Some finiteness conditions on centralizers or normalizers in groups

Maria Tota (joint work with G.A. Fernández-Alcober, L. Legarreta and A. Tortora)

> Università degli Studi di Salerno Dipartimento di Matematica

"Groups St Andrews in Birmingham - 2017" August 2017

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let G be a group.

<ロ> <同> <同> < 同> < 同>

æ

Let G be a group.

 \boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a group.

G is an FCI-group if

$|C_G(x):\langle x angle|<\infty$ for all $\langle x angle ot \leqslant G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a group.

\boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

```
|C_G(x):\langle x\rangle|<\infty for all \langle x
angle 
ot \leqslant G.
```

G is a **BCI-group** if

同 ト イ ヨ ト イ ヨ ト

Let G be a group.

G is an **FCI-group** if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

 $|C_G(x):\langle x\rangle|\leq n$ for all $\langle x
angle
ot \leqslant G$.

同 ト イ ヨ ト イ ヨ ト

Let G be a group.

\boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

$$|C_G(x):\langle x\rangle|\leq n$$
 for all $\langle x
angle
ot \leqslant G$.

Examples

G is a BCI-group \Longrightarrow G is an FCI-group

Let G be a group.

\boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

$$|C_G(x):\langle x\rangle|\leq n$$
 for all $\langle x
angle
ot \leqslant G$.

Examples G is a BCI-group \implies G is an FCI-group G finite \implies G is BCI

Let G be a group.

\boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

$$|C_G(x):\langle x\rangle|\leq n$$
 for all $\langle x
angle
ot \subset G$.

ExamplesG is a BCI-group \implies G is an FCI-groupG finite \implies G is BCIG Dedekind \implies G is BCI

Let G be a group.

G is an **FCI-group** if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

$$|C_G(x):\langle x\rangle|\leq n$$
 for all $\langle x
angle
ot \subset G$.

ExamplesG is a BCI-group \implies G is an FCI-groupG finite \implies G is BCIG Dedekind \implies G is BCIA is abelian of finite 2-rank \implies Dih(A) is a BCI-group

Let G be a group.

\boldsymbol{G} is an $\boldsymbol{FCI}\text{-}\boldsymbol{group}$ if

$$|C_G(x):\langle x
angle|<\infty$$
 for all $\langle x
angle
ot \leqslant G$.

G is a **BCI-group** if, there exists a positive integer n such that

$$|C_G(x):\langle x\rangle|\leq n$$
 for all $\langle x
angle
ot \subset G$.

ExamplesG is a BCI-group \implies G is an FCI-groupG finite \implies G is BCIG Dedekind \implies G is BCIA is abelian of finite 2-rank \implies Dih(A) is a BCI-groupG is a Tarski monster group \implies G is a BCI-group

Also

F is a free group \Longrightarrow *F* is an FCI-group

Maria Tota Some finiteness conditions on centralizers or normalizers in group

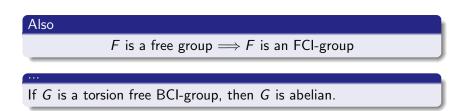
Also

F is a free group \Longrightarrow F is an FCI-group

•••

If G is a torsion free BCI-group, then G is abelian.

- 4 回 > - 4 回 > - 4 回 >



A non abelian free group is an FCI-group which is not a BCI-group!

< 同 > < 回 > < 回 >

Closure properties

イロン イロン イヨン イヨン

æ .

Closure properties

G is an FCI-(BCI-)group, $H \leq G \Longrightarrow H$ is an FCI-(BCI-)group

Closure properties

G is an FCI-(BCI-)group, $H \le G \Longrightarrow H$ is an FCI-(BCI-)group *G* is an FCI-(BCI-)group, $N \triangleleft G \nleftrightarrow G/N$ is an FCI-(BCI-)group

< 日 > < 同 > < 三 > < 三 >

Closure properties

G is an FCI-(BCI-)group, $H \leq G \Longrightarrow H$ is an FCI-(BCI-)group

G is an FCI-(BCI-)group, $N \triangleleft G \not\Longrightarrow G/N$ is an FCI-(BCI-)group

Counterexample

Let A torsion free, abelian of infinite 0-rank and $N = \{a^4 : a \in A\}.$

- (目) - (目) - (目)

Closure properties

G is an FCI-(BCI-)group, $H \leq G \Longrightarrow H$ is an FCI-(BCI-)group

G is an FCI-(BCI-)group, $N \triangleleft G \not\Longrightarrow G/N$ is an FCI-(BCI-)group

Counterexample

Let A torsion free, abelian of infinite 0-rank and $N = \{a^4 : a \in A\}.$ Then G = Dih(A) is a BCI-group but G/N IS NOT!

