A classification of self-dual codes with a rank 3 automorphism group of almost simple type

Bernardo Rodrigues

School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban, South Africa

Groups St Andrews 2017 University of Birmingham, August 2017

The problem and motivation

Problem 1

Given a permutation group G of degree n acting rank 3 on a set Ω determine all self-dual codes C of length n on which G acts transitively on the code coordinates.

- The rank of a permutation group G transitive on a set Ω is the number of orbits of G_ω, ω a point of Ω, in Ω.
- A transitive group G has rank 2 on the set Ω if and only if G is 2-transitive on Ω.
- G has rank 3 if and only if for every point ω in Ω, G_ω has two orbits besides G_ω.
- Rank 3 groups can be either primitive or imprimitive.

Self-Dual Codes

We consider binary self-dual codes invariant under permutation groups

- A binary linear code C is a subspace of \mathbb{F}_2^n
- The dual code C^{\perp} is defined as :

$$\mathcal{C}^{\perp} := \{ \mathbf{v} | \langle u, \mathbf{v}
angle = 0 ext{ for all } u \in \mathcal{C} \}$$

• The Hamming weight of a codeword $c \in C$ is

$$wt(c) := |\{i | c_i \neq 0\}|$$

• The minimum distance d(C) = d of a code C is the smallest of the distances between distinct codewords; i.e.

$$d(C) = \min\{d(v, w) | v, w \in C, v \neq w\}.$$

 A code C denoted [n, k, d]_q is said to be of length n, dimension k and minimum distance d over the field of q-elements.

- C can detect up to d-1 errors or correct up to $\lfloor (d-1)/2 \rfloor$ errors.
- C is self-orthogonal if $C \subset C^{\perp}$
- If $C = C^{\perp}$ the code is **self-dual**
- If a code has all its weights divisible by 4 then it is called doubly even(Type II)
- The length *n* of a doubly even code is a multiple of 8;

For a self-dual code *C* we have $\dim(C) = \frac{n}{2}$ and all codewords have even weight

For a self-dual code:

$$d \leq \begin{cases} 4\lfloor \frac{n}{24} \rfloor + 4, & \text{if } n \not\equiv 22 \pmod{24} \\ 4\lfloor \frac{n}{24} \rfloor + 6, & \text{if } n \equiv 22 \pmod{24} \end{cases}$$

If "=" then the code is called extremal

Module Structure

Let $G \leq \operatorname{Aut}(C)$

• For $x \in \mathbb{F}_q^n$ and a permutation $\sigma \in S_n$ we set

$$\sigma \mathbf{X} = (\mathbf{X}_{\sigma^{-1}(1)}, \mathbf{X}_{\sigma^{-1}(2)}, \dots \mathbf{X}_{\sigma^{-1}(n)}).$$
(1)

- Aut(C) = { $\sigma \in S_n | \sigma x \in C$ for all $x \in C$ }
- $C \leq \mathbb{F}_q^n$ as $\mathbb{F}G$ -modules
- $(\langle \sigma x, \sigma y \rangle = \langle x, y \rangle, \text{ for } x, y \in \mathbb{F}_q^n, \sigma \in G$
- C^{\perp} is also a $\mathbb{F}G$ -module
- Aut(C) = Aut(C^{\perp})
- $C^* = \operatorname{Hom}_{\mathbb{F}}(C, \mathbb{F})$ becomes a $\mathbb{F}G$ -module via $\sigma(f)(c) = f(\sigma^{-1}(c))$
- $\mathbb{F}_q^n/C^\perp \cong C^*$ as $\mathbb{F}G$ -modules

What is known ... thus far?

