q-Tensor Squares of Polycyclic Groups

Noraí R. Rocco

Universidade de Brasília

Institute of Exact Sciences Department of Mathematics

(This is a joint work with E. Rodrigues and I. Dias, Brazil)

Aug 11, 2017

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

The group $\nu(G)$

Let *G* be any group and G^{φ} an isomorphic copy of *G*, where $g \mapsto g^{\varphi}, \forall g \in G$. Define

ν(G) := ⟨G, G^ϕ | [g₁, g₂^ϕ]^{g₃} = [g₁^{g₃, (g₂^{g₃)^ϕ] = [g₁, g₂^ϕ]^{g₃^ϕ⟩, for all g₁, g₂, g₃ ∈ G. (N.R., 1991) Well known fact:}}}

Let *G* be any group and G^{φ} an isomorphic copy of *G*, where $g \mapsto g^{\varphi}, \forall g \in G$. Define

 $\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}} \rangle,$ for all $g_1, g_2, g_3 \in G$. (N.R., 1991)

Well known fact:

Let *G* be any group and G^{φ} an isomorphic copy of *G*, where $g \mapsto g^{\varphi}, \forall g \in G$. Define $\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}} \rangle$, for all $g_1, g_2, g_3 \in G$. (N.R., 1991) Well known fact:

Let *G* be any group and G^{φ} an isomorphic copy of *G*, where $g \mapsto g^{\varphi}, \forall g \in G$. Define

 $\nu(G) := \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}} \rangle,$ for all $g_1, g_2, g_3 \in G$. (N.R., 1991) Well known fact:

 $\Upsilon(G) := [G, G^{\varphi}] \cong G \otimes G$, the non-abelian tensor square of G.

 $G \otimes G$ is a particular case of a more general non-abelian tensor product $G \otimes H$ of groups G, H acting on each other, as introduced by R. Brown and J.L. Loday in 1984.

Let *G* be any group and G^{φ} an isomorphic copy of *G*, where $g \mapsto g^{\varphi}, \forall g \in G$. Define

$$\begin{split} \nu(G) &:= \langle G, G^{\varphi} \mid [g_1, g_2^{\varphi}]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{\varphi}] = [g_1, g_2^{\varphi}]^{g_3^{\varphi}} \rangle, \\ \text{for all } g_1, g_2, g_3 \in G. \ \text{(N.R., 1991)} \\ \text{Well known fact:} \end{split}$$

Relations are abstractions of $(q^{th}-)$ powers and commutator relations in groups.

R. Brown (1990) explores its relationship with universal q-central extensions of q-perfect groups.

Relations are abstractions of $(q^{th}-)$ powers and commutator relations in groups.

R. Brown (1990) explores its relationship with universal q-central extensions of q-perfect groups.

Relations are abstractions of $(q^{th}-)$ powers and commutator relations in groups.

R. Brown (1990) explores its relationship with universal q-central extensions of q-perfect groups.

Relations are abstractions of $(q^{th}-)$ powers and commutator relations in groups.

R. Brown (1990) explores its relationship with universal q-central extensions of q-perfect groups.

- T. Bueno (2006) introduces a variant of Ellis construction by extending the commutator approach from $\nu(G)$ to a *hat and commutator* approach, $\nu^q(G)$, for all $q \ge 0$.
- For $q \ge 1$ let $\widehat{\mathcal{G}} = \{\widehat{k} \mid k \in G\}$ be a set of symbols and let $F(\widehat{\mathcal{G}})$ be the free group over $\widehat{\mathcal{G}}$ (for q = 0 set $\widehat{\mathcal{G}} = \emptyset$).
- In the free product $\nu(G) * F(\widehat{G})$, let *J* be the normal closure of the following elements, for all $g, h, k, k_1 \in G$:

T. Bueno (2006) introduces a variant of Ellis construction by extending the commutator approach from $\nu(G)$ to a *hat and commutator* approach, $\nu^{q}(G)$, for all $q \ge 0$.

For $q \ge 1$ let $\widehat{\mathcal{G}} = \{\widehat{k} \mid k \in G\}$ be a set of symbols and let $F(\widehat{\mathcal{G}})$ be the free group over $\widehat{\mathcal{G}}$ (for q = 0 set $\widehat{\mathcal{G}} = \emptyset$).

In the free product $\nu(G) * F(\widehat{G})$, let *J* be the normal closure of the following elements, for all $g, h, k, k_1 \in G$:

T. Bueno (2006) introduces a variant of Ellis construction by extending the commutator approach from $\nu(G)$ to a *hat and commutator* approach, $\nu^q(G)$, for all $q \ge 0$.

For $q \ge 1$ let $\widehat{\mathcal{G}} = \{\widehat{k} \mid k \in G\}$ be a set of symbols and let $F(\widehat{\mathcal{G}})$ be the free group over $\widehat{\mathcal{G}}$ (for q = 0 set $\widehat{\mathcal{G}} = \emptyset$).

In the free product $\nu(G) * F(\widehat{\mathcal{G}})$, let *J* be the normal closure of the following elements, for all $g, h, k, k_1 \in G$:

Defining Relations

$$g^{-1}\,\widehat{k}\,g\,(\widehat{k^g})^{-1};\tag{1}$$

$$(h^{\varphi})^{-1} \widehat{k} h^{\varphi} (\widehat{k^{h}})^{-1}; \qquad (2)$$

$$(\widehat{k})^{-1}[g,h^{\varphi}]\widehat{k}[g^{k^{q}},(h^{k^{q}})^{\varphi}]^{-1};$$
(3)

$$(\widehat{k})^{-1} \widehat{kk_{1}} (\widehat{k_{1}})^{-1} (\prod_{i=1}^{q-1} [k, (k_{1}^{-i})^{\varphi}]^{k^{q-1-i}})^{-1};$$
(4)

$$[\widehat{k}, \widehat{k_1}] [k^q, (k_1^q)^{\varphi}]^{-1};$$
(5)

$$\widehat{(g,h)} [g,h^{\varphi}]^{-q}.$$
(6)

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

$$u^q(G) := (\nu(G) * F(\widehat{\mathcal{G}}))/J$$

For q = 0 the set of all relations (1) to (6) is empty; in this case $\nu(G) * F(\widehat{G})/J \cong \nu(G)$

G and G^{φ} are embedded into $\nu^q(G)$, for all $q \ge 0$

Set $T = [G, G^{\varphi}] \le \nu^{q}(G)$ and let \mathfrak{G} be the subgroup of $\nu^{q}(G)$ generated by (the images of) $\widehat{\mathcal{G}}$

The subgroup $\Upsilon^q(G) = T\mathfrak{G}$ is normal in $\nu^q(G)$ and $\nu^q(G) = G^{\varphi} \cdot (G \cdot \Upsilon^q(G))$

For q = 0 the set of all relations (1) to (6) is empty; in this case $\nu(G) * F(\widehat{\mathcal{G}})/J \cong \nu(G)$

G and G^{φ} are embedded into $\nu^{q}(G)$, for all $q \ge 0$ Set $T = [G, G^{\varphi}] \le \nu^{q}(G)$ and let \mathfrak{G} be the subgroup of $\nu^{q}(G)$ generated by (the images of) $\widehat{\mathcal{G}}$ The subgroup $\Upsilon^{q}(G) = T\mathfrak{G}$ is normal in $\nu^{q}(G)$ and

