Unipotent automorphisms of solvable groups

Gunnar Traustason

Department of Mathematical Sciences University of Bath

Groups St Andrews 2017 in Birmingham

Gunnar Traustason Unipotent automorphisms of solvable groups

Unipotent automorphisms of solvable groups

- 1. Introduction.
- 2. Solvable groups acting *n*-unipotently on solvable groups.
- 3. Examples.

Definition. Let *G* be a group and *a* an automorphism of *G*, we say that *a* is a unipotent automorphism if for every $g \in G$ there exists a non-negative integer n = n(g) such that

$$[g_{,n} a] = [[g, \underbrace{a], \ldots, a}_{n}] = 1.$$

Definition. Let *G* be a group and *a* an automorphism of *G*, we say that *a* is a unipotent automorphism if for every $g \in G$ there exists a non-negative integer n = n(g) such that

$$[g_{,n} a] = [[g, \underbrace{a], \ldots, a}_{n}] = 1.$$

If n(g) = n can be chosen independently of g, then we say that a is an *n*-unipotent automorphism.

Definition. Let *G* be a group and *a* an automorphism of *G*, we say that *a* is a unipotent automorphism if for every $g \in G$ there exists a non-negative integer n = n(g) such that

$$[g_{,n} a] = [[g, \underbrace{a], \ldots, a}_{n}] = 1.$$

If n(g) = n can be chosen independently of g, then we say that a is an *n*-unipotent automorphism.

Remarks. (1) Let $H = G \rtimes Aut(G)$. The element $a \in Aut(G)$ is unipotent (*n*-unipotent) if and only if *a* is a left Engel (*n*-Engel) element in $G\langle a \rangle$.

Definition. Let *G* be a group and *a* an automorphism of *G*, we say that *a* is a unipotent automorphism if for every $g \in G$ there exists a non-negative integer n = n(g) such that

$$[g_{,n} a] = [[g, \underbrace{a], \ldots, a}_{n}] = 1.$$

If n(g) = n can be chosen independently of g, then we say that a is an *n*-unipotent automorphism.

Remarks. (1) Let $H = G \rtimes Aut(G)$. The element $a \in Aut(G)$ is unipotent (*n*-unipotent) if and only if *a* is a left Engel (*n*-Engel) element in $G\langle a \rangle$.

(2) *G* is an Engel (*n*-Engel) group if and only if all the elements in Inn(G) are unipotent (*n*-unipotent).

Definition. Let *G* be group with a finite series of subgroups

$$G = G_0 \ge G_1 \ge \cdots \ge G_m = \{1\}.$$

The stability group of the series is the subgroup *S* of Aut (*G*) consisting of the automorphisms *a* where for each i = 1, ..., m and $g \in G_{i-1}$ we have $[g, a] \in G_i$.

Definition. Let G be group with a finite series of subgroups

$$G = G_0 \ge G_1 \ge \cdots \ge G_m = \{1\}.$$

The stability group of the series is the subgroup *S* of Aut (*G*) consisting of the automorphisms *a* where for each i = 1, ..., m and $g \in G_{i-1}$ we have $[g, a] \in G_i$.

Theorem (P. Hall, 1958). The stability group *S* of a subgroup series of length *m* is nilpotent of class at most m(m-1)/2.

Definition. Let G be group with a finite series of subgroups

$$G = G_0 \ge G_1 \ge \cdots \ge G_m = \{1\}.$$

The stability group of the series is the subgroup *S* of Aut (*G*) consisting of the automorphisms *a* where for each i = 1, ..., m and $g \in G_{i-1}$ we have $[g, a] \in G_i$.

Theorem (P. Hall, 1958). The stability group *S* of a subgroup series of length *m* is nilpotent of class at most m(m - 1)/2.

Theorem (W. Burnside) Let *V* be a a finite dimensional vector space and $H \leq GL(V)$ where *H* consists of unipotent automorphisms. Then *H* stabilises a finite series of subspaces $V = V_0 > V_1 > \cdots > V_m = \{0\}.$

Remark. If *H* stabilizes a finite series in *G*, then *H* is nilpotent. The converse is not true in general for a *n*-unipotent $H \leq Aut(G)$.

Remark. If *H* stabilizes a finite series in *G*, then *H* is nilpotent. The converse is not true in general for a *n*-unipotent $H \leq Aut(G)$.

