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Let G be a group.

G is an FCI-group if

|CG (x) : 〈x〉| <∞ for all 〈x〉 6 G .

G is a BCI-group if, there exists a positive integer n such that

|CG (x) : 〈x〉| ≤ n for all 〈x〉 6 G .

Examples

G is a BCI-group =⇒ G is an FCI-group

G finite =⇒ G is BCI

G Dedekind =⇒ G is BCI

A is abelian of finite 2-rank =⇒ Dih(A) is a BCI-group

G is a Tarski monster group =⇒ G is a BCI-group
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Also

F is a free group =⇒ F is an FCI-group

...

If G is a torsion free BCI-group, then G is abelian.

A non abelian free group is an FCI-group which is not a BCI-group!
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Closure properties

G is an FCI-(BCI-)group, H ≤ G =⇒ H is an FCI-(BCI-)group

G is an FCI-(BCI-)group, N / G 6=⇒ G/N is an FCI-(BCI-)group

Counterexample

Let A torsion free, abelian of infinite 0-rank and
N = {a4 : a ∈ A}.
Then G =Dih(A) is a BCI-group but G/N IS NOT!

Proposition

Let G be an FCI-(BCI-)group and N / G , N finite.
Then G/N is an FCI-(BCI-)group.

G periodic, FCI-(BCI-)group =⇒ G/Z (G ) is an FCI-(BCI-)group
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Let G be periodic.

G is an FCI-group⇐⇒ |CG (x)| <∞ for all 〈x〉 6 G

Theorem [Shunkov]

Let G be periodic, x ∈ G , |x | = 2, |CG (x)| <∞.
Then, G is locally finite (and soluble-by-finite).

Theorem [Meixner, Hartley, Pattet, Khukhro]

Let G be locally finite, x ∈ G , |x | = p, |CG (x)| <∞.
Then, G is nilpotent-by-finite.
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Conditions on centralizers
Locally finite case

Conditions on normalizers
Locally nilpotent case

Shalev (1994)

G satisfies (*) iff |CG (x)| finite or |G : CG (x)| finite, for all x ∈ G .

FC (G ) = {x ∈ G : [x ]Cg is finite} FC-centre of G

Theorem
Let G be a locally finite group satisfying (*).
Then |G : FC (G )| is finite.

G periodic, FCI-group =⇒ FC (G ) = {x ∈ G : 〈x〉 / G}
G periodic, FCI-group =⇒ G satisfies (*)

De Falco, de Giovanni, Musella, Trabelsi (2017)

G is an AFC-group ⇔ x ∈ FC (G ) or |CG (x) : 〈x〉| finite, ∀x ∈ G

G locally finite, FCI-group =⇒ |G : FC (G )| finite
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Conditions on centralizers
Locally finite case

Conditions on normalizers
Locally nilpotent case

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let D = Q × A an infinite, periodic, Dedekind group, where Q ∼= 1
or Q ∼= Q8.

G is an infinite, locally finite, FCI-group iff

G = D, or G = 〈D, x〉, D of finite 2-rank, x acts on D as a power
automorphism and there exists m > 1 such that xm ∈ D and
|CA(xk)| is finite, ∀k = 1, . . . ,m − 1.

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota,
A finiteness condition on centralizers in locally finite groups,
Monatsh. Math. 183 (2017), no. 2, 241–250.
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Corollary

Let G be a locally finite group. Then the following facts are
equivalent:

1 G is an FCI-group

2 G is a BCI-group
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Recall that a group is locally graded if every non-trivial finitely
generated subgroup has a non-trivial finite image.

Given a prime p. Tarski monster groups are infinite (simple)
p-groups, all of whose proper non.trivial subgroups are of order p.

Tarski monster groups are periodic BCI-groups, which are not
locally graded.

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Every locally graded periodic BCI-group is locally finite.
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Conditions on centralizers
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Conditions on normalizers
Locally nilpotent case

Questions

Does the previous theorem hold for FCI-groups?