 $u^q(G) = G^{arphi} \cdot (G \cdot \Upsilon^q(G))$

For q = 0 the set of all relations (1) to (6) is empty; in this case $\nu(G) * F(\widehat{\mathcal{G}})/J \cong \nu(G)$

G and G^{φ} are embedded into $\nu^q(G)$, for all $q \ge 0$

Set $T = [G, G^{\varphi}] \le \nu^{q}(G)$ and let \mathfrak{G} be the subgroup of $\nu^{q}(G)$ generated by (the images of) $\widehat{\mathcal{G}}$

The subgroup $\Upsilon^q(G) = T\mathfrak{G}$ is normal in $\nu^q(G)$ and $\nu^q(G) = G^{\varphi} \cdot (G \cdot \Upsilon^q(G))$

For q = 0 the set of all relations (1) to (6) is empty; in this case $\nu(G) * F(\widehat{G})/J \cong \nu(G)$

G and G^{φ} are embedded into $\nu^q(G)$, for all $q \ge 0$

Set $T = [G, G^{\varphi}] \le \nu^{q}(G)$ and let \mathfrak{G} be the subgroup of $\nu^{q}(G)$ generated by (the images of) $\widehat{\mathcal{G}}$

The subgroup $\Upsilon^q(G) = T\mathfrak{G}$ is normal in $\nu^q(G)$ and $\nu^q(G) = G^{\varphi} \cdot (G \cdot \Upsilon^q(G))$

For q = 0 the set of all relations (1) to (6) is empty; in this case $\nu(G) * F(\widehat{G})/J \cong \nu(G)$

G and G^{φ} are embedded into $\nu^q(G)$, for all $q \ge 0$

Set $T = [G, G^{\varphi}] \le \nu^{q}(G)$ and let \mathfrak{G} be the subgroup of $\nu^{q}(G)$ generated by (the images of) $\widehat{\mathcal{G}}$

The subgroup $\Upsilon^q(G) = T\mathfrak{G}$ is normal in $\nu^q(G)$ and $\nu^q(G) = G^{\varphi} \cdot (G \cdot \Upsilon^q(G))$

 $\Upsilon^q(G) \cong G \otimes^q G$, for all $q \ge 0$.

The *q*-exterior square $G \wedge^q G$, is the quotient of $G \otimes^q G$ by its subgroup $\langle k \otimes k | k \in G \rangle$. Thus,

 $G\wedge^q G\cong \Upsilon^q(G)/\Delta^q(G),$ where $\Delta^q(G)=\langle [g,g^{arphi}]\mid g\in G
angle.$

Let $\rho' : \Upsilon^q(G) \to G$ be induced by $[g, h^{\varphi}] \mapsto [g, h], \ \widehat{k} \mapsto k^q$, for all $g, h, k \in G$.

$$\Rightarrow \operatorname{\mathsf{Ker}}(\rho')/\Delta^q(G) \cong H_2(G,\mathbb{Z}_q).$$

 $\Upsilon^q(G) \cong G \otimes^q G$, for all $q \ge 0$.

The *q*-exterior square $G \wedge^q G$, is the quotient of $G \otimes^q G$ by its subgroup $\langle k \otimes k | k \in G \rangle$. Thus,

 $G \wedge^q G \cong \Upsilon^q(G) / \Delta^q(G)$, where $\Delta^q(G) = \langle [g, g^{\varphi}] \mid g \in G \rangle$. Let $\rho' : \Upsilon^q(G) \to G$ be induced by $[g, h^{\varphi}] \mapsto [g, h], \ \hat{k} \mapsto k^q$, for all $g, h, k \in G$.

$$\Rightarrow \operatorname{Ker}(\rho')/\Delta^q(G) \cong H_2(G,\mathbb{Z}_q).$$

 $\Upsilon^q(G) \cong G \otimes^q G$, for all $q \ge 0$.

The *q*-exterior square $G \wedge^q G$, is the quotient of $G \otimes^q G$ by its subgroup $\langle k \otimes k | k \in G \rangle$. Thus,

 $G \wedge^q G \cong \Upsilon^q(G) / \Delta^q(G)$, where $\Delta^q(G) = \langle [g, g^{\varphi}] \mid g \in G \rangle$.

Let $\rho' : \Upsilon^q(G) \to G$ be induced by $[g, h^{\varphi}] \mapsto [g, h], \ \widehat{k} \mapsto k^q$, for all $g, h, k \in G$.

 $\Rightarrow |\operatorname{Ker}(\rho')/\Delta^q(G) \cong H_2(G,\mathbb{Z}_q).$

 $\Upsilon^q(G) \cong G \otimes^q G$, for all $q \ge 0$.

The *q*-exterior square $G \wedge^q G$, is the quotient of $G \otimes^q G$ by its subgroup $\langle k \otimes k | k \in G \rangle$. Thus, $G \wedge^q G \cong \Upsilon^q(G) / \Delta^q(G)$, where $\Delta^q(G) = \langle [g, g^{\varphi}] | g \in G \rangle$.

Let $\rho' : \Upsilon^q(G) \to G$ be induced by $[g, h^{\varphi}] \mapsto [g, h], \ \widehat{k} \mapsto k^q$, for all $g, h, k \in G$.

 $\Rightarrow \operatorname{\mathsf{Ker}}(\rho')/\Delta^q(G) \cong H_2(G,\mathbb{Z}_q).$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

 $\Upsilon^q(G) \cong G \otimes^q G$, for all $q \ge 0$.

The *q*-exterior square $G \wedge^q G$, is the quotient of $G \otimes^q G$ by its subgroup $\langle k \otimes k | k \in G \rangle$. Thus,

 $G\wedge^q G\cong \Upsilon^q(G)/\Delta^q(G),$ where $\Delta^q(G)=\langle [g,g^{arphi}]\mid g\in G
angle.$

Let $\rho' : \Upsilon^q(G) \to G$ be induced by $[g, h^{\varphi}] \mapsto [g, h], \ \widehat{k} \mapsto k^q$, for all $g, h, k \in G$.

$$\Rightarrow \operatorname{Ker}(\rho')/\Delta^q(G) \cong H_2(G,\mathbb{Z}_q).$$

Let $d = \gcd(q, n)$. Then

$$egin{aligned} & C_\infty \otimes^q C_\infty \cong C_\infty imes C_q, \ & C_n \otimes^q C_n \cong egin{cases} & C_n imes C_d, \ & C_n imes C_d, \ & C_{2n} imes C_{d/2} \end{aligned}$$

if *d* is odd, if *d* is even and either 4|*n* or 4|*q*; otherwise.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $d = \gcd(q, n)$. Then

$$egin{aligned} & C_\infty \otimes^q C_\infty \cong C_\infty imes C_q, \ & C_n \otimes^q C_n \cong egin{cases} & C_n imes C_d, & ext{if} & d ext{ is odd}, \ & C_n imes C_d, & ext{if} & d ext{ is even and either } 4|n ext{ or } 4|q; \ & C_{2n} imes C_{d/2}, & ext{ otherwise.} \end{aligned}$$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Grou

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Groups St Andrews 2017 - Birmingham, UK - 05-13 Aug 2017

