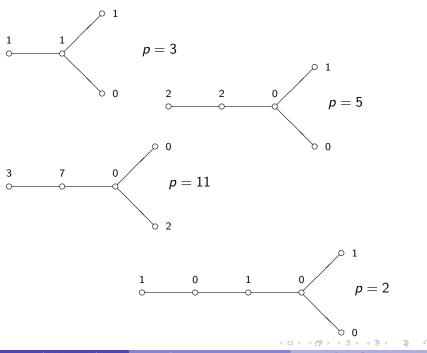
Representations and subgroup structure of simple algebraic groups

D. Testerman

EPF Lausanne

Groups St Andrews 2017



Testerman (EPF Lausanne

Irreducible triples (H, K, V)

Table: Irreducible triples

H < K	$ V _H$	$ V _{K}$	conditions
$C_n < A_{2n-1}, n \ge 2$		- · · · T	$a \ge 2$
$C_n < A_{2n-1}, n \ge 2$	$a\omega_j + b\omega_{j+1},$	$a\lambda_j + b\lambda_{j+1}$	a+b=p-1>1
	j < n		$a \neq 0$ if $j = n - 1$

< 67 ▶

Irreducible triples (H, K, V)

Table: Irreducible triples

$V _H$	$ V _{K}$	conditions
ω_1	$a\lambda_1$	$a \ge 2$
$a\omega_j + b\omega_{j+1},$	$a\lambda_j + b\lambda_{j+1}$	a+b=p-1>1
j < n		$a \neq 0$ if $j = n - 1$
$\omega_j, \ 2 \leq j < n$	λ_j	$p \neq 2$
$2\omega_n$	λ_n	$p \neq 2$
	$a\omega_{1}$ $a\omega_{j} + b\omega_{j+1},$ $j < n$ $\omega_{j}, 2 \le j < n$	$ \begin{array}{ccc} a\omega_{1} & & & a\lambda_{1} \\ a\omega_{j} + b\omega_{j+1}, & & a\lambda_{j} + b\lambda_{j+1} \\ j < n & & \\ \omega_{j}, \ 2 \leq j < n & & \lambda_{j} \end{array} $

< 67 ▶

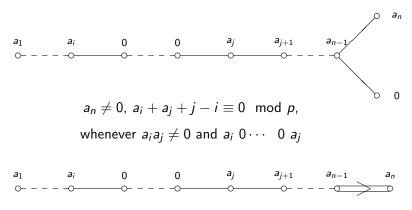
Irreducible triples (H, K, V)

Table: Irreducible triples

			1
H < K	$ V _H$	$ V _{K}$	conditions
$C_n < A_{2n-1}, \ n \ge 2$	$a\omega_1$	$a\lambda_1$	$a \ge 2$
$C_n < A_{2n-1}, n \ge 2$	$a\omega_j + b\omega_{j+1},$	$a\lambda_j + b\lambda_{j+1}$	a+b=p-1>1
	j < n		$a \neq 0$ if $j = n - 1$
$B_n < A_{2n}, n \geq 3$	$\omega_j, \ 2 \leq j < n$	λ_j	$p \neq 2$
$B_n < A_{2n}, n \geq 2$	$2\omega_n$	λ_n	$p \neq 2$
$D_n < A_{2n-1}, n \ge 4$	$ \omega_i, 2 \leq j < n-1$	λ_i	$p \neq 2$
$ \begin{vmatrix} D_n < A_{2n-1}, & n \ge 4 \\ D_n < A_{2n-1}, & n \ge 4 \end{aligned} $	$\int \omega_{n-1} + \omega_n$	λ_{n-1}	$p \neq 2$
:	:	:	
:	•	:	

< 17 ▶

$B_n \subset D_{n+1}$



Seitz 1987, Cavallin-T 2017

3

イロト 不得 トイヨト イヨト

p = 13

p = 7

Positive-dimensional closed irreducible subgroups, set-up

Problem: classify all triples (H, K, V):

K, a simply connected simple algebraic group,

V, a non-trivial irreducible K-module, p-restricted, tensor-indecomposable, not the natural module or its dual if K is classical,

H, closed positive-dimensional subgroup of *K*, HZ(K)/Z(K) disconnected, acting irreducibly on *V*, with $V|_{H^{\circ}}$ reducible.

Ford (1996, 1999). K classical, H° simple such that $V|_{H^{\circ}}$ has *p*-restricted summands.

Ford (1996, 1999). K classical, H° simple such that $V|_{H^{\circ}}$ has *p*-restricted summands.

Ghandour (2010). K exceptional.

Ford (1996, 1999). K classical, H° simple such that $V|_{H^{\circ}}$ has *p*-restricted summands.

Ghandour (2010). K exceptional.

Burness, Ghandour, T. (2016). K classical, H maximal geometric subgroup of K.

