The number of simple modules associated to Sol(q)

Jason Semeraro

Heilbronn Institute University of Leicester University of Bristol

8th August 2017

This is joint work with Justin Lynd.

• Blocks and fusion systems

- Blocks and fusion systems
- Alperin's weight conjecture

- Blocks and fusion systems
- Alperin's weight conjecture
- An example

- Blocks and fusion systems
- Alperin's weight conjecture
- An example
- *p*-local blocks and the gluing problem

- Blocks and fusion systems
- Alperin's weight conjecture
- An example
- *p*-local blocks and the gluing problem
- Malle-Robinson Conjecture

- Blocks and fusion systems
- Alperin's weight conjecture
- An example
- *p*-local blocks and the gluing problem
- Malle-Robinson Conjecture
- Sol(q)

• G, a finite group

- G, a finite group
- p, a prime

- G, a finite group
- p, a prime
- $k = \overline{k}$ with char(k) = p

- G, a finite group
- p, a prime
- $k = \overline{k}$ with char(k) = p
- b, a block (indecomposable summand) of kG

- G, a finite group
- p, a prime
- $k = \overline{k}$ with char(k) = p
- b, a block (indecomposable summand) of kG
- *M* a simple kG-module $\implies Mb = b$, some b " $M \in b$ "

- G, a finite group
- p, a prime
- $k = \overline{k}$ with char(k) = p
- b, a block (indecomposable summand) of kG
- *M* a simple kG-module $\implies Mb = b$, some b " $M \in b$ "
- How many such *M* in each *b*?

• S, a Sylow *p*-subgroup of G

- S, a Sylow p-subgroup of G
- $\mathcal{F} = \mathcal{F}_S(G)$ fusion system (category), objects: $\{P \leq S\}$, morphisms: *G*-conjugation maps

- S, a Sylow p-subgroup of G
- $\mathcal{F} = \mathcal{F}_{S}(G)$ fusion system (category), objects: $\{P \leq S\}$, morphisms: *G*-conjugation maps
 - $P \leq S$ is p-centric in $G \iff Z(P) \in Syl_p(C_G(P))$

- S, a Sylow p-subgroup of G
- $\mathcal{F} = \mathcal{F}_{S}(G)$ fusion system (category), objects: $\{P \leq S\}$, morphisms: *G*-conjugation maps
 - $P \leq S$ is *p*-centric in $G \iff Z(P) \in Syl_p(C_G(P))$
 - $P \leq S$ is *p*-radical in $G \iff O_p(N_G(P)/PC_G(P)) = 1$

- S, a Sylow p-subgroup of G
- *F* = *F*_S(*G*) fusion system (category), objects: {*P* ≤ *S*}, morphisms: *G*-conjugation maps
 - $P \leq S$ is *p*-centric in $G \iff Z(P) \in Syl_p(C_G(P))$
 - $P \leq S$ is *p*-radical in $G \iff O_p(N_G(P)/PC_G(P)) = 1$
- \bullet Both properties can be recovered from the category ${\cal F}$

- S, a Sylow p-subgroup of G
- $\mathcal{F} = \mathcal{F}_{S}(G)$ fusion system (category), objects: $\{P \leq S\}$, morphisms: *G*-conjugation maps
 - $P \leq S$ is *p*-centric in $G \iff Z(P) \in Syl_p(C_G(P))$
 - $P \leq S$ is *p*-radical in $G \iff O_p(N_G(P)/PC_G(P)) = 1$
- \bullet Both properties can be recovered from the category ${\cal F}$
- $\mathcal{F}^c := \{ P \leq S \mid P \text{ is } p \text{-centric} \}$

- S, a Sylow p-subgroup of G
- *F* = *F*_S(*G*) fusion system (category), objects: {*P* ≤ *S*}, morphisms: *G*-conjugation maps
 - $P \leq S$ is *p*-centric in $G \iff Z(P) \in Syl_p(C_G(P))$
 - $P \leq S$ is *p*-radical in $G \iff O_p(N_G(P)/PC_G(P)) = 1$
- \bullet Both properties can be recovered from the category ${\cal F}$
- $\mathcal{F}^c := \{ P \leq S \mid P \text{ is } p \text{-centric} \}$
- $\mathcal{F}^{cr} := \{ P \leq S \mid P \text{ is } p \text{-centric and } p \text{-radical} \}$