(4 同) (4 日) (4 日)

Closure properties

G is an FCI-(BCI-)group, $H \leq G \Longrightarrow H$ is an FCI-(BCI-)group

G is an FCI-(BCI-)group, $N \triangleleft G \not\Longrightarrow G/N$ is an FCI-(BCI-)group

Counterexample

Let A torsion free, abelian of infinite 0-rank and $N = \{a^4 : a \in A\}.$ Then G = Dih(A) is a BCI-group but G/N IS NOT!

Proposition

Let G be an FCI-(BCI-)group and $N \triangleleft G$, N finite. Then G/N is an FCI-(BCI-)group.

・ロト ・同ト ・ヨト ・ヨト

Closure properties

G is an FCI-(BCI-)group, $H \leq G \Longrightarrow H$ is an FCI-(BCI-)group

G is an FCI-(BCI-)group, $N \triangleleft G \not\Longrightarrow G/N$ is an FCI-(BCI-)group

Counterexample

Let A torsion free, abelian of infinite 0-rank and $N = \{a^4 : a \in A\}.$ Then G = Dih(A) is a BCI-group but G/N IS NOT!

Proposition

Let G be an FCI-(BCI-)group and $N \triangleleft G$, N finite. Then G/N is an FCI-(BCI-)group.

G periodic, FCI-(BCI-)group \implies G/Z(G) is an FCI-(BCI-)group

< 3 > < 3 > 3

Let G be periodic.

<ロ> <同> <同> < 同> < 同>

Let G be periodic.

$G \text{ is an FCI-group} \Longleftrightarrow |C_G(x)| < \infty \quad \text{for all } \langle x \rangle \not \lhd G$

- 4 同 6 4 日 6 4 日 6

Let G be periodic.

G is an FCI-group $\iff |C_G(x)| < \infty$ for all $\langle x \rangle \not \lhd G$

Theorem [Shunkov]

Let G be periodic, $x \in G$, |x| = 2, $|C_G(x)| < \infty$.

- 4 同 2 4 回 2 4 回 2 4

Let G be periodic.

```
{\it G} \text{ is an FCI-group} \Longleftrightarrow |{\it C}_{\it G}(x)| < \infty \quad \text{for all } \langle x \rangle \not \lhd {\it G}
```

Theorem [Shunkov]

Let G be periodic, $x \in G$, |x| = 2, $|C_G(x)| < \infty$. Then, G is locally finite (and soluble-by-finite).

- 4 同 6 4 日 6 4 日 6

Let G be periodic.

 ${\it G} \text{ is an FCI-group} \Longleftrightarrow |{\it C}_{\it G}(x)| < \infty \quad \text{for all } \langle x \rangle \not \lhd {\it G}$

Theorem [Shunkov]

Let G be periodic,
$$x \in G$$
, $|x| = 2$, $|C_G(x)| < \infty$.
Then, G is locally finite (and soluble-by-finite).

Theorem [Meixner, Hartley, Pattet, Khukhro]

Let G be locally finite,
$$x \in G$$
, $|x| = p$, $|C_G(x)| < \infty$.

イロト イポト イヨト イヨト

3

Let G be periodic.

 $G \text{ is an FCI-group} \Longleftrightarrow |C_G(x)| < \infty \quad \text{for all } \langle x \rangle \not \lhd G$

Theorem [Shunkov]

Let G be periodic,
$$x \in G$$
, $|x| = 2$, $|C_G(x)| < \infty$.
Then, G is locally finite (and soluble-by-finite).

Theorem [Meixner, Hartley, Pattet, Khukhro]

Let G be locally finite,
$$x \in G$$
, $|x| = p$, $|C_G(x)| < \infty$.
Then, G is nilpotent-by-finite.

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

・ 同 ト ・ ヨ ト ・ ヨ ト

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*).

・ 同 ト ・ ヨ ト ・ ヨ ト

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*). Then |G : FC(G)| is finite.

- 4 同 2 4 回 2 4 U

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*). Then |G : FC(G)| is finite.

