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This is joint work with Justin Lynd.
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G, a finite group

p, a prime

k = k with char(k) = p

b, a block (indecomposable summand) of kG

M a simple kG-module = Mb = b, some b “M € b"

How many such M in each b?
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Fusion systems

@ S, a Sylow p-subgroup of G
e F = Fs(G) fusion system (category), objects: {P < S}, morphisms:
G-conjugation maps
e P < Sis p-centricin G <= Z(P) € Syl,(Cs(P))
o P < Sis p-radical in G <= O,(Ng(P)/PC¢s(P)) =1
@ Both properties can be recovered from the category F
o F¢:={P<S| Pis p-centric}
o F:={P < S| Pis p-centric and p-radical}
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Alperin's Weight Conjecture (for principal blocks)

@ Suppose k € b (principal block)
@ A, an algebra = z(A): number of projective simple A-modules
@ AWC for b (Kessar):

Conjecture (Alperin)

The number of simples in b is

UF):= > z(k(Ng(P)/PCs(P)).

PeFer |F

@ Sum runs over a set of F-isomorphism class representatives
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@ Suppose G = Sym(np), 3 < p < n < 2p, b principal block
e p(n) = # partitions of n

Lemma

The number of simple b-modules is equal to
> p(m)p(m)- - p(np-1)
(n)

where the sum runs over (n) = (n1,--- , np—1) with nj > 0 and

-1
Zf:l nj = n.

e eg,n=p= 3! (3) = (nla n2) € {(053)5 (152)7 (27 1)5 (35 O)} SO we
get1-34+1-24+2-1+43-1=10 simple b-modules
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An example

@ S € Syl,(G) has an abelian subgroup A of index p and order p”

o F ={S,A}UW? W abelian of order p"~P+2
o P=5 = Ng(P)/PCs(P) = Cp12Sym(n — p) x (Cp-1)?
o P— W — No(P)/PCe(P) = G- 1 1Sym(n — p) x GLa(p)
o P=A= Ng(P)/PCs(P) = C,_11Sym(n)

@ Let cp(n) denote the number of p-cores of size n

If A= k(Cp—11Sym(n)) then

z(A) = Z cp(m) - cp(np-1)
(n)

where the sum runs over (n) = (ny,--- ,np—1) with nj > 0 and

—1
Zf:l nj = n.
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An example

eeg,n=p=3:
° P:5:>Z(k(C2XC2)):4
o P=W = z(kGLy(3)) =2
o P=A= z(k(C;2Sym(3)) =4

@ So ((F3(Sym(9)) =4+ 2+ 4 =10, as predicted by AWC!

@ In general, combine the lemmas with the identity
p(n) — cp(n) = p(n— p) - p to see that AWC holds
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p-local blocks

@ What about a non-principal block, b?

e b= (F,«), F a saturated fusion system on the defect group of b
and

ac lim A3
sFey”

(Linckelmann) where,

o [S(F€)]: poset of F-iso classes of chains 0 = (Ry < Ry -+ < R,) of
elements in F€
o AZ%: covariant functor

AZ o H*(Autz(0), k)

o Autr(o) < Autrz(R,): subgroup preserving R;

@ e.g. bis principal = a =0
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p-local blocks

e Call (F,«) a p-local block
o If (F,«) arises from a block b,

UF, )= > z(kag Outz(Q)),

QeFe/F

counts the number of b-weights

® kao Outr(Q): algebra obtained from the group algebra k Out#(Q) by
twisting with ag

e What if (F, ) does not come from a block?
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Gluing problem

o Always a natural map

H?(FS, k*) = lim A3
( ) [sFey”

@ Linckelmann asks the following in the case of blocks:

Conjecture (Gluing problem)

Is this map always surjective?

@ Libman: true for all fusion systems of S,, A, and GL,(q), g # p

@ |s there an exotic counterexample to the gluing problem?
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Malle—Robinson conjecture

e S a p-group
@ 5(S) = rank of largest elementary abelian subquotient (section)

Conjecture (Malle-Robinson)
s(S)

# simple b-modules < p

@ AWC suggests that the following generalized version should also hold

Let (F,a) be a p-local block with F is a saturated fusion system on S.
Then ((F,a) < p53).

@ Work of Malle-Robinson suggests that the conjecture holds for many
non-exotic pairs (F, )
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Solomon—Benson fusion systems

@ Goal: gather more evidence for these conjectures
@ Many examples of exotic fusion systems, e.g.

e when p > 2 and S has an abelian maximal subgroup (Craven—Oliver-S)

e when S is a Sylow 7-subgroup of the Monster (Parker=S)

e when p = 2: Solomon—Benson fusion systems Sol(g), g odd
(Aschbacher—Chermak), (Levi-Oliver), (Dwyer)

@ Conjecturally the Solomon—Benson systems are the only exotic simple
2-fusion systems

@ Morally Sol(q) is a group of Lie-type in char. g, a close relative of
Spinz(q)

@ Do the aforementioned representation-theoretic invariants reflect this?
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...yes

@ We may assume g = 52°.

@ When k = 0, the elements of Sol(q)" are essentially given by
Chermak—Oliver—Shpectorov:

P |P Outx(P)

S 210 1

R 27 A;

R* 20 Se

RR* 29 S3

Q 28 (C3)3 X (C2 X 53)
QR* 29 S3

QR | 22| (GxG) %G
Cs(V) 2° S3

E 24 GL4(2)

Cs((T)) | 2 GLs(2)
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and when k > 07

@ Aschbacher—Chermak essentially list elements of Sol(q)<" but:
o their classification contains some errors;
e Sol(g)-automorphism groups are not given explicitly
o the list of groups is quite different to the k = 0 case

@ Putting this all together we prove:

Theorem (Lynd-S)
Let F = Sol(q) be a Benson-Solomon system. Then

lim A% 0.
[S(Fer)]

Moreover, the natural map

H?(F k*) —  lim A2
( ) [s(Fery”

is an isomorphism in all cases.
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Calculating ¢(Sol(q), 0)

@ We can calculate the number of ‘weights’ for the unique p-local block
(F,0) supported by F:

Theorem (Lynd-S)

For all g > 2, we have
¢(Sol(q),0) = 12.

@ Note that:

e Sol(—) is behaving like a connected reductive integral group scheme G!
(assuming AWC, £(F,(G(q)),0) is independent of q)

o The generalized Malle-Robinson conjecture holds for Sol(q)

o {(F2(Spin;(q)),0) = 12. Is there a way to construct ‘modules’ for
Sol(q) from modules in the principal 2-block of Spin;(q)?