Alperin's Weight Conjecture (for principal blocks)

• Suppose $k \in b$ (principal block)

Alperin's Weight Conjecture (for principal blocks)

- Suppose $k \in b$ (principal block)
- A, an algebra $\implies z(A)$: number of projective simple A-modules

Alperin's Weight Conjecture (for principal blocks)

- Suppose $k \in b$ (principal block)
- A, an algebra $\implies z(A)$: number of projective simple A-modules
- AWC for *b* (Kessar):

Conjecture (Alperin)

The number of simples in b is

$$\ell(\mathcal{F}) := \sum_{P \in \mathcal{F}^{cr}/\mathcal{F}} z(k(N_G(P)/PC_G(P)).$$

• Sum runs over a set of \mathcal{F} -isomorphism class representatives

• Suppose G = Sym(np), $3 \le p \le n < 2p$, b principal block

- Suppose G = Sym(np), $3 \le p \le n < 2p$, b principal block
- $\mathbf{p}(n) = \#$ partitions of n

- Suppose G = Sym(np), $3 \le p \le n < 2p$, b principal block
- $\mathbf{p}(n) = \#$ partitions of n

Lemma

The number of simple b-modules is equal to

$$\sum_{(n)} \mathbf{p}(n_1) \mathbf{p}(n_2) \cdots \mathbf{p}(n_{p-1})$$

where the sum runs over $(n) = (n_1, \dots, n_{p-1})$ with $n_j \ge 0$ and $\sum_{j=1}^{p-1} n_j = n$.

• e.g., n = p = 3, $(3) = (n_1, n_2) \in \{(0, 3), (1, 2), (2, 1), (3, 0)\}$ so we get $1 \cdot 3 + 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 1 = 10$ simple *b*-modules

• $S \in Syl_p(G)$ has an abelian subgroup A of index p and order p^n

S ∈ Syl_p(G) has an abelian subgroup A of index p and order pⁿ
F^{cr} = {S, A} ∪ W^S, W abelian of order p^{n-p+2}

- S ∈ Syl_p(G) has an abelian subgroup A of index p and order pⁿ
 F^{cr} = {S,A} ∪ W^S, W abelian of order p^{n-p+2}
 - $P = S \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n-p) \times (C_{p-1})^2$

- S ∈ Syl_p(G) has an abelian subgroup A of index p and order pⁿ
 F^{cr} = {S, A} ∪ W^S, W abelian of order p^{n-p+2}
 - $P = S \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n-p) \times (C_{p-1})^2$

•
$$P = W \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n-p) \times \operatorname{GL}_2(p)$$

S ∈ Syl_p(G) has an abelian subgroup A of index p and order pⁿ
F^{cr} = {S, A} ∪ W^S, W abelian of order p^{n-p+2}
P = S ⇒ N_G(P)/PC_G(P) ≅ C_{p-1} ≥ Sym(n-p) × (C_{p-1})²
P = W ⇒ N_G(P)/PC_G(P) ≅ C_{p-1} ≥ Sym(n-p) × GL₂(p)
P = A ⇒ N_G(P)/PC_G(P) ≅ C_{p-1} ≥ Sym(n)

- $S \in \operatorname{Syl}_p(G)$ has an abelian subgroup A of index p and order p^n • $\mathcal{F}^{cr} = \{S, A\} \cup W^S$, W abelian of order p^{n-p+2} • $P = S \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n-p) \times (C_{p-1})^2$ • $P = W \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n-p) \times \operatorname{GL}_2(p)$ • $P = A \Longrightarrow N_G(P)/PC_G(P) \cong C_{p-1} \wr \operatorname{Sym}(n)$
- Let $c_p(n)$ denote the number of *p*-cores of size *n*

Lemma

If $A = k(C_{p-1} \wr Sym(n))$ then

$$z(A) = \sum_{(n)} c_{\rho}(n_1) \dots c_{\rho}(n_{\rho-1})$$

where the sum runs over $(n) = (n_1, \cdots, n_{p-1})$ with $n_j \ge 0$ and $\sum_{j=1}^{p-1} n_j = n$.