G periodic, FCI-group \Longrightarrow $FC(G) = \{x \in G : \langle x \rangle \triangleleft G\}$

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*). Then |G : FC(G)| is finite.

G periodic, FCI-group \Longrightarrow $FC(G) = \{x \in G : \langle x \rangle \triangleleft G\}$

G periodic, FCI-group \implies G satisfies (*)

- ・ 同 ト ・ ヨ ト ・ ヨ

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*). Then |G : FC(G)| is finite.

G periodic, FCI-group \Longrightarrow $FC(G) = \{x \in G : \langle x \rangle \triangleleft G\}$

G periodic, FCI-group \implies G satisfies (*)

De Falco, de Giovanni, Musella, Trabelsi (2017)

 $G \text{ is an AFC-group} \Leftrightarrow x \in FC(G) \text{ or } |C_G(x):\langle x\rangle| \text{ finite, } \forall x \in G$

イロト イポト イヨト イヨト 三日

Shalev (1994)

G satisfies (*) iff $|C_G(x)|$ finite or $|G : C_G(x)|$ finite, for all $x \in G$.

 $FC(G) = \{x \in G : [x]_{Cg} \text{ is finite}\}$ FC-centre of G

Theorem

Let G be a locally finite group satisfying (*). Then |G : FC(G)| is finite.

G periodic, FCI-group \Longrightarrow $FC(G) = \{x \in G : \langle x \rangle \triangleleft G\}$

G periodic, FCI-group \implies G satisfies (*)

De Falco, de Giovanni, Musella, Trabelsi (2017)

 ${\it G} \text{ is an AFC-group} \Leftrightarrow x \in {\it FC}({\it G}) \text{ or } |{\it C}_{\it G}(x): \langle x \rangle| \text{ finite, } \forall x \in {\it G}$

G locally finite, FCI-group \Longrightarrow |G:FC(G)| finite

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let $D = Q \times A$ an infinite, periodic, Dedekind group, where $Q \cong 1$ or $Q \cong Q_8$.

 ${\it G}$ is an infinite, locally finite, FCI-group iff

G = D, or $G = \langle D, x \rangle$, D of finite 2-rank, x acts on D as a power automorphism and there exists m > 1 such that $x^m \in D$ and $|C_A(x^k)|$ is finite, $\forall k = 1, ..., m - 1$.

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota, *A finiteness condition on centralizers in locally finite groups*, Monatsh. Math. **183** (2017), no. 2, 241–250.

イロト 不得 トイヨト イヨト 二日

Corollary

Let G be a locally finite group. Then the following facts are equivalent:

- G is an FCI-group
- G is a BCI-group

伺 と く ヨ と く ヨ と

Recall that a group is *locally graded* if every non-trivial finitely generated subgroup has a non-trivial finite image.

A 10

→ Ξ →

Recall that a group is *locally graded* if every non-trivial finitely generated subgroup has a non-trivial finite image.

Given a prime *p*. *Tarski monster groups* are infinite (simple) *p*-groups, all of whose proper non.trivial subgroups are of order *p*.

Recall that a group is *locally graded* if every non-trivial finitely generated subgroup has a non-trivial finite image.

Given a prime *p*. *Tarski monster groups* are infinite (simple) *p*-groups, all of whose proper non.trivial subgroups are of order *p*.

Tarski monster groups are periodic BCI-groups, which are not locally graded.

.

Recall that a group is *locally graded* if every non-trivial finitely generated subgroup has a non-trivial finite image.

Given a prime *p*. *Tarski monster groups* are infinite (simple) *p*-groups, all of whose proper non.trivial subgroups are of order *p*.

Tarski monster groups are periodic BCI-groups, which are not locally graded.

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Every locally graded periodic BCI-group is locally finite.

- 4 同 6 4 日 6 4 日 6

Questions

Does the previous theorem hold for FCI-groups?

Given a periodic residually finite group G in which the centralizer of each non-trivial element is finite, is G finite?

同 ト イ ヨ ト イ ヨ ト

Questions

Does the previous theorem hold for FCI-groups?

Given a periodic residually finite group G in which the centralizer of each non-trivial element is finite, is G finite?