Given a periodic residually finite group G in which the centralizer
of each non-trivial element is finite, is G finite?

Examples

There exist finitely generated infinite periodic groups which are
residually finite but not FCI (Golod, Grigorchuk and Gupta-Sidki).
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G is an FNI-group if

|NG (H) : H| <∞ for all H 6 G .

G is a BNI-group if, there exists a positive integer n such that

|NG (H) : H| ≤ n for all H 6 G .

G is a BNI-group ⇒ G is an FNI-group
G is an FNI-group ⇒ G is an FCI-group
G is a BNI-group ⇒ G is a BCI-group

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota,
Some finiteness conditions on normalizers or centralizers in groups,
Comm. Algebra, in press.
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Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be locally finite. Then the following facts are equivalent:

1 G is an FNI-group

2 G is an FCI-group

3 G is a BNI-group

4 G is a BCI-group

Corollary

Let G be locally graded and periodic. Then the following facts are
equivalent:

1 G is a BNI-group

2 G is a BCI-group
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Theorem (periodic case) [Fernández, Legarreta, Tortora, T.]

Let G be a non-Dedekind infinite periodic group. Then G is a
locally nilpotent FCI-group if and only if G = P × Q, where P and
Q are as follows:

1 P = 〈g ,A〉 is a 2-group, where A is infinite abelian of finite
rank, and g is an element of order at most 4 such that g2 ∈ A
and ag = a−1 for all a ∈ A.

2 Q is a finite abelian 2′-group.

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota,
A finiteness condition on centralizers in locally nilpotent groups,
Monatsh. Math. 182 (2017), no. 2, 289–298.
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Theorem (non periodic case) [Fernández, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then G is a locally nilpotent
FCI -group if and only if either G is abelian, or G = 〈x〉nD where

x is of infinite order and acts on D as a power automorphism,

D = Q × A is a Dedekind group, direct product of finitely
many p-groups of finite rank, and

CA(xk) is finite for every k ≥ 1.
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Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following conditions are
equivalent:

1 G is a BCI-group.

2 There exists n ∈ N such that |CG (x)| ≤ n whenever 〈x〉 6 G .

3 Either G is abelian or G = 〈g ,A〉, where A is a non-periodic
abelian group of finite 2-rank and g is an element of order at
most 4 such that g2 ∈ A and ag = a−1 for all a ∈ A.

Corollary

Let G be a non-periodic locally nilpotent group.
If G is a BCI-group then G is abelian.

There exist non-periodic locally nilpotent FCI-groups, which are
not BCI-groups!
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Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic locally nilpotent group. Then the
following conditions are equivalent:

1 G is an FNI-group

2 G is an FCI-group

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following hold:

G is a BNI-group if and only if either G is abelian or G = 〈g ,A〉,
where A is a non-periodic abelian group of finite 0-rank and finite
2-rank, and g is an element of order at most 4 such that g2 ∈ A
and ag = a−1 for all a ∈ A.
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Robinson (2016)

FCI-groups and FNI-groups have been classified in the locally
(soluble-by-finite) case.

D. J. S. Robinson, On groups with extreme centralizers and
normalizers, Adv. Group Theory Appl. 1 (2016), 97–112.
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Theorem

G locally graded periodic BCI-group =⇒ G locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite.

Let n ≥ 1 such that |CG (x) : 〈x〉| ≤ n for all 〈x〉 6 G

(∀ x /∈ D).

Set D := FC (G )⇒ D finite ⇒ G/D infinite locally graded BCI.

It follows |CG (x) : 〈x〉| ≤ n for all x ∈ G r {1}.
So, each finite quotient of G is soluble and has not elements of
order pq.

R the finite residual of G ⇒ π(G/R) finite ⇒ exp(G/R) <∞.

G/R f. g., res. fin., exp(G/R) <∞⇒ G/R finite ⇒ 1 6= R f. g.
Then, ∃ K < R : |R : K | <∞⇒ |G : K | <∞⇒ R ≤ K .

Contradiction!
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Thank you!
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