Let $G = N \times H$, $\overline{N} = N/N'N^q$ and $\overline{H} = H/H'H^q$. Then (i) $\nu^q(G) = \langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \times [N, H^{\varphi}][H, N^{\varphi}] \times \langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle$; (ii) $\langle H, H^{\varphi}, \widehat{\mathcal{H}} \rangle \cong \nu^q(H)$; $\langle N, N^{\varphi}, \widehat{\mathcal{N}} \rangle \cong \nu^q(N)$. (iii) $\Upsilon^q(G) = \Upsilon^q(N) \times [N, H^{\varphi}][H, N^{\varphi}] \times \Upsilon^q(H)$; (iv) $[N, H^{\varphi}] \cong \overline{N} \otimes_{\mathbb{Z}_q} \overline{H} \cong [H, N^{\varphi}]$. (v) $\Delta^q(N \times H) = \Delta^q(N) \times \Delta(H) \times U$, where

 $U = \langle [x, y^{\varphi}] [y, x^{\varphi}] \mid x \in N, y \in H \rangle.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Group

If
$$A = \prod_{i=1}^{r} C_i$$
, where $C_i = \langle x_i \rangle$, then

$$\Upsilon^q(\mathbf{A}) = \prod_{i=1}^r \Upsilon^q(\mathbf{C}_i) \times \prod_{1 \leq j < k \leq r} [\mathbf{C}_j, \mathbf{C}_k^{\varphi}][\mathbf{C}_k, \mathbf{C}_j^{\varphi}].$$

Here we have $\Upsilon^q(C_i) = \langle [x_i, x_i^{\varphi}], \hat{x}_i \rangle$ and $[C_j, C_k^{\varphi}][C_k, C_j^{\varphi}] = \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}], [x_j, x_k^{\varphi}] \rangle$. In addition, $\Delta^q(A) = \prod_{i=1}^r \langle [x_i, x_i^{\varphi}] \rangle \times \prod_{j < k} \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}] \rangle$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

If $A = \prod_{i=1}^{r} C_i$, where $C_i = \langle x_i \rangle$, then

$$\Upsilon^q(\mathcal{A}) = \prod_{i=1}^r \Upsilon^q(\mathcal{C}_i) \times \prod_{1 \leq j < k \leq r} [\mathcal{C}_j, \mathcal{C}_k^{\varphi}][\mathcal{C}_k, \mathcal{C}_j^{\varphi}].$$

Here we have $\Upsilon^{q}(C_{i}) = \langle [x_{i}, x_{i}^{\varphi}], \hat{x}_{i} \rangle$ and $[C_{j}, C_{k}^{\varphi}][C_{k}, C_{j}^{\varphi}] = \langle [x_{j}, x_{k}^{\varphi}][x_{k}, x_{j}^{\varphi}], [x_{j}, x_{k}^{\varphi}] \rangle$. In addition, $\Delta^{q}(A) = \prod_{i=1}^{r} \langle [x_{i}, x_{i}^{\varphi}] \rangle \times \prod_{j < k} \langle [x_{j}, x_{k}^{\varphi}][x_{k}, x_{j}^{\varphi}] \rangle$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

If $A = \prod_{i=1}^{r} C_i$, where $C_i = \langle x_i \rangle$, then

$$\Upsilon^q(\mathcal{A}) = \prod_{i=1}^r \Upsilon^q(\mathcal{C}_i) \times \prod_{1 \leq j < k \leq r} [\mathcal{C}_j, \mathcal{C}_k^{\varphi}][\mathcal{C}_k, \mathcal{C}_j^{\varphi}].$$

Here we have $\Upsilon^q(C_i) = \langle [x_i, x_i^{\varphi}], \hat{x}_i \rangle$ and $[C_j, C_k^{\varphi}][C_k, C_j^{\varphi}] = \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}], [x_j, x_k^{\varphi}] \rangle$. In addition, $\Delta^q(A) = \prod_{i=1}^r \langle [x_i, x_i^{\varphi}] \rangle \times \prod_{j < k} \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}] \rangle$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

If $A = \prod_{i=1}^{r} C_i$, where $C_i = \langle x_i \rangle$, then

$$\Upsilon^q(A) = \prod_{i=1}^r \Upsilon^q(C_i) \times \prod_{1 \leq j < k \leq r} [C_j, C_k^{\varphi}][C_k, C_j^{\varphi}].$$

Here we have $\Upsilon^q(C_i) = \langle [x_i, x_i^{\varphi}], \hat{x}_i \rangle$ and $[C_j, C_k^{\varphi}][C_k, C_j^{\varphi}] = \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}], [x_j, x_k^{\varphi}] \rangle$. In addition, $\Delta^q(A) = \prod_{i=1}^r \langle [x_i, x_i^{\varphi}] \rangle \times \prod_{j < k} \langle [x_j, x_k^{\varphi}][x_k, x_j^{\varphi}] \rangle$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias
$\Upsilon(A) = \Delta(A) \times E_X(A).$

Write $E_X^q(A) := \langle \hat{x}_i, [x_j, x_k^{\varphi}] | 1 \le i \le r, 1 \le j < k \le r \rangle$. We get $\Upsilon^q(A) = \Delta^q(A) E_X^q(A)$.

For q = 0, we have $\Delta(A) \cap E_X(A) = 1$, giving the direct decomposition:

 $\Upsilon(A) = \Delta(A) \times E_X(A).$

 $\Delta^q(G)$ essentially depends on q and $G^{ab} = G/G'$ $\Delta^q(G)$ does not depend on the particular set of generators of G:

[N.R., 1994]

Let $X = \{x_i\}_{i \in I}$ be a set of generators of grp *G* (assume *I* totally ordered). Then $\Delta^q(G)$ is generated by the set

 $\Delta_X = \{ s_i := [x_i, x_i^{\varphi}], \ t_{jk} := [x_j, x_k^{\varphi}] [x_k, x_j^{\varphi}], \ | \ i, j, k \in I, j < k \}.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

$\Delta^q(G)$ essentially depends on q and $G^{ab} = G/G'$ $\Delta^q(G)$ does not depend on the particular set of generators of G:

[N.R., 1994]

Let $X = \{x_i\}_{i \in I}$ be a set of generators of grp *G* (assume *I* totally ordered). Then $\Delta^q(G)$ is generated by the set

$$\Delta_X = \{ s_i := [x_i, x_i^{\varphi}], \ t_{jk} := [x_j, x_k^{\varphi}] [x_k, x_j^{\varphi}], \ | \ i, j, k \in I, j < k \}.$$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Groups St Andrews 2017 - Birmingham, UK - 05–13 Aug 2017

 $\Delta^q(G)$ essentially depends on q and $G^{ab} = G/G'$ $\Delta^q(G)$ does not depend on the particular set of generators of G:

[N.R., 1994]

Let $X = \{x_i\}_{i \in I}$ be a set of generators of grp *G* (assume *I* totally ordered). Then $\Delta^q(G)$ is generated by the set

$$\Delta_X = \{ s_i := [x_i, x_i^{\varphi}], \ t_{jk} := [x_j, x_k^{\varphi}] [x_k, x_j^{\varphi}], \ | \ i, j, k \in I, j < k \}.$$

[BFM, 2009]

Let *G* be a group s.t. G^{ab} is f.g. If G^{ab} has no element of order 2, or if *G'* has a complement in *G*, the $G \otimes G \cong \Delta(G) \times (G \wedge G)$