Examples

There exist finitely generated infinite periodic groups which are residually finite but not FCI (Golod, Grigorchuk and Gupta-Sidki).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

G is an $\ensuremath{\mathsf{FNI-group}}$ if

<ロ> <同> <同> < 同> < 同>

3

\boldsymbol{G} is an $\boldsymbol{FNI}\text{-}\boldsymbol{group}$ if

$|N_G(H):H|<\infty$ for all $H \not \lhd G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

\boldsymbol{G} is an $\boldsymbol{FNI}\text{-}\boldsymbol{group}$ if

$|N_G(H):H|<\infty$ for all $H \not \lhd G$.

G is a **BNI-group** if,

/∰ ▶ < ∃ ▶

3.5

\boldsymbol{G} is an $\boldsymbol{FNI}\text{-}\boldsymbol{group}$ if

$$|N_G(H):H| < \infty$$
 for all $H \not \lhd G$.

G is a **BNI-group** if, there exists a positive integer n such that

 $|N_G(H):H| \leq n$ for all $H \not\lhd G$.

同 ト イ ヨ ト イ ヨ ト

 \boldsymbol{G} is an $\boldsymbol{FNI}\text{-}\boldsymbol{group}$ if

 $|N_G(H):H| < \infty$ for all $H \not \lhd G$.

G is a **BNI-group** if, there exists a positive integer n such that

 $|N_G(H):H| \leq n$ for all $H \not \lhd G$.

G is a BNI-group \Rightarrow G is an FNI-group G is an FNI-group \Rightarrow G is an FCI-group G is a BNI-group \Rightarrow G is a BCI-group

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota, Some finiteness conditions on normalizers or centralizers in groups, Comm. Algebra, in press.

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be locally finite. Then the following facts are equivalent:

- G is an FNI-group
- G is an FCI-group
- G is a BNI-group
- G is a BCI-group

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be locally finite. Then the following facts are equivalent:

- G is an FNI-group
- G is an FCI-group
- G is a BNI-group
- G is a BCI-group

Corollary

Let G be locally graded and periodic. Then the following facts are equivalent:

- G is a BNI-group
- G is a BCI-group

Theorem (periodic case) [Fernández, Legarreta, Tortora, T.]

Let G be a non-Dedekind infinite periodic group. Then G is a locally nilpotent FCI-group if and only if $G = P \times Q$, where P and Q are as follows:

- P = ⟨g, A⟩ is a 2-group, where A is infinite abelian of finite rank, and g is an element of order at most 4 such that g² ∈ A and a^g = a⁻¹ for all a ∈ A.
- 2 Q is a finite abelian 2'-group.

G. A. Fernández-Alcober, L. Legarreta, A. Tortora, and M. Tota, *A finiteness condition on centralizers in locally nilpotent groups*, Monatsh. Math. **182** (2017), no. 2, 289–298.

・ロト ・得ト ・ヨト ・ヨト

Theorem (non periodic case) [Fernández, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then G is a locally nilpotent FCI-group if and only if either G is abelian, or $G = \langle x \rangle \ltimes D$ where

- x is of infinite order and acts on D as a power automorphism,
- $D = Q \times A$ is a Dedekind group, direct product of finitely many *p*-groups of finite rank, and
- $C_A(x^k)$ is finite for every $k \ge 1$.

- 4 同 2 4 回 2 4 U

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following conditions are equivalent:

- *G* is a BCI-group.
- **2** There exists $n \in \mathbb{N}$ such that $|C_G(x)| \leq n$ whenever $\langle x \rangle \not \lhd G$.
- Either G is abelian or G = ⟨g, A⟩, where A is a non-periodic abelian group of finite 2-rank and g is an element of order at most 4 such that g² ∈ A and a^g = a⁻¹ for all a ∈ A.

- 4 同 2 4 回 2 4 回 2 4

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following conditions are equivalent:

- G is a BCI-group.
- **2** There exists $n \in \mathbb{N}$ such that $|C_G(x)| \leq n$ whenever $\langle x \rangle \not \lhd G$.
- Either G is abelian or G = ⟨g, A⟩, where A is a non-periodic abelian group of finite 2-rank and g is an element of order at most 4 such that g² ∈ A and a^g = a⁻¹ for all a ∈ A.

Corollary

Let G be a non-periodic locally nilpotent group. If G is a BCI-group then G is abelian.

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following conditions are equivalent:

- G is a BCI-group.
- **2** There exists $n \in \mathbb{N}$ such that $|C_G(x)| \leq n$ whenever $\langle x \rangle \not \lhd G$.
- Either G is abelian or G = ⟨g, A⟩, where A is a non-periodic abelian group of finite 2-rank and g is an element of order at most 4 such that g² ∈ A and a^g = a⁻¹ for all a ∈ A.