Ford (1996, 1999). K classical, H° simple such that $V|_{H^{\circ}}$ has *p*-restricted summands.

Ghandour (2010). K exceptional.

Burness, Ghandour, T. (2016). K classical, H maximal geometric subgroup of K.

Burness, Ghandour, Marion, T. (2015) K classical, H maximal non geometric subgroup of K.

Ford (1996, 1999). K classical, H° simple such that $V|_{H^{\circ}}$ has *p*-restricted summands.

Ghandour (2010). K exceptional.

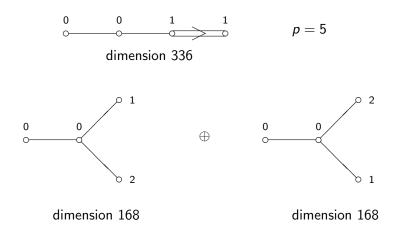
Burness, Ghandour, T. (2016). K classical, H maximal geometric subgroup of K.

Burness, Ghandour, Marion, T. (2015) K classical, H maximal non geometric subgroup of K.

Burness, Marion, T. (2017). *K* classical, *H* non maximal in *K*, and if *H* is a *decomposition subgroup*[†] of an orthogonal type group *K*, then *V* is not a spin module.

† *H* permutes the summands of an orthogonal decomposition $W = W_1 \perp \cdots \perp W_t$, where K = SO(W).

Example: $D_4.2 \subset B_4$

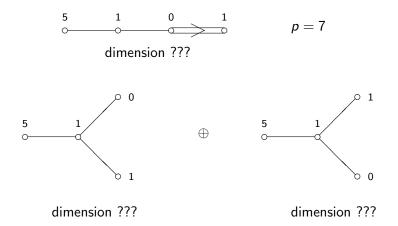


э

3 × 4 3 ×

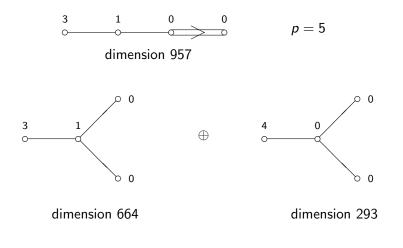
Testerman (EPF Lausanne)

Another example



- ∢ ≣ →

Non-irreducible action, branching rule



- 一司

$D_n \subset B_n$, exactly two summands

- $a_n \in \{0,1\}$,
- $2(a_t + a_n) + 2(n t) 1 \equiv 0 \mod p$, t < n maximal such that $a_t \neq 0$,
- $a_i + a_j + j i \equiv 0 \mod p$, whenever $1 \le i < j \le t$, $a_i a_j \ne 0$ and $a_r = 0$ for all i < r < j.

If $a_n = 1$, $D_n.2$ acts irreducibly.

Ford 1996, Cavallin 2015

Irreducible chains, connected

Corollary (Seitz, Cavallin-T.)

Let $\rho: H \to SL(V)$ be an irreducible, tensor indecomposable representation of a simple algebraic group H, and let G be the smallest classical group containing $\rho(H)$. If K is a closed connected subgroup of G with $\rho(H) < K < G$ (proper containments), then with precisely two exceptions, K is maximal among closed connected subgroups of G. The exceptions are as follows:

1
$$p = 3$$
, $A_2 < G_2 < B_3 < SO_{27}$;

2
$$p = 2$$
, $D_4 < C_4 < F_4 < SO_{26}$.

Irreducible chains, general

G, a simply connected cover of a simple classical algebraic group.

V, a nontrivial *p*-restricted irreducible tensor-indecomposable *G*-module such that:

 $V \neq W^{\tau}$ for any automorphism τ of G, where W is the natural G-module.

Write $\ell = \ell(G, V)$ for the length of the longest chain of closed positive-dimensional subgroups

$$H_\ell < H_{\ell-1} < \cdots < H_2 < H_1 = G$$

such that $V|_{H_{\ell}}$ is irreducible.

Corollary (Burness-Marion-T.)

Let G and V be as above, and assume V is not a spin module. Then either $\ell(G, V) \leq 5$, or G = SL(W) and $V \in \{\wedge^2(W), \wedge^3(W), \wedge^2(W)^*, \wedge^3(W)^*\}.$

Corollary (Burness-Marion-T.)

Let G and V be as above, and assume V is not a spin module. Then either $\ell(G, V) \leq 5$, or G = SL(W) and V $\in \{\wedge^2(W), \wedge^3(W), \wedge^2(W)^*, \wedge^3(W)^*\}.$

Remark

If G is an orthogonal group (or a symplectic group with p = 2) and V is a spin module, then $\ell(G, V)$ can be arbitrarily large; the same is true if V = W or W^* and for the list of exceptions for SL(W).