Example 1 (Extended cyclic code) $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7) - \text{cyclic shift, (8) is fixed.}$ $h_8 := \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\sigma} \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

TABLE 1: Known extremal self-dual doubly even codes

Length	8	24	32	40	48	72	80	\geq 3928
<i>d</i> (<i>C</i>)	4	8	8	8	12	16	16	
extremal	h ₈	G_{24}	5	16,470	QR ₄₈	?	≥ 4	0

Automorphism Group

- Aut $(h_8) = 2^3 : L_3(2)$
- $Aut(G_{24}) = M_{24}$
- Length 32: $L_2(31)$; $2^5:L_5(2)$; $2^8:S_8, (2^8:L_2(7)):2, 2^5:S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.
- Aut $(QR_{48}) = L_2(47)$.
- Sloane (1973): Is there a [72, 36, 16] self-dual code? Still open
- Extremal codes only known for n = 8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 112, 136

۲

$$136 \leq .?. \leq 3928$$

2-Transitive Automorphism Groups

Question 1

Given a permutation group G of degree n acting rank 2 on a set Ω determine all self-dual extremal codes C of length n on which G acts transitively on the code coordinates.

It is well-known that every 2-transitive group is primitive. By using CFSG, all finite 2-transitive groups are known.

- G = Aut(C) is 2-transitive
 - Use the structure of G
 - ★ The socle of *G* is simple or elementary abelian
 - ★ Degree of G = length of C ≤ 3928
 - ★ \Rightarrow Only few possibilities for G
 - Find all FG-modules of dimⁿ/₂
 - Find modules that are self-dual as codes
 - Check if the codes are extremal
 - ★ Use subgroups of G

2-Transitive Automorphism Groups

Table: Simple Socle				
Socle	n ¹	dim ⁿ 2mod	Extremal	
M ₂₄ (Mathieu)	24	Golay	yes	
HS (Higman-Sims)	176	none		
$A_n, n \ge 5$	n	none		
$PSL(d,q), d \geq 2$	4 possib.	none		
PSU(3,7)	344	none		
PSL(2,7 ³)	344	GQR code	no	
PSp(2d, 2)	6 possib.	none		
PSL(2, <i>p</i>)	<i>p</i> + 1	QR-codes	<i>n</i> ≤ 104 ²	
An	п	none		

 $^{1}8|n, n \le 3928$ $^{2}QR \text{ codes}$

Bernardo Rodrigues, rodrigues@ukzn.ac.z self-dual codes and rank 3 groups

< A >

2-Transitive Automorphism Groups

Extremal self-dual codes with a 2-transitive group have been classified

In

A. Malevich and W. Willems,

On the classification of the extremal self-dual codes over small fields with 2-transitive automorphism groups Des. Codes Cryptogr. 70 (2014), 69âĂS76

showed that

Theorem 2

Extremal codes C with 2-transitive automorphism are known: (i) QR codes of length 8, 24, 32, 48, 80 or 104: (ii) Reed-Muller code of length 32; (iii) Possibly a code of length n = 1024 with $E \rtimes PSL(2, 2^5) < Aut(C)$ Finally in

N. Chigira, M. Harada and M. Kitazume.
 On the classification of extremal doubly even self-dual codes with 2-transitive automorphism groups
 Des. Codes Cryptogr. 73 (2014), 33âĂŞ35.

showed that in fact

Theorem 3

There is no extremal self-dual code of length 1024.

< 3 > < 3

Results on automorphism groups of self-dual codes Chigira, Harada and Kitazume in

> N. Chigira, M. Harada and M. Kitazume, *Permutation groups and binary self-orthogonal codes.* J. Algebra, **309** (2007), 610-621

proposed a way of constructing self-orthogonal codes from permutation groups

Result 4.1 (Chigira, Harada and Kitazume, 2007)

If there exists a self-dual code *C*, then $C(G, \Omega)^{\perp} \subset C \subset C(G, \Omega)$. In particular, the code $\langle \operatorname{Fix}(\beta) | \beta \in I(G) \rangle$ is self-orthogonal.

The code $C(G, \Omega)$ invariant under a permutation group *G* on an *n*-element set Ω is defined as

 $C(G, \Omega) = \langle \operatorname{Fix}(\beta) | \beta \in I(G) \rangle^{\perp},$

where I(G) corresponds to the set of involutions of G and $Fix(\beta)$ is the set of fixed points of β on Ω .