• e.g.,
$$n = p = 3$$
:
• $P = S \Longrightarrow z(k(C_2 \times C_2)) = 4$

• e.g.,
$$n = p = 3$$
:
• $P = S \Longrightarrow z(k(C_2 \times C_2)) = 4$
• $P = W \Longrightarrow z(kGL_2(3)) = 2$
• e.g.,
$$n = p = 3$$
:
• $P = S \Longrightarrow z(k(C_2 \times C_2)) = 4$
• $P = W \Longrightarrow z(kGL_2(3)) = 2$
• $P = A \Longrightarrow z(k(C_2 \wr Sym(3)) = 4$

• e.g.,
$$n = p = 3$$
:
• $P = S \Longrightarrow z(k(C_2 \times C_2)) = 4$
• $P = W \Longrightarrow z(kGL_2(3)) = 2$
• $P = A \Longrightarrow z(k(C_2 \wr \text{Sym}(3)) = 4$

• So $\ell(\mathcal{F}_3(\mathsf{Sym}(9)) = 4 + 2 + 4 = 10$, as predicted by AWC!

• e.g.,
$$n = p = 3$$
:
• $P = S \Longrightarrow z(k(C_2 \times C_2)) = 4$
• $P = W \Longrightarrow z(kGL_2(3)) = 2$
• $P = A \Longrightarrow z(k(C_2 \wr \text{Sym}(3)) = 4$

• So $\ell(\mathcal{F}_3(Sym(9)) = 4 + 2 + 4 = 10$, as predicted by AWC!

• In general, combine the lemmas with the identity $\mathbf{p}(n) - c_p(n) = \mathbf{p}(n-p) \cdot p$ to see that AWC holds

• What about a non-principal block, b?

- What about a non-principal block, b?
- $b \Longrightarrow (\mathcal{F}, \alpha)$, \mathcal{F} a saturated fusion system on the defect group of b and

$$\alpha \in \lim_{[S(\mathcal{F}^c)]} \mathcal{A}_{\mathcal{F}}^2$$

(Linckelmann) where,

- What about a non-principal block, b?
- $b \Longrightarrow (\mathcal{F}, \alpha)$, \mathcal{F} a saturated fusion system on the defect group of b and

$$\alpha \in \lim_{[S(\mathcal{F}^c)]} \mathcal{A}_{\mathcal{F}}^2$$

(Linckelmann) where,

[S(F^c)]: poset of F-iso classes of chains σ = (R₀ < R₁ ··· < R_n) of elements in F^c

- What about a non-principal block, b?
- $b \Longrightarrow (\mathcal{F}, \alpha)$, \mathcal{F} a saturated fusion system on the defect group of b and

$$\alpha \in \lim_{[S(\mathcal{F}^c)]} \mathcal{A}_{\mathcal{F}}^2$$

(Linckelmann) where,

- $[S(\mathcal{F}^c)]$: poset of \mathcal{F} -iso classes of chains $\sigma = (R_0 < R_1 \dots < R_n)$ of elements in \mathcal{F}^c
- $\mathcal{A}^2_{\mathcal{F}}$: covariant functor

$$\mathcal{A}^2_{\mathcal{F}}: \sigma \mapsto H^2(\operatorname{Aut}_{\mathcal{F}}(\sigma), k^{\times})$$

- What about a non-principal block, b?
- $b \Longrightarrow (\mathcal{F}, \alpha)$, \mathcal{F} a saturated fusion system on the defect group of b and

$$\alpha \in \lim_{[S(\mathcal{F}^c)]} \mathcal{A}_{\mathcal{F}}^2$$

(Linckelmann) where,

- $[S(\mathcal{F}^c)]$: poset of \mathcal{F} -iso classes of chains $\sigma = (R_0 < R_1 \dots < R_n)$ of elements in \mathcal{F}^c
- $\mathcal{A}^2_{\mathcal{F}}$: covariant functor

$$\mathcal{A}^2_{\mathcal{F}}: \sigma \mapsto H^2(\operatorname{Aut}_{\mathcal{F}}(\sigma), k^{\times})$$

• $\operatorname{Aut}_{\mathcal{F}}(\sigma) \leq \operatorname{Aut}_{\mathcal{F}}(R_n)$: subgroup preserving R_i

