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G , a finite group
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k = k with char(k) = p

b, a block (indecomposable summand) of kG

M a simple kG -module =⇒ Mb = b, some b “M ∈ b”

How many such M in each b?
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Fusion systems

S , a Sylow p-subgroup of G

F = FS(G ) fusion system (category), objects: {P ≤ S}, morphisms:
G -conjugation maps

P ≤ S is p-centric in G ⇐⇒ Z (P) ∈ Sylp(CG (P))
P ≤ S is p-radical in G ⇐⇒ Op(NG (P)/PCG (P)) = 1

Both properties can be recovered from the category F
Fc := {P ≤ S | P is p-centric}
Fcr := {P ≤ S | P is p-centric and p-radical}
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Alperin’s Weight Conjecture (for principal blocks)

Suppose k ∈ b (principal block)

A, an algebra =⇒ z(A): number of projective simple A-modules

AWC for b (Kessar):

Conjecture (Alperin)

The number of simples in b is

ℓ(F) :=
∑

P∈Fcr/F

z(k(NG (P)/PCG (P)).

Sum runs over a set of F-isomorphism class representatives
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An example

Suppose G = Sym(np), 3 ≤ p ≤ n < 2p, b principal block

p(n) = # partitions of n

Lemma

The number of simple b-modules is equal to∑
(n)

p(n1)p(n2) · · ·p(np−1)

where the sum runs over (n) = (n1, · · · , np−1) with nj > 0 and∑p−1
j=1 nj = n.

e.g., n = p = 3, (3) = (n1, n2) ∈ {(0, 3), (1, 2), (2, 1), (3, 0)} so we
get 1 · 3 + 1 · 2 + 2 · 1 + 3 · 1 = 10 simple b-modules
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An example

S ∈ Sylp(G ) has an abelian subgroup A of index p and order pn

Fcr = {S ,A} ∪W S , W abelian of order pn−p+2

P = S =⇒ NG (P)/PCG (P) ∼= Cp−1 ≀ Sym(n − p)× (Cp−1)
2

P = W =⇒ NG (P)/PCG (P) ∼= Cp−1 ≀ Sym(n − p)× GL2(p)
P = A =⇒ NG (P)/PCG (P) ∼= Cp−1 ≀ Sym(n)

Let cp(n) denote the number of p-cores of size n

Lemma

If A = k(Cp−1 ≀ Sym(n)) then

z(A) =
∑
(n)

cp(n1) . . . cp(np−1)

where the sum runs over (n) = (n1, · · · , np−1) with nj > 0 and∑p−1
j=1 nj = n.
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An example

e.g., n = p = 3:

P = S =⇒ z(k(C2 × C2)) = 4
P = W =⇒ z(kGL2(3)) = 2
P = A =⇒ z(k(C2 ≀ Sym(3)) = 4

So ℓ(F3(Sym(9)) = 4 + 2 + 4 = 10, as predicted by AWC!

In general, combine the lemmas with the identity
p(n)− cp(n) = p(n − p) · p to see that AWC holds
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p-local blocks

What about a non-principal block, b?

b =⇒ (F , α), F a saturated fusion system on the defect group of b
and

α ∈ lim
[S(Fc)]

A2
F

(Linckelmann) where,

[S(F c)]: poset of F-iso classes of chains σ = (R0 < R1 · · · < Rn) of
elements in F c

A2
F : covariant functor

A2
F : σ 7→ H2(AutF (σ), k

×)

AutF (σ) 6 AutF (Rn): subgroup preserving Ri

e.g. b is principal =⇒ α = 0
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p-local blocks

Call (F , α) a p-local block

If (F , α) arises from a block b,

ℓ(F , α) :=
∑

Q∈Fcr/F

z(kαQ
OutF (Q)),

counts the number of b-weights

kαQ
OutF (Q): algebra obtained from the group algebra k OutF (Q) by

twisting with αQ

What if (F , α) does not come from a block?
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Gluing problem

Always a natural map

H2(Fc , k×) → lim
[S(Fc)]

A2
F

Linckelmann asks the following in the case of blocks:

Conjecture (Gluing problem)

Is this map always surjective?

Libman: true for all fusion systems of Sn, An and GLn(q), q ̸= p

Is there an exotic counterexample to the gluing problem?
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Malle–Robinson conjecture

S a p-group

s(S) = rank of largest elementary abelian subquotient (section)

Conjecture (Malle–Robinson)

# simple b-modules ≤ ps(S)

AWC suggests that the following generalized version should also hold

Conjecture

Let (F , α) be a p-local block with F is a saturated fusion system on S.
Then ℓ(F , α) ≤ ps(S).

Work of Malle–Robinson suggests that the conjecture holds for many
non-exotic pairs (F , α)
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Solomon–Benson fusion systems

Goal: gather more evidence for these conjectures

Many examples of exotic fusion systems, e.g.

when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
when S is a Sylow 7-subgroup of the Monster (Parker–S)
when p = 2: Solomon–Benson fusion systems Sol(q), q odd
(Aschbacher–Chermak), (Levi–Oliver), (Dwyer)

Conjecturally the Solomon–Benson systems are the only exotic simple
2-fusion systems

Morally Sol(q) is a group of Lie-type in char. q, a close relative of
Spin7(q)

Do the aforementioned representation-theoretic invariants reflect this?
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...yes

We may assume q = 52
k
.

When k = 0, the elements of Sol(q)cr are essentially given by
Chermak–Oliver–Shpectorov:

P |P| OutF (P)

S 210 1

R 27 A7

R∗ 26 S6
RR∗ 29 S3
Q 28 (C3)

3 o (C2 × S3)

QR∗ 29 S3

QR 29 (C3 × C3)
−1
o C2

CS(U) 29 S3
E 24 GL4(2)

CS(Ω1(T )) 27 GL3(2)
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and when k > 0?

Aschbacher–Chermak essentially list elements of Sol(q)cr but:

their classification contains some errors;

Sol(q)-automorphism groups are not given explicitly
the list of groups is quite different to the k = 0 case

Putting this all together we prove:

Theorem (Lynd-S)

Let F = Sol(q) be a Benson-Solomon system. Then

lim
[S(Fcr )]

A2
F
∼= 0.

Moreover, the natural map

H2(Fcr , k×) −→ lim
[S(Fcr )]

A2
F

is an isomorphism in all cases.
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Calculating ℓ(Sol(q), 0)

We can calculate the number of ‘weights’ for the unique p-local block
(F , 0) supported by F :

Theorem (Lynd-S)

For all q > 2, we have
ℓ(Sol(q), 0) = 12.

Note that:

Sol(−) is behaving like a connected reductive integral group scheme G!
(assuming AWC, ℓ(Fp(G(q)), 0) is independent of q)
The generalized Malle–Robinson conjecture holds for Sol(q)
ℓ(F2(Spin7(q)), 0) = 12. Is there a way to construct ‘modules’ for
Sol(q) from modules in the principal 2-block of Spin7(q)?
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