Corollary

Let G be a non-periodic locally nilpotent group. If G is a BCI-group then G is abelian.

There exist non-periodic locally nilpotent FCI-groups, which are not BCI-groups!

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic locally nilpotent group. Then the following conditions are equivalent:

- G is an FNI-group
- G is an FCI-group

伺 と く ヨ と く ヨ と

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic locally nilpotent group. Then the following conditions are equivalent:

- G is an FNI-group
- G is an FCI-group

Theorem [Fernández-Alcober, Legarreta, Tortora, T.]

Let G be a non-periodic group. Then the following hold:

G is a BNI-group if and only if either *G* is abelian or $G = \langle g, A \rangle$, where *A* is a non-periodic abelian group of finite 0-rank and finite 2-rank, and *g* is an element of order at most 4 such that $g^2 \in A$ and $a^g = a^{-1}$ for all $a \in A$.

・ロト ・同ト ・ヨト ・ヨト

Robinson (2016)

FCI-groups and FNI-groups have been classified in the locally (soluble-by-finite) case.

D. J. S. Robinson, *On groups with extreme centralizers and normalizers*, Adv. Group Theory Appl. **1** (2016), 97–112.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

- 4 回 > - 4 回 > - 4 回 >

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite. Let $n \ge 1$ such that $|C_G(x) : \langle x \rangle| \le n$ for all $\langle x \rangle \not \lhd G$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite. Let $n \ge 1$ such that $|C_G(x) : \langle x \rangle| \le n$ for all $\langle x \rangle \not \lhd G \ (\forall x \notin D)$. Set $D := FC(G) \Rightarrow D$ finite $\Rightarrow G/D$ infinite locally graded BCI.

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite.

Let $n \ge 1$ such that $|C_G(x) : \langle x \rangle| \le n$ for all $\langle x \rangle \not \lhd G \ (\forall x \notin D)$.

Set $D := FC(G) \Rightarrow D$ finite $\Rightarrow G/D$ infinite locally graded BCI.

It follows $|C_G(x): \langle x \rangle| \le n$ for all $x \in G \smallsetminus \{1\}$.

So, each finite quotient of G is soluble and has not elements of order pq.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite.

 $\text{Let } n \geq 1 \text{ such that } |C_G(x): \langle x \rangle| \leq n \text{ for all } \langle x \rangle \not \lhd G \ (\forall \ x \notin D).$

Set $D := FC(G) \Rightarrow D$ finite $\Rightarrow G/D$ infinite locally graded BCI.

It follows $|C_G(x): \langle x \rangle| \le n$ for all $x \in G \setminus \{1\}$.

So, each finite quotient of G is soluble and has not elements of order pq.

R the finite residual of $G \Rightarrow \pi(G/R)$ finite $\Rightarrow \exp(G/R) < \infty$.

イロト イポト イヨト イヨト 二日

Theorem

G locally graded periodic BCI-group $\Longrightarrow G$ locally finite

Sketch of the proof:

Let G be f. g. and assume, by contradiction, G infinite.

Let $n \ge 1$ such that $|C_G(x) : \langle x \rangle| \le n$ for all $\langle x \rangle \not \lhd G \ (\forall x \notin D)$. Set $D := FC(G) \Rightarrow D$ finite $\Rightarrow G/D$ infinite locally graded BCI.

Set $D := FC(G) \Rightarrow D$ mille $\Rightarrow G/D$ minite locally graded B

It follows $|C_G(x):\langle x\rangle| \leq n$ for all $x \in G \smallsetminus \{1\}$.

So, each finite quotient of G is soluble and has not elements of order pq.

R the finite residual of $G \Rightarrow \pi(G/R)$ finite $\Rightarrow \exp(G/R) < \infty$. G/R f. g., res. fin., $\exp(G/R) < \infty \Rightarrow G/R$ finite $\Rightarrow 1 \neq R$ f. g. Then, $\exists K < R : |R:K| < \infty \Rightarrow |G:K| < \infty \Rightarrow R \leq K$. Contradiction!

イロト 不得 とうせい かほとう ほ

Thank you!

Maria Tota Some finiteness conditions on centralizers or normalizers in group

э