We can extend above result in some way for $q \ge 1$ and q odd If q = 2 then $\Delta^2(G) \le T \le \mathfrak{G}$; consequently, such a direct decomposition is not in general possible if q is even

[BFM, 2009]

Let *G* be a group s.t. G^{ab} is f.g. If G^{ab} has no element of order 2, or if *G'* has a complement in *G*, the $G \otimes G \cong \Delta(G) \times (G \wedge G)$

We can extend above result in some way for $q \ge 1$ and q odd If q = 2 then $\Delta^2(G) \le T \le \mathfrak{G}$; consequently, such a direct decomposition is not in general possible if q is even

[BFM, 2009]

Let *G* be a group s.t. G^{ab} is f.g. If G^{ab} has no element of order 2, or if *G'* has a complement in *G*, the $G \otimes G \cong \Delta(G) \times (G \wedge G)$

We can extend above result in some way for $q \ge 1$ and q odd If q = 2 then $\Delta^2(G) \le T \le \mathfrak{G}$; consequently, such a direct decomposition is not in general possible if q is even

[BFM, 2009]

Let *G* be a group s.t. G^{ab} is f.g. If G^{ab} has no element of order 2, or if *G'* has a complement in *G*, the $G \otimes G \cong \Delta(G) \times (G \wedge G)$

We can extend above result in some way for $q \ge 1$ and q odd If q = 2 then $\Delta^2(G) \le T \le \mathfrak{G}$; consequently, such a direct decomposition is not in general possible if q is even

Let q > 1 be an odd integer and A a finitely generated abelian group given by the presentation

 $A = \langle x_1, \ldots, x_r \mid x_i^{n_i}, [x_j, x_k], 1 \le i, j, k \le r, j < k \rangle,$

where we assume that $n_{l+1} = \cdots = n_r = 0$ in case the free part of *A* is generated by $\{x_{l+1}, \ldots, x_r\}$, $0 \le l \le r-1$. Write $d_i = \gcd(q, n_i)$ and $d_{jk} = \gcd(q, n_j, n_k)$, $1 \le i, j, k \le r, j < k$. Then

(*i*)
$$\Delta^q(A) \cong \prod_{i=1}^r C_{d_i} \times \prod_{1 \le j < k \le r} C_{d_{jk}}$$
 and
 $E^q_X(A) \cong A \times \prod_{1 \le j < k \le r} C_{d_{jk}};$
(*ii*) $\Upsilon^q(A) = \Delta^q(A) \times E^q_X(A).$

Let q > 1 be an odd integer and A a finitely generated abelian group given by the presentation

$$\boldsymbol{A} = \langle \boldsymbol{x}_1, \ldots, \boldsymbol{x}_r \mid \boldsymbol{x}_i^{n_i}, [\boldsymbol{x}_j, \boldsymbol{x}_k], 1 \leq i, j, k \leq r, j < k \rangle,$$

where we assume that $n_{l+1} = \cdots = n_r = 0$ in case the free part of *A* is generated by $\{x_{l+1}, \ldots, x_r\}$, $0 \le l \le r-1$. Write $d_i = \gcd(q, n_i)$ and $d_{jk} = \gcd(q, n_j, n_k)$, $1 \le i, j, k \le r, j < k$. Then

(*i*)
$$\Delta^q(A) \cong \prod_{i=1}^r C_{d_i} \times \prod_{1 \le j < k \le r} C_{d_{jk}}$$
 and
 $E_X^q(A) \cong A \times \prod_{1 \le j < k \le r} C_{d_{jk}};$
(*ii*) $\Upsilon^q(A) = \Delta^q(A) \times E_X^q(A).$

Let q > 1 be an odd integer and A a finitely generated abelian group given by the presentation

$$\mathbf{A} = \langle \mathbf{x}_1, \ldots, \mathbf{x}_r \mid \mathbf{x}_i^{n_i}, [\mathbf{x}_j, \mathbf{x}_k], 1 \leq i, j, k \leq r, j < k \rangle,$$

where we assume that $n_{l+1} = \cdots = n_r = 0$ in case the free part of *A* is generated by $\{x_{l+1}, \ldots, x_r\}, 0 \le l \le r-1$. Write $d_i = \gcd(q, n_i)$ and $d_{jk} = \gcd(q, n_j, n_k), 1 \le i, j, k \le r, j < k$. Then (*i*) $\Delta^q(A) \cong \prod_{i=1}^r C_{d_i} \times \prod_{1 \le j < k \le r} C_{d_{jk}}$ and $E_X^q(A) \cong A \times \prod_{1 \le j < k \le r} C_{d_{jk}}$; (*ii*) $\Upsilon^q(A) = \Delta^q(A) \times E_Y^q(A)$.

Let q > 1 be an odd integer and A a finitely generated abelian group given by the presentation

$$\mathbf{A} = \langle \mathbf{x}_1, \ldots, \mathbf{x}_r \mid \mathbf{x}_i^{n_i}, [\mathbf{x}_j, \mathbf{x}_k], 1 \leq i, j, k \leq r, j < k \rangle,$$

where we assume that $n_{l+1} = \cdots = n_r = 0$ in case the free part of *A* is generated by $\{x_{l+1}, \ldots, x_r\}$, $0 \le l \le r-1$. Write $d_i = \gcd(q, n_i)$ and $d_{jk} = \gcd(q, n_j, n_k)$, $1 \le i, j, k \le r, j < k$. Then

(*i*)
$$\Delta^q(A) \cong \prod_{i=1}^r C_{d_i} \times \prod_{1 \le j < k \le r} C_{d_{jk}}$$
 and
 $E^q_X(A) \cong A \times \prod_{1 \le j < k \le r} C_{d_{jk}};$
(*ii*) $\Upsilon^q(A) = \Delta^q(A) \times E^q_X(A).$

[Thm - R.& R. 2016]

Let q > 1 be an odd integer and assume G^{ab} is f.g. Then (i) $\Delta^q(G) \cap E^q(G) = 1$; (ii) $\Delta^q(G) \cong \Delta^q(G^{ab})$; (iii) $\Upsilon^q(G) \cong \Delta^q(G^{ab}) \times (G \wedge^q G)$; (iv) If G^{ab} is free abelian of rank *r*, then $\Delta^q(G)$ is a homocyclic abelian group of exponent *q*, of rank $\binom{r+1}{2}$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

[Thm - R.& R. 2016]

Let q > 1 be an odd integer and assume G^{ab} is f.g. Then

(i)
$$\Delta^q(G) \cap E^q(G) = 1;$$

(ii)
$$\Delta^q(G) \cong \Delta^q(G^{ab});$$

- (iii) $\Upsilon^q(G) \cong \Delta^q(G^{ab}) \times (G \wedge^q G);$
- (iv) If G^{ab} is free abelian of rank *r*, then $\Delta^q(G)$ is a homocyclic abelian group of exponent *q*, of rank $\binom{r+1}{2}$.

[G. Ellis, 1989] - Computing $G \wedge^q G$ from a presentation of GLet $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R, F]R^q$.

[Corollary]

Let F_n be the free group of rank n. Ther (i) [RR, 2016] For $q \ge 1$ and q odd, $F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q$. (ii) [BJR, 1987] For q = 0, $F_n \otimes F_n \cong C_{\infty}^{\binom{n+1}{2}} \times (F_n)'$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R,F]R^q$.