Günther and Nebe, in

A. Günther and G. Nebe., Automorphisms of doubly even self-dual codes. Bull. London Math. Soc., **41** (2009), 769-778

showed that

Result 4.2 (Günther and Nebe, 2009)

Let $G \leq S_n$ and $k = \mathbb{F}_2$. Then there exists a self-dual code $C \leq k^n$ with $G \leq \operatorname{Aut}(C)$ if and only if every self-dual simple kG-module U occurs in the kG-module k^n with even multiplicity.

The next result deals with the existence of self-dual doubly-even codes invariant under permutation groups.

4 3 5 4 3

Result 4.3 (Günther and Nebe, 2009)

Let $G \leq S_n$ and $k = \mathbb{F}_2$. Then there is a self-dual doubly even code $C = C^{\perp} \leq k^n$ with $G \leq \operatorname{Aut}(C)$ if and only if the following three conditions are fulfilled: (i) $8 \mid n$; (ii) every self-dual composition factor of the kG-module k^n occurs with even multiplicity;

(iii) $G \leq A_n$.

< A >

We are interested in codes $C = C^{\perp} \leq \mathbb{F}_q^n$ such that $\mathbb{F}_q^n/C \cong C^*$ and $G \leq \operatorname{Aut}(C)$ a rank 3 group acts transitively on length of *C*.

 Consequentially: enumerate self-dual doubly even and extremal self-dual codes which have a rank 3 permutation group acting on them?

Result 5.1

- If G is a primitive rank 3 permutation group of finite degree n then one of the following holds:
- (a) Almost simple type: $S \subseteq G \leq Aut(S)$, where S = soc(G) is a nonabelian simple group;

(b) Grid type: $S \times S \trianglelefteq G \le S_0 \wr Z_2$, where S_0 is a 2-transitive group of degree n_0 , with $S \trianglelefteq S_0 \le \operatorname{Aut}(S)$, S nonabelian simple, and $n = n_0^2$; (c) Affine type: $G = SG_0$, where S is an elementary abelian p-group acting regularly on a vector space V, G_0 is an irreducible subgroup of $\operatorname{GL}_m(p)$ and G_0 has exactly 2 orbits on the nonzero vectors of V.

Table: Simple groups that can occur as a socle of a finite primitive rank 3 group with even degree *n*:

Action	Group	degree	subdegrees of non-trivial orbits
on unordered pairs	$A_m, m \ge 5$	$\frac{m(m-1)}{2}$	$\frac{2m-4}{(m-2)(m-3)}$
	P`L(2,8)	36	14 ² 21
	M ₁₂	66	20 45
	M ₂₄	276	44 231
on singular lines	$PSL(m, q)$ $m \ge 4$	$\frac{(q^m-1)(q^m-1-1)}{(q-1)^2(q+1)}$	$\frac{(q^{m-1}-q)(q+1)}{q-1}$ $\frac{(q^{m+2}-q^4)(q^{m-3}-1)}{(q-1)^2(q+1)}$ $q^3(q^2+1)$
	PSU(5, <i>q</i> ²)	$(q^5+1)(q^3+1)$	$q^{3}(q^{2}+1)$ q^{8}
on singular points	$ \begin{array}{c} \operatorname{PSp}(2m,q) \\ m \geq 2 \end{array} $	$\frac{q^{2m}-1}{q-1}$	$\begin{array}{c} q^{3}(q^{2}+1) \\ q^{8} \\ \hline (q^{2m-1}-q) \\ q^{2m-1} \\ \hline (q^{m-1}-1)(q^{m-1}+q) \\ \hline q^{2m-2} \\ \hline (q^{m-1}+1)(q^{m-1}-q) \\ \hline (q^{m-1}+1)(q^{m-1}-q) \\ \hline q^{2m-2} \\ \hline q^$
	$\begin{array}{c} P\Omega^+(2m,q)\\m\geq 3\end{array}$	$\frac{(q^m-1)(q^m-1+1)}{q-1}$	$\frac{(q^{m-1}-1)(q^{m-1}+q)}{q^{2m-2}}$
	$\begin{array}{c} P\Omega^{-}(2m, q) \\ m \geq 3 \end{array}$	$\frac{(q^m+1)(q^m-1-1)}{q-1}$	a^{2m-2}
	$\frac{P\Omega(2m+1, q)}{m \ge 2, \ q \text{ odd}}$	$\frac{q^{2m}-1}{q-1}$	$\frac{(q^{2m-1}-q)}{q^{2m-1}}$
	•		< 口 > < @ > < 注 > < 注 >