• e.g. b is principal $\Longrightarrow \alpha = 0$

• Call (\mathcal{F}, α) a *p*-local block

- Call (\mathcal{F}, α) a *p*-local block
- If (\mathcal{F}, α) arises from a block *b*,

$$\ell(\mathcal{F}, lpha) := \sum_{Q \in \mathcal{F}^{cr}/\mathcal{F}} z(k_{lpha_Q} \operatorname{Out}_{\mathcal{F}}(Q)),$$

counts the number of *b*-weights

- Call (\mathcal{F}, α) a *p*-local block
- If (\mathcal{F}, α) arises from a block *b*,

$$\ell(\mathcal{F}, \alpha) := \sum_{Q \in \mathcal{F}^{\mathrm{cr}}/\mathcal{F}} z(k_{\alpha_Q} \operatorname{Out}_{\mathcal{F}}(Q)),$$

counts the number of *b*-weights

 k_{αQ} Out_F(Q): algebra obtained from the group algebra k Out_F(Q) by twisting with α_Q

- Call (\mathcal{F}, α) a *p*-local block
- If (\mathcal{F}, α) arises from a block *b*,

$$\ell(\mathcal{F}, \alpha) := \sum_{Q \in \mathcal{F}^{\mathrm{cr}}/\mathcal{F}} z(k_{\alpha_Q} \operatorname{Out}_{\mathcal{F}}(Q)),$$

counts the number of *b*-weights

- k_{αQ} Out_F(Q): algebra obtained from the group algebra k Out_F(Q) by twisting with α_Q
- What if (\mathcal{F}, α) does not come from a block?

• Always a natural map

$$H^2(\mathcal{F}^c,k^{ imes})
ightarrow \lim_{[\mathcal{S}(\mathcal{F}^c)]} \mathcal{A}^2_{\mathcal{F}}$$

Always a natural map

$$H^2(\mathcal{F}^c,k^{ imes})
ightarrow \lim_{[S(\mathcal{F}^c)]} \mathcal{A}^2_{\mathcal{F}}$$

• Linckelmann asks the following in the case of blocks:

Conjecture (Gluing problem)

Is this map always surjective?

Always a natural map

$$H^2(\mathcal{F}^c,k^{\times}) \to \lim_{[S(\mathcal{F}^c)]} \mathcal{A}^2_{\mathcal{F}}$$

• Linckelmann asks the following in the case of blocks:

Conjecture (Gluing problem)

Is this map always surjective?

• Libman: true for all fusion systems of S_n , A_n and $\operatorname{GL}_n(q)$, $q \neq p$

Always a natural map

$$H^2(\mathcal{F}^c,k^{\times}) \to \lim_{[S(\mathcal{F}^c)]} \mathcal{A}^2_{\mathcal{F}}$$

• Linckelmann asks the following in the case of blocks:

Conjecture (Gluing problem)

Is this map always surjective?

- Libman: true for all fusion systems of S_n , A_n and $GL_n(q)$, $q \neq p$
- Is there an exotic counterexample to the gluing problem?

Malle-Robinson conjecture

- S a p-group
- s(S) = rank of largest elementary abelian subquotient (section)

- S a p-group
- s(S) = rank of largest elementary abelian subquotient (section)

Conjecture (Malle-Robinson)

simple *b*-modules $\leq p^{s(S)}$

- S a *p*-group
- s(S) = rank of largest elementary abelian subquotient (section)

Conjecture (Malle-Robinson)

simple b-modules $\leq p^{s(S)}$

AWC suggests that the following generalized version should also hold

Conjecture

Let (\mathcal{F}, α) be a p-local block with \mathcal{F} is a saturated fusion system on S. Then $\ell(\mathcal{F}, \alpha) \leq p^{s(S)}$.

• Work of Malle–Robinson suggests that the conjecture holds for many non-exotic pairs (\mathcal{F}, α)

• Goal: gather more evidence for these conjectures

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
 - when S is a Sylow 7-subgroup of the Monster (Parker–S)

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
 - when S is a Sylow 7-subgroup of the Monster (Parker–S)
 - when p = 2: Solomon-Benson fusion systems Sol(q), q odd (Aschbacher-Chermak), (Levi-Oliver), (Dwyer)

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
 - when S is a Sylow 7-subgroup of the Monster (Parker–S)
 - when p = 2: Solomon-Benson fusion systems Sol(q), q odd (Aschbacher-Chermak), (Levi-Oliver), (Dwyer)
- Conjecturally the Solomon–Benson systems are the only exotic simple 2-fusion systems

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
 - when S is a Sylow 7-subgroup of the Monster (Parker–S)
 - when p = 2: Solomon-Benson fusion systems Sol(q), q odd (Aschbacher-Chermak), (Levi-Oliver), (Dwyer)
- Conjecturally the Solomon–Benson systems are the only exotic simple 2-fusion systems
- Morally Sol(q) is a group of Lie-type in char. q, a close relative of Spin₇(q)