[Corollary]

Let F_n be the free group of rank n. Ther (i) [RR, 2016] For $q \ge 1$ and q odd, $F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q$. (ii) [BJR, 1987] For q = 0, $F_n \otimes F_n \cong C_2^{\binom{n+1}{2}} \times (F_n)'$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R,F]R^q$.

[Corollary]

Let F_n be the free group of rank n. Then (i) [RR, 2016] For $q \ge 1$ and q odd, $F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q$. (ii) [BJR, 1987] For q = 0, $F_n \otimes F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R,F]R^q$.

[Corollary]

Let F_n be the free group of rank n. Then (i) [RR, 2016] For $q \ge 1$ and q odd, $F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q$. (ii) [BJR, 1987] For q = 0, $F_n \otimes F_n \cong C_2^{\binom{n+1}{2}} \times (F_n)'$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R,F]R^q$.

[Corollary]

Let F_n be the free group of rank *n*. Then (i) IRR, 2016] For q > 1 and q odd.

$$F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q.$$

(ii) [BJR, 1987] For q = 0,

 $F_n \otimes F_n \cong C_{\infty}^{\binom{n+1}{2}} \times (F_n)'.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Let $q \ge 0$ and let F/R be a free presentation of G. Then $G \wedge^q G \cong F'F^q/[R,F]R^q$.

[Corollary]

Let F_n be the free group of rank n. Then

(i) [RR, 2016] For
$$q \ge 1$$
 and q odd,
 $F_n \otimes^q F_n \cong C_q^{\binom{n+1}{2}} \times (F_n)'(F_n)^q.$

(ii) [BJR, 1987] For q = 0,

 $F_n \otimes F_n \cong C_{\infty}^{\binom{n+1}{2}} \times (F_n)'.$

[Corollary]

Let $\mathcal{N}_{n,c} = F_n / \gamma_{c+1}(F_n)$ be the free nilpotent group of class $c \ge 1$ and rank n > 1. Then

(i) [R & R, 2016] For $q \ge 1$ and q odd

$$\mathcal{N}_{n,c} \otimes^q \mathcal{N}_{n,c} \cong C_q^{\binom{n+1}{2}} \times \frac{(F_n)'(F_n)^q}{\gamma_{c+1}(F_n)^q \gamma_{c+2}(F_n)}$$

(ii) [BFM 2010, Corollary 1.7] For q = 0.

 $\mathcal{N}_{n,c} \otimes \mathcal{N}_{n,c} \cong C_{\infty}^{\binom{n+1}{2}} \times (\mathcal{N}_{n,c+1})'.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

[Corollary]

Let $\mathcal{N}_{n,c} = F_n / \gamma_{c+1}(F_n)$ be the free nilpotent group of class $c \ge 1$ and rank n > 1. Then

(i) [R & R, 2016] For $q \ge 1$ and q odd

$$\mathcal{N}_{n,c} \otimes^q \mathcal{N}_{n,c} \cong C_q^{\binom{n+1}{2}} \times \frac{(F_n)'(F_n)^q}{\gamma_{c+1}(F_n)^q \gamma_{c+2}(F_n)}$$

(ii) [BFM 2010, Corollary 1.7] For q = 0,

 $\mathcal{N}_{n,c}\otimes\mathcal{N}_{n,c}\cong C^{\binom{n+1}{2}}_{\infty}\times(\mathcal{N}_{n,c+1})'.$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

[Corollary]

Let $\mathcal{N}_{n,c} = F_n / \gamma_{c+1}(F_n)$ be the free nilpotent group of class $c \ge 1$ and rank n > 1. Then

(i) [R & R, 2016] For $q \ge 1$ and q odd

$$\mathcal{N}_{n,c} \otimes^q \mathcal{N}_{n,c} \cong C_q^{\binom{n+1}{2}} \times \frac{(F_n)'(F_n)^q}{\gamma_{c+1}(F_n)^q \gamma_{c+2}(F_n)}$$

(ii) [BFM 2010, Corollary 1.7] For q = 0,

$$\mathcal{N}_{n,c} \otimes \mathcal{N}_{n,c} \cong C_{\infty}^{\binom{n+1}{2}} \times (\mathcal{N}_{n,c+1})'.$$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

[Thm]

Let $N_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $N_{n,2} = F_n / \gamma_3(F_n)$. Then,

(i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{3}n(n^2 + 3n - 1)$. More precisely, we have $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2} \cong \Delta(F_n^{ab}) \times \mathcal{M}(\mathcal{N}_{n,2}) \times \mathcal{N}'_{n,2}$. (ii) [R. R., 2016] For q > 1 and q odd,

 $\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2} \cong (C_q)^{((\binom{n+1}{2})) + M_n(3))} \times \mathcal{N}'_{n,2} \mathcal{N}^q_{n,2}$

where $M_n(3) = \frac{1}{3}(n^3 - n)$ is the *q*-rank of $\gamma_3(N_{n,2})/\gamma_3(N_{n,2})^q\gamma_4(N_{n,2})$.

900 E (E)(E)(B)(0)

[Thm]

Let $\mathcal{N}_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $\mathcal{N}_{n,2} = F_n / \gamma_3(F_n)$. Then, (i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{2}n(n^2+3n-1)$.

[Thm]

Let $\mathcal{N}_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $\mathcal{N}_{n,2} = F_n / \gamma_3(F_n)$. Then, (i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{2}n(n^2+3n-1)$. More precisely, we have

[Thm]

Let $\mathcal{N}_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $\mathcal{N}_{n,2} = F_n / \gamma_3(F_n)$. Then, (i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{2}n(n^2+3n-1)$. More precisely, we have $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2} \cong \Delta(F_n^{ab}) \times \mathcal{M}(\mathcal{N}_{n,2}) \times \mathcal{N}'_{n,2}.$

[Thm]

Let $N_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $N_{n,2} = F_n / \gamma_3(F_n)$. Then,

(i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{3}n(n^2 + 3n - 1)$.

More precisely, we have

 $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2} \cong \Delta(\mathcal{F}_n^{ab}) \times \mathcal{M}(\mathcal{N}_{n,2}) \times \mathcal{N}_{n,2}'.$

(ii) [R. R., 2016] For q > 1 and q odd,

 $\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2} \cong (C_q)^{(\binom{n+1}{2})+M_n(3))} \times \mathcal{N}_{n,2}^r \mathcal{N}_{n,2}^q,$ where $M_n(3) = \frac{1}{3}(n^3 - n)$ is the *q*-rank of $\gamma_3(\mathcal{N}_{n,2})/\gamma_3(\mathcal{N}_{n,2})^q \gamma_4(\mathcal{N}_{n,2}).$

[Thm]

Let $N_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $N_{n,2} = F_n / \gamma_3(F_n)$. Then,

(i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{3}n(n^2 + 3n - 1)$.