Bernardo Rodrigues, rodrigues@ukzn.ac.z

э

Table: Simple groups that can occur as a socle of a finite primitive rank 3 group with even degree *n*:

Action	Group	degree	subdegrees of non-trivial orbits
on singular 4-spaces	PΩ ⁺ (10, <i>q</i>)	$\frac{(q^8-1)(q^3+1)}{q-1}$	$\frac{q(q^5-1)(q^2+1)}{q^{q-1}}$ $\frac{q^6(q^5-1)}{q^{-1}}$ $\frac{q(q^8-1)(q^3+1)}{q^{-1}}$ $\frac{q(q^8-1)(q^4+1)}{q^{-1}}$ $(4^m - \epsilon)(4^{m-1} + \epsilon)$
on points of a building	E ₆ (q)	$\frac{(q^{12}-1)(q^9-1)}{(q^4-1)(q-1)}$	$\frac{q(q^8-1)(q^3+1)}{q-1}$ $\frac{q^8(q^5-1)(q^4+1)}{q-1}$
on an orbit of quadratic forms	$S_p(2m, 4)$ on ε -forms	$2^{2m-1}(2^{2m}+\varepsilon)$	$\frac{(4^m-\varepsilon)(4^{m-1}+\varepsilon)}{4^{m-1}(4^m-\varepsilon)}$
	G ₂ (4) on elliptic forms	2016	975 1040
	$\Gamma S_p(2m, 8)$ on ε -forms	$2^{3m-1}(2^{3m}+\varepsilon)$	$\frac{(8^{m-1}+\varepsilon)(8^m-\varepsilon)}{3\cdot 8^{m-1}(8^m-\varepsilon)}$
	G ₂ (8):3 on elliptic forms	130816	32319 98496
	G ₂ (2) on hyperbolic forms	36	14 21
on partitions	A_{10} on 5 5 parttions	126	25 100
	M ₂₄ on dodecads	1288	792 495
on blocks of designs	M ₂₂ on heptads	176	105 70
on hyperovals	PSL(3, 4)	56	45 10
	· · · · ·	4 🗆	

Bernardo Rodrigues, rodrigues@ukzn.ac.z

Table: Simple groups that can occur as a socle of a finite primitive rank 3 group with even degree *n*:

Action	Group	degree	subdegrees of non-trivial orbits
sporadic rank 3 representation	J ₂	100	36 63
	HS	100	22 77
	Suz	1782	416 1365
	Co2	2300	891 1408
	Ru	4060	1755 2304
	G ₂ (4) on J ₂	416	100 315
	PSU(3, 5) on Hoffman-Singleton graph	50	7 42
	PSU(4, 3) on PSL(3, 4)	162	56 105

A B > < B</p>

Imprimitive rank 3 groups

Result 5.2 (Devillers et al., 2011)

Suppose G is an imprimitive group acting on a set $\Omega = B \times \{1, ..., n\}$ with

(i) G_B^B a 2-transitive almost simple group with socle S;

(ii) $G^{\mathcal{B}} \leq S_n$ a 2-transitive group.

Then G has rank 3 if and only if one of the following holds:

(1)
$$S^n \leq G$$
;

(2) G is quasiprimitive and rank 3;

(3) n = 2 and $G = M_{10}$, PGL(2,9) or Aut(A_6) acting on 12 points;

(4) n = 2 and $G = Aut(M_{12})$ acting on 24 points.

A permutation group is called quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive group is quasiprimitive. If *G* is quasiprimitive and imprimitive then it acts faithfully on any system of imprimitivity.

Result 5.3 (Devillers et al., 2011)

A quasiprimitive rank 3 group is either primitive or imprimitive and almost simple.