Theorem(Frati 2014). Let *G* be a solvable group and *H* a finitely generated nilpotent subgroup of Aut (*G*) consisting of *n*-unipotent automorphisms. Then *H* stabilizes a finite series in *G*. Moreover, the nilpotency class of *H* is (n, r)-bounded if *H* is generated by *r* elements.

Remark The question whether H is nilpotent is open when H is finite. (Casolo and Puglisi (2013) have though shown that H is nilpotent whenever H is finite and G is locally graded.

Remark The question whether H is nilpotent is open when H is finite. (Casolo and Puglisi (2013) have though shown that H is nilpotent whenever H is finite and G is locally graded.

Theorem (Casolo & Puglisi 2013). If G satisfies max and H is a subgroup consisting of unipotent automorphisms, then H stabilizes a finite series.

Remark The question whether H is nilpotent is open when H is finite. (Casolo and Puglisi (2013) have though shown that H is nilpotent whenever H is finite and G is locally graded.

Theorem (Casolo & Puglisi 2013). If G satisfies max and H is a subgroup consisting of unipotent automorphisms, then H stabilizes a finite series.

Theorem (Frati 2014). If G is abelian-by-polycyclic and H is a finitely generated, then H stabilizes a finite series of G.

Remark The question whether H is nilpotent is open when H is finite. (Casolo and Puglisi (2013) have though shown that H is nilpotent whenever H is finite and G is locally graded.

Theorem (Casolo & Puglisi 2013). If G satisfies max and H is a subgroup consisting of unipotent automorphisms, then H stabilizes a finite series.

Theorem (Frati 2014). If G is abelian-by-polycyclic and H is a finitely generated, then H stabilizes a finite series of G.

Theorem (Frati 2014). If G is solvable of finite Prüfer rank and H is finitely generated, then H stablizes a finite series of G.

Theorem (Puglisi, T 2017). Let *G* be a solvable group and *H* a solvable subgroup of Aut (*G*) whose elements are *n*-unipotent.

(1) If H is finitely generated then it stabilizes a finite series in G.

(2) If G has a characteristic series with torsion-free factors, then H stabilizes a finite series in G.

Theorem (Puglisi, T 2017). Let *G* be a solvable group and *H* a solvable subgroup of Aut (*G*) whose elements are *n*-unipotent.

(1) If H is finitely generated then it stabilizes a finite series in G.

(2) If G has a characteristic series with torsion-free factors, then H stabilizes a finite series in G.

Remark. In particular we have that (2) holds when G is nilpotent and torsion-free.

Theorem (Puglisi, T 2017). Let *G* be a solvable group and *H* a solvable subgroup of Aut (*G*) whose elements are *n*-unipotent.

(1) If H is finitely generated then it stabilizes a finite series in G.

(2) If G has a characteristic series with torsion-free factors, then H stabilizes a finite series in G.

Remark. In particular we have that (2) holds when G is nilpotent and torsion-free.

Remark. In fact one can deduce the following stronger variant of the one given in last remark. If \mathcal{P}_n is the set of prime divisors of e(n) in the following result then it suffices that *G* is \mathcal{P}_n -torsion free.

The proof of the results above by Frati, Casolo & Puglisi and Puglisi & T rely on the following Theorem.

The proof of the results above by Frati, Casolo & Puglisi and Puglisi & T rely on the following Theorem.

Theorem. (Crosby & T 2010). Let *H* be a normal right *n*-Engel subgroup of a group *G* that belongs to some term of the upper central series. Then there exist positive integers c(n), e(n) such that

$$[H^{e(n)},_{c(n)}G] = [H,_{c(n)}G]^{e(n)}.$$

3. Examples

Gunnar Traustason Unipotent automorphisms of solvable groups

3. Examples

Example 1. Let G = A wr H where A is a cyclic group of order 2 and H is a countable elementary abelian 2-group. The group Inn(G) then acts G as a group of 3-unipotent automorphisms but it still doesn't stabilize any finite series.

3. Examples

Example 1. Let G = A wr H where A is a cyclic group of order 2 and H is a countable elementary abelian 2-group. The group Inn(G) then acts G as a group of 3-unipotent automorphisms but it still doesn't stabilize any finite series.

Example 2. Let *m* be the smallest positive integer such that the Burnside variety $\mathcal{B}(2^m)$ is not locally finite. Choose any finitely generated infinite group *G* in $\mathcal{B}(2^m)$. Every involution $a \in G$ induces an (m + 1)-unipotent automorphism in Inn(G) and there must exist such an involution that does not stabilize a finite series in *G*. Otherwise we get the contradiction that *G* is finite.