More precisely, we have

 $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2} \cong \Delta(\mathcal{F}_n^{ab}) \times \mathcal{M}(\mathcal{N}_{n,2}) \times \mathcal{N}'_{n,2}.$

(ii) [R. R., 2016] For q > 1 and q odd, $\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2} \cong (C_q)^{((\binom{n+1}{2}))+M_n(3))} \times \mathcal{N}'_{n,2}\mathcal{N}^q_{n,2}$, where $M_n(3) = \frac{1}{3}(n^3 - n)$ is the q-rank of $\operatorname{Ord}(\mathcal{N}(q))/\operatorname{Ord}(\mathcal{N}(q))^q = \operatorname{Ord}(\mathcal{N}(q))^q$

900 E (E)(E)(B)(0)

[Thm]

Let $N_{n,2}$ be the free nilpotent group of rank n > 1 and class 2, $N_{n,2} = F_n / \gamma_3(F_n)$. Then,

(i) [M.Bacon, 1994] $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2}$ is free abelian of rank $\frac{1}{3}n(n^2 + 3n - 1)$.

More precisely, we have

 $\mathcal{N}_{n,2} \otimes \mathcal{N}_{n,2} \cong \Delta(\mathcal{F}_n^{ab}) \times \mathcal{M}(\mathcal{N}_{n,2}) \times \mathcal{N}_{n,2}'.$

(ii) [R. R., 2016] For q > 1 and q odd, $\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2} \cong (C_q)^{((\binom{n+1}{2})) + M_n(3))} \times \mathcal{N}'_{n,2} \mathcal{N}^q_{n,2}$, where $M_n(3) = \frac{1}{3}(n^3 - n)$ is the q-rank of $\gamma_3(\mathcal{N}_{n,2})/\gamma_3(\mathcal{N}_{n,2})^q \gamma_4(\mathcal{N}_{n,2})$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Groups St Andrews 2017 - Birmingham, UK - 05-13 Aug 2017

(日)

nan

Consequently, for q > 1 and q odd,

$$d(\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2}) = \frac{1}{3}(n^3 + 3n^2 + 2n).$$

This is the least upper bound for $d(G \otimes^q G)$, *G* a class 2 nilpotent group with d(G) = n:

[E.Rodrigues, 2011]

Let *G* be a nilpotent group of class 2 with d(G) = n. Then $G \otimes^q G$ can be generated by at most $\frac{1}{3}n(n^2 + 3n + 2)$ elements. In particular, if *G* is finite and gcd(q, |G|) = 1 then $d(G \otimes^q G) \le n^2$.

$$d(\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2}) = \frac{1}{3}(n^3 + 3n^2 + 2n).$$

This is the least upper bound for $d(G \otimes^q G)$, *G* a class 2 nilpotent group with d(G) = n:

[E.Rodrigues, 2011]

Let *G* be a nilpotent group of class 2 with d(G) = n. Then $G \otimes^q G$ can be generated by at most $\frac{1}{3}n(n^2 + 3n + 2)$ elements. In particular, if *G* is finite and gcd(q, |G|) = 1 then $d(G \otimes^q G) \le n^2$.

$$d(\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2}) = \frac{1}{3}(n^3 + 3n^2 + 2n).$$

This is the least upper bound for $d(G \otimes^q G)$, *G* a class 2 nilpotent group with d(G) = n:

[E.Rodrigues, 2011]

Let *G* be a nilpotent group of class 2 with d(G) = n. Then $G \otimes^q G$ can be generated by at most $\frac{1}{3}n(n^2 + 3n + 2)$ elements. In particular, if *G* is finite and gcd(q, |G|) = 1 then $d(G \otimes^q G) \le n^2$.

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

$$d(\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2}) = \frac{1}{3}(n^3 + 3n^2 + 2n).$$

This is the least upper bound for $d(G \otimes^q G)$, *G* a class 2 nilpotent group with d(G) = n:

[E.Rodrigues, 2011]

Let *G* be a nilpotent group of class 2 with d(G) = n. Then $G \otimes^q G$ can be generated by at most $\frac{1}{3}n(n^2 + 3n + 2)$ elements. In particular, if *G* is finite and gcd(q, |G|) = 1 then $d(G \otimes^q G) \le n^2$.

$$d(\mathcal{N}_{n,2} \otimes^q \mathcal{N}_{n,2}) = \frac{1}{3}(n^3 + 3n^2 + 2n).$$

This is the least upper bound for $d(G \otimes^q G)$, *G* a class 2 nilpotent group with d(G) = n:

[E.Rodrigues, 2011]

Let *G* be a nilpotent group of class 2 with d(G) = n. Then $G \otimes^q G$ can be generated by at most $\frac{1}{3}n(n^2 + 3n + 2)$ elements. In particular, if *G* is finite and gcd(q, |G|) = 1 then $d(G \otimes^q G) \le n^2$.

Let $H = F_2/\gamma_3(F_2)$ be the Heisenberg group, where F_2 denotes the free group of rank 2.

By previous thm, part (ii) we have, for q > 1, q odd: $H \otimes^{q} H \cong (C_q)^5 \times H' H^q$ Now, H has the polycyclic presentation

$$H = \langle x, y, z \mid [y, x] = z, [z, x] = 1 = [z, y] \rangle.$$
(7)

and thus $\Upsilon^q(H)$ is generated by

Let $H = F_2/\gamma_3(F_2)$ be the Heisenberg group, where F_2 denotes the free group of rank 2. By previous thm, part (ii) we have, for q > 1, q odd: $H \otimes^q H \simeq (C_2)^5 \times H'H^q$

Now, *H* has the polycyclic presentation

 $H = \langle x, y, z \mid [y, x] = z, [z, x] = 1 = [z, y] \rangle.$ (7)

and thus $\Upsilon^q(H)$ is generated by

Let $H = F_2/\gamma_3(F_2)$ be the Heisenberg group, where F_2 denotes the free group of rank 2.

By previous thm, part (ii) we have, for q > 1, q odd: $H \otimes^{q} H \cong (C_{q})^{5} \times H' H^{q}$

Now, *H* has the polycyclic presentation

 $H = \langle x, y, z \mid [y, x] = z, [z, x] = 1 = [z, y] \rangle.$ (7)

and thus $\Upsilon^q(H)$ is generated by

Let $H = F_2/\gamma_3(F_2)$ be the Heisenberg group, where F_2 denotes the free group of rank 2.

By previous thm, part (ii) we have, for q > 1, q odd:

 $H \otimes^q H \cong (C_q)^5 \times H' H^q$

Now, H has the polycyclic presentation

$$H = \langle x, y, z \mid [y, x] = z, [z, x] = 1 = [z, y] \rangle.$$
(7)

and thus $\Upsilon^q(H)$ is generated by

In addition, the following relations hold in $\nu^q(H)$:

$$\begin{split} [x, x^{\varphi}]^{q} &= [x, z^{\varphi}]^{q} = [y, z^{\varphi}]^{q} = [y, y^{\varphi}]^{q} = 1\\ ([x, y^{\varphi}][y, x^{\varphi}])^{q} &= 1\\ [x, y^{\varphi}]^{q} = \widehat{z^{-1}} = (\widehat{z})^{-1} = [y, x^{\varphi}]^{-q}\\ [\widehat{y}, \widehat{x}] &= [y, x^{\varphi}]^{q^{2}} (= \widehat{z}^{q}), \end{split}$$

and all other generators commute.

 $\therefore \Upsilon^q(H)$ is a homomorphic image of the $\langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}], [x, y^{\varphi}][y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}]$ above relations).

