rtimes P$ with $N \cong T^r$ acting regularly by right multiplication and $P \leq \text{Sym}_r$ acting by conjugation and permuting the factors of Ntransitively (plus some other, more complicated conditions).

The regular subgroup doesn't seem to help much, beyond imposing the Diophantine equation $|T|^r = |\mathcal{P}| = (s+1)(st+1)$ subject to the constraints $2^{1/2} \leq s^{1/2} \leq t \leq s^2 \leq t^4$ and $s+t \mid st(st+1)$, where (s,t)is the *order* of \mathcal{Q} (lines have s+1 points, points are on t+1 lines).

Moreover, there seems to be no sufficiently strong fixity bound to put into our theorem: Liebeck and Shalev (2015) deduce a $|T^r|^{1/3}$ lower bound, which can sometimes be improved to $|T^r|^{1/2}$, but this far away from the $|T^r|^{4/5}$ upper bound imposed by the theorem.

Thank you!

Open problem 1 When can the point set of a (thick, finite) GQ have size $|T|^r$ for some non-abelian finite simple group T and some $r \ge 1$?

Open problem 2 Which almost simple primitive groups $H \leq \text{Sym}(\Omega)$ have fixity > $|\Omega|^{3/5}$? What about $|\Omega|^{4/5}$? (The elements realising these bounds need not be involutions; any non-identity element will do.)

Open problem 3 When does a primitive group $G \leq \text{Sym}(\Omega)$ of TW type have fixity $> |\Omega|^{4/5}$, or something 'close' to this, e.g. $|\Omega|^{3/4}$?