- Goal: gather more evidence for these conjectures
- Many examples of exotic fusion systems, e.g.
 - when p > 2 and S has an abelian maximal subgroup (Craven–Oliver–S)
 - when S is a Sylow 7-subgroup of the Monster (Parker–S)
 - when p = 2: Solomon-Benson fusion systems Sol(q), q odd (Aschbacher-Chermak), (Levi-Oliver), (Dwyer)
- Conjecturally the Solomon–Benson systems are the only exotic simple 2-fusion systems
- Morally Sol(q) is a group of Lie-type in char. q, a close relative of Spin₇(q)
- Do the aforementioned representation-theoretic invariants reflect this?

• We may assume $q = 5^{2^k}$.

- We may assume $q = 5^{2^k}$.
- When k = 0, the elements of Sol(q)^{cr} are essentially given by Chermak–Oliver–Shpectorov:

Р	P	$Out_\mathcal{F}(P)$
5	2 ¹⁰	1
R	27	A ₇
R*	2 ⁶	S_6
RR*	2 ⁹	S_3
Q	2 ⁸	$(C_3)^3 \rtimes (C_2 \times S_3)$
QR*	2 ⁹	<i>S</i> ₃
QR	2 ⁹	$(C_3 \times C_3) \stackrel{-1}{\rtimes} C_2$
$C_{S}(U)$	2 ⁹	<i>S</i> ₃
E	2 ⁴	$GL_4(2)$
$C_{S}(\Omega_{1}(T))$	27	$GL_{3}(2)$

- Aschbacher–Chermak essentially list elements of $Sol(q)^{cr}$ but:
 - their classification contains some errors;

- Aschbacher–Chermak essentially list elements of $Sol(q)^{cr}$ but:
 - their classification contains some errors;
 - Sol(q)-automorphism groups are not given explicitly

- Aschbacher–Chermak essentially list elements of $Sol(q)^{cr}$ but:
 - their classification contains some errors;
 - Sol(q)-automorphism groups are not given explicitly
 - the list of groups is quite different to the k = 0 case

- Aschbacher–Chermak essentially list elements of $Sol(q)^{cr}$ but:
 - their classification contains some errors;
 - Sol(q)-automorphism groups are not given explicitly
 - the list of groups is quite different to the k = 0 case
- Putting this all together we prove:

Theorem (Lynd-S)

Let $\mathcal{F} = Sol(q)$ be a Benson-Solomon system. Then

$$\lim_{[S(\mathcal{F}^{cr})]}\mathcal{A}_{\mathcal{F}}^2\cong 0.$$

Moreover, the natural map

$$H^2(\mathcal{F}^{cr},k^{\times})\longrightarrow \lim_{[S(\mathcal{F}^{cr})]}\mathcal{A}^2_{\mathcal{F}}$$

is an isomorphism in all cases.

• We can calculate the number of 'weights' for the unique *p*-local block $(\mathcal{F}, 0)$ supported by \mathcal{F} :

• We can calculate the number of 'weights' for the unique *p*-local block (*F*, 0) supported by *F*:

- Note that:
 - Sol(−) is behaving like a connected reductive integral group scheme G! (assuming AWC, ℓ(F_p(G(q)), 0) is independent of q)

• We can calculate the number of 'weights' for the unique *p*-local block (*F*, 0) supported by *F*:

- Note that:
 - Sol(−) is behaving like a connected reductive integral group scheme G! (assuming AWC, ℓ(F_p(G(q)), 0) is independent of q)
 - The generalized Malle–Robinson conjecture holds for Sol(q)

 We can calculate the number of 'weights' for the unique *p*-local block (*F*, 0) supported by *F*:

Theorem (Lynd-S) For all q > 2, we have $\ell(Sol(q), 0) = 12.$

• Note that:

- Sol(−) is behaving like a connected reductive integral group scheme G! (assuming AWC, ℓ(F_p(G(q)), 0) is independent of q)
- The generalized Malle–Robinson conjecture holds for Sol(q)
- \$\emp(\mathcal{F}_2(\mathcal{Spin}_7(q)), 0) = 12\$. Is there a way to construct 'modules' for Sol(q) from modules in the principal 2-block of Spin_7(q)?