In addition, the following relations hold in $\nu^q(H)$:

$$\begin{split} [x, x^{\varphi}]^{q} &= [x, z^{\varphi}]^{q} = [y, z^{\varphi}]^{q} = [y, y^{\varphi}]^{q} = 1\\ ([x, y^{\varphi}][y, x^{\varphi}])^{q} &= 1\\ [x, y^{\varphi}]^{q} = \widehat{z^{-1}} = (\widehat{z})^{-1} = [y, x^{\varphi}]^{-q}\\ [\widehat{y}, \widehat{x}] &= [y, x^{\varphi}]^{q^{2}} (= \widehat{z}^{q}), \end{split}$$

and all other generators commute.

 $\therefore \Upsilon^{q}(H) \text{ is a homomorphic image of the} \\ \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}], [x, y^{\varphi}][y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] | \\ \text{above relations} \rangle.$

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q = 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have

 $H \otimes^{q} H \cong \Delta^{q}(H^{ab}) \times H \wedge^{q} H \cong H_{1} \times (C_{q})^{5}$, where $H_{1} \cong \langle a, b, c \mid [b, a] = c^{q^{2}}, [c, a] = 1 = [c, b] \rangle \cong H' H^{q}$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^{6}$, which is a result of R.Aboughazi, 1987.

We have:

 $H_1 = \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H;$

By our previous results, if q = 0 or if $q \ge 1$ and q is odd, then $\Delta^q(H) = \langle [x, y^{\varphi}][y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab})$ $H \wedge^q H \cong E^q(G) = \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2$

Finally we have

 $H \otimes^{q} H \cong \Delta^{q}(H^{ab}) \times H \wedge^{q} H \cong H_{1} \times (C_{q})^{5}$, where $H_{1} \cong \langle a, b, c \mid [b, a] = c^{q^{2}}, [c, a] = 1 = [c, b] \rangle \cong H' H^{q}$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^{6}$, which is a result of B.Aboughazi, 198

We have:

 $H_1 = \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H;$

By our previous results, if q = 0 or if $q \ge 1$ and q is odd, then $\Delta^q(H) = \langle [x, y^{\varphi}][y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab})$ $H \wedge^q H \cong E^q(G) = \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2$

Finally we have $H \otimes^q H \cong \Delta^q (H^{ab}) \times H \wedge^q H \cong H_1 \times (C_q)^5$, where $H_1 \cong \langle a, b, c \mid [b, a] = c^{q^2}, [c, a] = 1 = [c, b] \rangle \cong H' H^q$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 1987

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have $H \otimes^q H \cong \Delta^q(H^{ab}) \times H \wedge^q H$

 $H_1 \cong \langle a, b, c \mid [b, a] = c^{q^2}, [c, a] = 1 = [c, b] \rangle \cong H' H^q.$

In particular, for q = 0 we find

 $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 1987.

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have $H \otimes^q H \cong \Delta^q(H^{ab}) \times H \wedge^q H \cong H_1 \times (C_q)^5$, where $H_1 \cong \langle a, b, c \mid [b, a] = c^{q^2}, [c, a] = 1 = [c, b] \rangle \cong H' H^q$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 198

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have

 $H \otimes^q H \cong \Delta^q(H^{ab}) \times H \wedge^q H \cong H_1 \times (C_q)^5$, where $H_1 \cong \langle a, b, c \mid [b, a] = c^{q^2}, [c, a] = 1 = [c, b] \rangle \cong H' H^q$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 1987.

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have $H \otimes^q H \cong \Delta^q(H^{ab}) \times H \wedge^q H \cong H_1 \times (C_q)^5$, where $H_1 \cong \langle a, b, c \mid [b, a] = c^{q^2}, [c, a] = 1 = [c, b] \rangle \cong H' H^q$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 1987.

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have

 $H \otimes^{q} H \cong \Delta^{q}(H^{ab}) \times H \wedge^{q} H \cong H_{1} \times (C_{q})^{5}$, where $H_{1} \cong \langle a, b, c \mid [b, a] = c^{q^{2}}, [c, a] = 1 = [c, b] \rangle \cong H' H^{q}$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^{6}$, which is a result of R.Aboughazi, 1987.

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have

 $H \otimes^{q} H \cong \Delta^{q}(H^{ab}) \times H \wedge^{q} H \cong H_{1} \times (C_{q})^{5}$, where $H_{1} \cong \langle a, b, c \mid [b, a] = c^{q^{2}}, [c, a] = 1 = [c, b] \rangle \cong H' H^{q}$. In particular, for q = 0 we find

 $H \otimes H \cong (C_{\infty})^6$, which is a result of R.Aboughazi, 1987.

We have:

$$\begin{split} H_1 &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}] \rangle \cong H' H^q = \langle x^q, y^q, z \rangle \leq H; \\ \text{By our previous results, if } q &= 0 \text{ or if } q \geq 1 \text{ and } q \text{ is odd, then} \\ \Delta^q(H) &= \langle [x, y^{\varphi}] [y, x^{\varphi}], [x, x^{\varphi}], [y, y^{\varphi}] \rangle \cong (C_q)^3 \cong \Delta^q(G^{ab}) \\ H \wedge^q H \cong E^q(G) &= \langle \hat{x}, \hat{y}, [y, x^{\varphi}], [x, z^{\varphi}], [y, z^{\varphi}] \rangle \cong H_1 \times (C_q)^2 \end{split}$$

Finally we have

 $H \otimes^{q} H \cong \Delta^{q}(H^{ab}) \times H \wedge^{q} H \cong H_{1} \times (C_{q})^{5}$, where $H_{1} \cong \langle a, b, c \mid [b, a] = c^{q^{2}}, [c, a] = 1 = [c, b] \rangle \cong H' H^{q}$. In particular, for q = 0 we find $H \otimes H \cong (C_{\infty})^{6}$, which is a result of R.Aboughazi, 1987.

G polycyclic

Let *G* be polycyclic, given by a consistent polycyclic presentation, say G = F/R

Our procedure is an adaptation to all $q \ge 0$ of a method described by Eick and Nickel (2008) for the case q = 0We can find a consistent polycyclic presentation for

$$G^* = \frac{F}{R^q[R,F]}$$

From this we get a consistent pcp for $G \wedge G \cong (G^*)'(G^*)^q$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Groups St Andrews 2017 - Birmingham, UK - 05–13 Aug 2017

G polycyclic

Let *G* be polycyclic, given by a consistent polycyclic presentation, say G = F/R

Our procedure is an adaptation to all $q \ge 0$ of a method described by Eick and Nickel (2008) for the case q = 0

We can find a consistent polycyclic presentation for

$$G^* = \frac{F}{R^q[R,F]}$$

From this we get a consistent pcp for $G \wedge G \cong (G^*)'(G^*)^q$

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias Groups St Andrews 2017 - Birmingham, UK - 05–13 Aug 2017

Let *G* be polycyclic, given by a consistent polycyclic presentation, say G = F/R

Our procedure is an adaptation to all $q \ge 0$ of a method described by Eick and Nickel (2008) for the case q = 0We can find a consistent polycyclic presentation for

$$G^* = rac{F}{R^q[R,F]}$$

From this we get a consistent pcp for $G \wedge G \cong (G^*)'(G^*)^q$

Let *G* be polycyclic, given by a consistent polycyclic presentation, say G = F/R

Our procedure is an adaptation to all $q \ge 0$ of a method described by Eick and Nickel (2008) for the case q = 0We can find a consistent polycyclic presentation for

$$G^* = rac{F}{R^q[R,F]}$$

From this we get a consistent pcp for $G \wedge G \cong (G^*)'(G^*)^q$

Let *G* be polycyclic, given by a consistent polycyclic presentation, say G = F/R

Our procedure is an adaptation to all $q \ge 0$ of a method described by Eick and Nickel (2008) for the case q = 0We can find a consistent polycyclic presentation for

$$G^* = rac{F}{R^q[R,F]}$$

From this we get a consistent pcp for $G \wedge G \cong (G^*)'(G^*)^q$

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

Let $\tau^q(G) := \nu^q(G) / \Delta^q(G)$. We have $\tau^q(G) \cong (G \wedge^q G) \rtimes (G \times G)$.

