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The concept of degree of commutativity was first introduced by
Erdős and Turán (1968) and Gustafson (1973) for finite groups:

Definition 1.1

Let F be a finite group. The degree of commutativity of F is

dc(F ) := |{(x ,y)∈F 2|xy=yx}|
|F |2 =

∑
x∈F |CF (x)|
|F |2 , (1)

where CF (x) is the centraliser of x in F .

Examples

F is abelian if and only if dc(F ) = 1.

In fact, F is abelian whenever dc(F ) > 5
8 . Indeed,

dc(F ) = k/|F |, where k is the number of conjugacy classes in
F , and the center of a group cannot have index 2 or 3.

This bound is sharp: for F = D8 (dihedral group of order 8),
dc(F ) = 5

8 .
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This concept has recently been generalised to all finitely generated
groups (Antoĺın, Martino, Ventura, 2015):

Definition 1.2

Let G be a finitely generated group and X a finite generating set.
The degree of commutativity of G with respect to X is

dcX (G ) := lim supn→∞
|{(x ,y)∈BX (n)2|xy=yx}|

|BX (n)|2 (2)

where BX (n) is the ball of radius n in the Cayley graph Cay(G ,X ).

Conjecture 1.3 (Antoĺın, Martino, Ventura, 2015)

dcX (G ) = 0 whenever G is not virtually abelian.

dcX (G ) ≤ 5
8 whenever G is not abelian.

In particular, (conjecturally) dcX (G ) = 0 whenever G has
exponential growth.
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Definitions
Rational growth

Consider intermediate cases between free and free abelian groups:

Definition 2.1

Let ∆ be a finite simple graph. One can define a group G∆, called
the right-angled Artin group associated with ∆, as a group given
by the presentation

G∆ := 〈V (∆) | xy = yx for all xy ∈ E (∆)〉. (3)

Proposition 2.2 (Valiunas, 2016)

Let ∆ be a finite simple graph that is not complete. Then
dcV (∆)(G∆) = 0.

Remark

The same is true for exponentially growing groups with some
torsion – i.e. if relations xm(x) = 1 for x ∈ V (∆) are added to the
presentation.
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Example

If ∆ =
y2

x1

x2

y1

, then G = G∆
∼= F2(X )× F2(Y ) where

X = {x1, x2} and Y = {y1, y2}. Any element in F2(X ) commutes
with any element in F2(Y ), and

|BX∪Y (n)| ∼ 8n3n−1, and (4)

|F2(X ) ∩ BX∪Y (n)| = |F2(Y ) ∩ BX∪Y (n)| ∼ 4× 3n−1. (5)

It follows that

|{(x ,y)∈BX∪Y (n)2|xy=yx}|
|BX∪Y (n)|2 ≥ |F2(X or Y )∩BX∪Y (n)|2

|BX∪Y (n)|2 ∼ 1
4n2 . (6)

Thus arguments comparing the exponential growth rates are not
enough... We need some sort of “fine counting” of elements in
balls.
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Definition 2.3

Let G be a group with a finite generating set X . The growth series
of G with respect to X is

sG ,X (t) :=
∑
g∈G

t |g |X =
∞∑
n=0

|SX (n)|tn ∈ Z[[t]]. (7)

G is said to be of rational growth with respect to X if sG ,X (t) is a

rational function of t, i.e. sG ,X (t) = p(t)
q(t) for some polynomials p, q.

This is relevant because:

Theorem 2.4 (Chiswell, 1994)

Let ∆ be a finite simple graph. Then sG∆,V (∆)(t) is rational.
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Theorem 2.5 (Valiunas, 2016)

Let G be an infinite group with a finite generating set X , and
suppose sG ,X (t) is a rational function. Then there exist constants
α ∈ Z≥1, λ ∈ [1,∞) and D > C > 0 such that

Cnα−1λn ≤ |SX (n)| ≤ Dnα−1λn (8)

for all n ≥ 1.

The equality dcV (∆)(G∆) = 0 then can be derived from the fact
that otherwise we can find two disjoint subsets of V (∆) generating
subgroups “comparable in size” to G . This follows from:

Theorem 2.6 (Servatius, 1989)

Let g ∈ G∆ be an element such that |g |V (∆) ≤ |p−1gp|V (∆) for

any p ∈ G∆. Then CG (g) ∼= Z` × 〈W 〉 where W ⊆ V (∆) and g
can be written using only letters of V (∆) \W.
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Definitions
Elliptic elements

Another generalisation of free groups comes from considering
groups with “sufficiently tree-like” Cayley graphs.

Definition 3.1

For a locally compact graph Γ, define the number of ends
e(Γ) of Γ to be the supremum of the number of unbounded
connected components of Γ \ K , where K ranges over all
compact subsets of Γ.

If G is a group with a finite generating set X , the number of
ends of G with respect to X is defined to be

eX (G ) := e(Cay(G ,X )). (9)

Examples

If G is finite, then Cay(G ,X ) is bounded, so eX (G ) = 0.

If G is virtually Z, then Cay(G ,X ) is quasi-isometric to R, so
eX (G ) = 2.
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Examples (continued)

If G = Zm for m ≥ 2 and X are the standard generators, then
Cay(G ,X ) is an m-dimensional “grid”, and we can see that
eX (G ) = 1.

If G = Fm for m ≥ 2 and X is a free basis, then Cay(G ,X ) is
a 2m-regular tree, so eX (G ) =∞.

The following associates eX (G ) with algebraic structure of G :

Theorem 3.2 (Stallings, 1971)

Let G be a group with a finite generating set X . Then eX (G ) > 1
if and only if G admits an edge-transitive action on a tree T with
finite edge stabilisers and without globally fixed points. Moreover,
eX (G ) = 2 if T is a line, and eX (G ) =∞ otherwise.

In particular, e(G ) = eX (G ) is independent of the set X .
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The action of G on T can be used to show:

Theorem 3.3 (Valiunas, 2016)

Let G be a finitely generated group with infinitely many ends, and
let X be any finite generating set. Then dcX (G ) = 0.

Let e ∈ E (T ) be an edge and let H1,H2 ≤ G be the stabilisers of
its endpoints. Let E :=

⋃
g∈G Hg

1 ∪
⋃

g∈G Hg
2 ⊆ G be the set of

elliptic elements of G , i.e. elements that fix some vertex in T . The
proof of the Theorem relies on the following:

Lemma 3.4 (Valiunas, 2016; Yang, 2017)

E is negligible in G, i.e. |E∩BX (n)|
|BX (n)| → 0 as n→∞.

Remark

Similar argument works more generally – for non-elementary
relatively hyperbolic groups.
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Thank you!
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