< 🗇 🕨

The quasiprimitive imprimitive rank 3 groups that can occur with even degree are listed in Table 5.

Table: Quasiprimititive imprimitive rank 3 groups that can occur with even degree *n*:

G	$ \mathcal{B} $	B	G_B^B	extra conditions
M ₁₁	11	2	C ₂	
$G \geq PSL(2, q)$	<i>q</i> + 1	2	<i>C</i> ₂	$\begin{array}{l} q=p^t\geq 4, t\geq 1, q\equiv 1 \ (\mathrm{mod}\ 4), \\ \text{or}\ q\equiv 3 \ (\mathrm{mod}\ 4) \ \text{and}\ G\geq \mathrm{PGL}(2,q), \\ \text{or}\ G/(G\cap \mathrm{PGL}(2,q)) \ \text{is even} \end{array}$
$G \geq \mathrm{PSL}(m,q)$	$\frac{q^m-1}{q-1}$	s	AGL(1, <i>s</i>)	$ \begin{array}{l} q = p^t \geq 4, t \geq 1, m \geq 3, \ \text{s prime}, \ ord(p^l \mod s) = s - 1, \\ ds (q-1), \ ds (r + \lambda d)\frac{q-1}{p^l-1} \ \text{for some} \ \lambda \in [0, s-1], \ \text{where} \\ d r\frac{(q-1)}{(p^l-1)}, \ \text{and} \ (sd, s) = d \end{array} $
PGL(3, 4)	21	6	PSL(2, 5)	
PFL(3, 4)	21	6	PGL(2, 5)	
PSL(5, 2)	31	8	A ₈	
P`L(3, 8)	73	28	Ree(3)	
PSL(3, 2)	7	2	C ₂	

< ロ > < 同 > < 回 > < 回 >

- A primitive rank 3 group *G* has a unique minimal normal subgroup *S*, called its socle, and *S* can be a non-abelian simple group, a direct product of two isomorphic non-abelian simple groups, or elementary abelian.
- When *S* is elementary abelian, *G* is said to be of affine type; and when *S* is a direct product of two non-abelian simple groups, *G* is said to be of product action type.
- In this talk we are interested in situations where the group *S* is a non-abelian simple group and *G* is of almost simple type.
- An almost simple group is a group *G* containing a non-abelian simple group *S* such that *S* ≤ *G* ≤ Aut(*G*).

-

イロト イポト イラト イラト

Rank 3 Automorphism Groups

• G = Aut(C) is rank 3 of almost simple type

- Use the structure of G
 - ★ The socle of *G* is simple
 - ★ Degree of G = even length of C
 - $\star \Rightarrow$ Narrows down the possibilities for G
- Find all kG-modules of dimⁿ/₂: rely on known studies of cross (or defining) characteristic description of rank 3 perm modules
- Find modules that are self-dual as codes
- Check if the codes are doubly even
- Oheck if the codes are extremal

Our results

Theorem 4 (Rodrigues, 2017)

Let G be a finite permutation group of almost simple type in its natural rank 3 action on a set Ω of even degree n. Let k be an algebraically closed field of characteristic 2 and $k\Omega$ the kG-permutation module of G on Ω . Let $C \leq k\Omega$ be a self-dual code of length n. Then the following occur:

(i) Assume that G is a primitive group acting transitively on the coordinates of C. Then G is an automorphism group of C if and only if G is isomorphic to one of the groups: PSp(2m, q) of degree $\frac{q^{2m}-1}{q-1}$, $m \ge 2$ and $q \equiv -1 \pmod{8}$, HJ, HJ:2 of degree 100 or Ru of degree 4060 and C is a code with parameters: $[\frac{q^{2m}-1}{q-1}, \frac{q^{2m}-1}{2(q-1)}, d]_2$ with $q \equiv -1 \pmod{8}$ and $q + 1 \le d \le 2q^{m-2}(q+1)$.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Our results

Theorem 5 (Rodrigues, 2017 (continued))

(i) ... $[100, 50, 10]_2$ (unique), $[100, 50, 16]_2$ (two inequivalent codes), $[100, 50, 10]_2$ (unique), and $[4060, 2030, d]_2$ with $d \le 1756$ (three inequivalent codes), respectively.