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

Let $\tau^q(G) := \nu^q(G) / \Delta^q(G)$. We have $\tau^q(G) \cong (G \wedge^q G) \rtimes (G \times G)$.

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

 $\tau^q(G) \cong (G \wedge^q G) \rtimes (G \times G).$

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

 $au^q(G)\cong (G\wedge^q G)
times (G imes G).$

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

Crossed pairings have been used in order to determine homomorphic images of the non-abelian tensor square $G \otimes G$.

Let G and L be arbitrary groups.

 $au^q(G)\cong (G\wedge^q G)
times (G imes G).$

Can find a consistent pcp for $\tau^q(G)$.

Need the concept of a q-biderivation, which extends the concept of a crossed pairing (biderivation) to the context of q-tensor squares

q-biderivations

Def. [I.Dias, 2011]

A function $\lambda : G \times G \times G \to L$ is called a *q*-biderivation if it satisfies the following properties, for all $g, g_1, h, h_1, k_1 \in G$:

 $(gg_{1}, h, k)\lambda = (g^{g_{1}}, h^{g_{1}}, 1)\lambda (g_{1}, h, k)\lambda$ $(g, hh_{1}, k)\lambda = (g, h_{1}, 1)\lambda (g^{h_{1}}, h^{h_{1}}, k)\lambda$ $((1, 1, k)\lambda)^{-1} (g, h, 1)\lambda (1, 1, k)\lambda = (g^{k^{q}}, h^{k^{q}}, 1)\lambda$ $(1, 1, kk_{1})\lambda = (1, 1, k)\lambda \prod_{i=1}^{q-1} \left\{ (k, (k_{1}^{-i})^{k^{q-1-i}}, 1)\lambda \right\} (1, 1, k_{1})\lambda$ $[(1, 1, k)\lambda, (1, 1, k_{1})\lambda] = (k^{q}, k_{1}^{q}, 1)\lambda$ $(1, 1, [g, h])\lambda = ((g, h, 1)\lambda)^{q}.$

Dias Groups St Andrews 2017 - Birmingham, UK - 05–13 Aug 2017

・ロト ・四ト ・ヨト ・ヨト

1

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

q-biderivations

Def. [I.Dias, 2011]

A function $\lambda : G \times G \times G \to L$ is called a *q*-biderivation if it satisfies the following properties, for all $g, g_1, h, h_1, k_1 \in G$:

$$(gg_{1}, h, k)\lambda = (g^{g_{1}}, h^{g_{1}}, 1)\lambda (g_{1}, h, k)\lambda$$

$$(g, hh_{1}, k)\lambda = (g, h_{1}, 1)\lambda (g^{h_{1}}, h^{h_{1}}, k)\lambda$$

$$((1, 1, k)\lambda)^{-1} (g, h, 1)\lambda (1, 1, k)\lambda = (g^{k^{q}}, h^{k^{q}}, 1)\lambda$$

$$(1, 1, kk_{1})\lambda = (1, 1, k)\lambda \prod_{i=1}^{q-1} \left\{ (k, (k_{1}^{-i})^{k^{q-1-i}}, 1)\lambda \right\} (1, 1, k_{1})\lambda$$

$$[(1, 1, k)\lambda, (1, 1, k_{1})\lambda] = (k^{q}, k_{1}^{q}, 1)\lambda$$

$$(1, 1, [g, h])\lambda = ((g, h, 1)\lambda)^{q}.$$

I.Dias Groups St Andrews 2017 - Birmingham, UK - 05–13 Aug 2017

・ロ と ・ 一日 と ・ 日 と ・ 日 と

= 990

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Can compute the image of the action of *G* and of the q-biderivation λ in the polycyclic presentation of $G \wedge^q G \cong (G^*)'(G^*)^q$

This will give a consistent pcp for $\tau^q(G)$.

Now $\nu^q(G)$ can be polycyclicly presented as a certain central extension of $\tau^q(G)$.

Finally, standard methods for polycyclic groups are used to find a consistent pcp for the q-tensor square $G \otimes^q G$ as a subgroup of $\nu^q(G)$:

 $G \otimes^q G \cong [G, G^{\varphi}] \mathfrak{G}.$

Can compute the image of the action of *G* and of the q-biderivation λ in the polycyclic presentation of $G \wedge^q G \cong (G^*)'(G^*)^q$

This will give a consistent pcp for $\tau^q(G)$.

Now $\nu^q(G)$ can be polycyclicly presented as a certain central extension of $\tau^q(G)$.

Finally, standard methods for polycyclic groups are used to find a consistent pcp for the q-tensor square $G \otimes^q G$ as a subgroup of $\nu^q(G)$:

 $G \otimes^q G \cong [G, G^{\varphi}] \mathfrak{G}.$

Can compute the image of the action of *G* and of the q-biderivation λ in the polycyclic presentation of $G \wedge^q G \cong (G^*)'(G^*)^q$

This will give a consistent pcp for $\tau^q(G)$.

Now $\nu^{q}(G)$ can be polycyclicly presented as a certain central extension of $\tau^{q}(G)$.

Finally, standard methods for polycyclic groups are used to find a consistent pcp for the q-tensor square $G \otimes^q G$ as a subgroup of $\nu^q(G)$:

 $G \otimes^q G \cong [G, G^{\varphi}] \mathfrak{G}.$

Can compute the image of the action of *G* and of the q-biderivation λ in the polycyclic presentation of $G \wedge^q G \cong (G^*)'(G^*)^q$

This will give a consistent pcp for $\tau^q(G)$.

Now $\nu^{q}(G)$ can be polycyclicly presented as a certain central extension of $\tau^{q}(G)$.

Finally, standard methods for polycyclic groups are used to find a consistent pcp for the *q*-tensor square $G \otimes^q G$ as a subgroup of $\nu^q(G)$:

 $G\otimes^q G\cong [G,G^{\varphi}]\mathfrak{G}.$

Can compute the image of the action of *G* and of the q-biderivation λ in the polycyclic presentation of $G \wedge^q G \cong (G^*)'(G^*)^q$

This will give a consistent pcp for $\tau^q(G)$.

Now $\nu^{q}(G)$ can be polycyclicly presented as a certain central extension of $\tau^{q}(G)$.

Finally, standard methods for polycyclic groups are used to find a consistent pcp for the *q*-tensor square $G \otimes^q G$ as a subgroup of $\nu^q(G)$:

 $G \otimes^q G \cong [G, G^{\varphi}] \mathfrak{G}.$

Thank You!

N.R.Rocco - UnB, joint with E.Rodrigues and I.Dias

Groups St Andrews 2017 - Birmingham, UK - 05-13 Aug 2017