(ii) Assume that G is an imprimitive group of degree at most 4095 acting transitively on the coordinates of C. Then G is an automorphism group of C if and only if G is isomorphic to one of the groups: 2^{11} S_{11} of degree 22, $Aut(M_{12})$ of degree 24, PSL(4, 9) of degree 1640, PFL(3,4) of degree 126, or PSL(3,2) of degree 14 and C is a code with parameters: [22, 11, 2]₂ (unique), [24, 12, 8]₂ (unique), $[1640, 820, d]_2$, d < 276 (two equivalent codes), one of 1104 self-dual codes of length 126 distributed as follows: [126, 63, 2]₂ (3 inequivalent codes), [126, 63, 4]₂ (15 inequivalent codes), [126, 63, 6]₂ (114 inequivalent codes) and [126, 63, 8]₂ (972 inequivalent codes) and a unique [14, 7, 2]₂, respectively.

ヘロン 人間 とくほう くほう

Our results

Theorem 6 (Rodrigues, 2017)

Let *C* be a self-dual doubly even code admitting a rank 3 automorphism group *G* of almost simple type. Then *C* is a code with parameters $[\frac{q^{2m}-1}{q-1}, \frac{q^{2m}-1}{2(q-1)}, d]_2$ with $q \equiv -1 \pmod{8}$, $[1640, 820, d]_2, d < 276$ or the extended binary Golay code and *G* is isomorphic to PSp(2m, q), $m \ge 2$ and $q \equiv -1 \pmod{8}$, PSL(4, 9), and Aut(M₁₂), respectively.

Theorem 7 (Rodrigues, 2017)

Let C be an extremal self-dual code admitting a rank 3 automorphism group G of almost simple type. Then C is isomorphic to the extended binary Golay code and G isomorphic to $Aut(M_{12})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 8

For $G = \operatorname{Ru}$, let $|\Omega| = 4060$ where Ω is the set of cosets of $2_{F_4(2)}$ in Ru. The 2-modular character table of the group Ru is completely known (Parker and Wilson' 98). It follows from it that the irreducible 28-dimensional \mathbb{F}_2 -representation is unique. Using decomposition matrices and the \mathbb{ATLAS} (see p. 126) we obtain that the 2-Brauer permutation character of this representation is given as

$$arphi_{4060} = 8arphi_1 + 2arphi_{28} + 4arphi_{376} + 2arphi_{1246}$$

From this we see that there at least two linear combinations of the Brauer characters which give a submodule of dimension 2030, namely $\varphi_{2030_1} = 4\varphi_1 + \varphi_{28_1} + 2\varphi_{376} + \varphi_{1246_1}$ and $\varphi_{2030_2} = 4\varphi_1 + \varphi_{28_2} + 4\varphi_{376} + \varphi_{1246_2}$. However, through computations with MAGMA we find three submodules of dimension 2030 in the permutation module of degree 4060 of the Rudvalis group over $k = \mathbb{F}_2$.

ヘロン 人間 とくほ とくほう

Example 9

Continuation of Example 8

Proposition 5.4

Up to isomorphism there exist 3 self-dual codes of length 4060 invariant under $G = \operatorname{Ru}$ over \mathbb{F}_2 .

< 3 > < 3

< 🗇 🕨

Questions for which we have answers

- Classify all binary self-dual codes invariant under a rank 3 group of grid type
- Classify all binary self-dual codes invariant under 2-transitive groups

Questions for which we have partial answers

- Classify all binary self-dual codes invariant under a rank 3 group of affine type
- Classify all self-dual ternary codes invariant under rank-3 permutation groups

< A >

4 3 5 4 3

Some open problems

- Reduce the bound $n \le 3928$ for extremal doubly even codes
- Let *G* be a finite orthogonal or unitary group and *k* be an algebraically closed field of defining characteristic. Describe the submodule structure of the permutation *kG*-module for *G* acting naturally on nonsingular points of its standard module