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Introduction & Motivation

The concept of degree of commutativity was first introduced by
Erdés and Turdn (1968) and Gustafson (1973) for finite groups:

Definition 1.1

Let F be a finite group. The degree of commutativity of F is

dC(F) — |{(X7}’)€"li_2|

Xy=yx Cr(x
‘2}’ yx} — erll—‘F‘FF( )|’ (1)

where Cg(x) is the centraliser of x in F.
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Examples
@ F is abelian if and only if dc(F) = 1.
o In fact, F is abelian whenever dc(F) > 2. Indeed,

dc(F) = k/|F|, where k is the number of conjugacy classes in
F, and the center of a group cannot have index 2 or 3.

@ This bound is sharp: for F = Dg (dihedral group of order 8),
de(F) = 3.




Introduction & Motivation

This concept has recently been generalised to all finitely generated
groups (Antolin, Martino, Ventura, 2015):
Definition 1.2

Let G be a finitely generated group and X a finite generating set.
The degree of commutativity of G with respect to X is

{(x,y)€Bx(n)?|xy=yx}| (2)

dex(G) == limsup,_ o EMOL

where Bx(n) is the ball of radius n in the Cayley graph Cay(G, X).
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Conjecture 1.3 (Antolin, Martino, Ventura, 2015)

@ dcx(G) = 0 whenever G is not virtually abelian.

e dcx(G) < % whenever G is not abelian.

In particular, (conjecturally) dcx(G) = 0 whenever G has
exponential growth.



Definitions
Rational growth

Right-angled Artin groups

Consider intermediate cases between free and free abelian groups:

Definition 2.1

Let A be a finite simple graph. One can define a group Ga, called
the right-angled Artin group associated with A, as a group given
by the presentation

Ga = (V(A) | xy = yx for all xy € E(A)). (3)
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Proposition 2.2 (Valiunas, 2016)

Let A be a finite simple graph that is not complete. Then
dCV(A)(GA) =0.
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The same is true for exponentially growing groups with some
torsion — i.e. if relations x™*) =1 for x € V(A) are added to the
presentation.

A




Definitions
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Right-angled Artin groups

Example

If A = ]:f . then G = Gp = Fo(X) x Fo(Y) where

Y2 X2
X ={x1,x2} and Y = {y1,y2}. Any element in F;(X) commutes
with any element in F»(Y), and
|Bxuy(n)| ~ 8n3™L, and (4)
|F2(X) N BXUy(n)‘ = ’FQ(Y) N BXuy(n)’ ~ 4 x 3L (5)

It follows that

x,y)EB (n)?|xy=yx}| |F2(X or Y)NB, (n)|? 1
b=l > IRl ~ b (6)]
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Thus arguments comparing the exponential growth rates are not
enough... We need some sort of “fine counting” of elements in
balls.



Definitions
Rational growth

Right-angled Artin groups

Definition 2.3
Let G be a group with a finite generating set X. The growth series
of G with respect to X is

(e o]

sox(t)i= 3t = S [sx(mle" e Zl]. (7)

geG n=0

G is said to be of rational growth with respect to X if sg x(t) is a

rational function of t, i.e. sg x(t) = % for some polynomials p, g.
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Right-angled Artin groups

Definition 2.3

Let G be a group with a finite generating set X. The growth series
of G with respect to X is

sox(t Zr‘g‘x—zwx Je ezl ()

geG

G is said to be of rational growth with respect to X if sg x(t) is a

rational function of t, i.e. sg x(t) = % for some polynomials p, g.

This is relevant because:

Theorem 2.4 (Chiswell, 1994)
Let A be a finite simple graph. Then s, v(a)(t) is rational.
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Rational growth

Right-angled Artin groups

Theorem 2.5 (Valiunas, 2016)

Let G be an infinite group with a finite generating set X, and
suppose sg x(t) is a rational function. Then there exist constants
a € Z>1, A€ [l,00) and D > C > 0 such that

Cne=IA" < |Sx(n)| < Dn®~1A? (8)

for all n > 1.
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Theorem 2.5 (Valiunas, 2016)

Let G be an infinite group with a finite generating set X, and
suppose sg x(t) is a rational function. Then there exist constants
a € Z>1, A€ [l,00) and D > C > 0 such that

CnPIA" < |Sx(n)| < Do 17 (8)

for all n > 1.

The equality dcy(a)(Ga) = 0 then can be derived from the fact
that otherwise we can find two disjoint subsets of V/(A) generating
subgroups “comparable in size” to G. This follows from:

Theorem 2.6 (Servatius, 1989)

Let g € G be an element such that [g|y(a) < ]pflgp]V(A) for
any p € Ga. Then Cg(g) = Z' x (W) where W C V(A) and g
can be written using only letters of V(A)\ W.




Definitions

Groups with infinitely many ends e clames

Another generalisation of free groups comes from considering
groups with “sufficiently tree-like” Cayley graphs.

Definition 3.1

@ For a locally compact graph I, define the number of ends
e(T) of I to be the supremum of the number of unbounded
connected components of ' \ K, where K ranges over all
compact subsets of .

e If G is a group with a finite generating set X, the number of
ends of G with respect to X is defined to be

ex(G) := e(Cay(G, X)). (9)




Definitions
Elliptic elements

Groups with infinitely many ends

Another generalisation of free groups comes from considering
groups with “sufficiently tree-like” Cayley graphs.

Definition 3.1

@ For a locally compact graph I, define the number of ends
e(T) of I to be the supremum of the number of unbounded
connected components of ' \ K, where K ranges over all
compact subsets of .

e If G is a group with a finite generating set X, the number of
ends of G with respect to X is defined to be

ex(G) := e(Cay(G, X)). (9)

o If G is finite, then Cay(G, X) is bounded, so ex(G) = 0.

e If G is virtually Z, then Cay(G, X) is quasi-isometric to R, so
ex(G) = 2.




Definitions

Groups with infinitely many ends e clames

Examples (continued)

@ If G =7" for m> 2 and X are the standard generators, then
Cay(G, X) is an m-dimensional “grid”, and we can see that
eX(G) =1.

o If G=Fp for m>2and X is a free basis, then Cay(G, X) is
a 2m-regular tree, so ex(G) = .
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Examples (continued)

@ If G =7" for m> 2 and X are the standard generators, then
Cay(G, X) is an m-dimensional “grid”, and we can see that
eX(G) =1.

o If G=Fp for m>2and X is a free basis, then Cay(G, X) is
a 2m-regular tree, so ex(G) = .

The following associates ex(G) with algebraic structure of G:

Theorem 3.2 (Stallings, 1971)

Let G be a group with a finite generating set X. Then ex(G) > 1
if and only if G admits an edge-transitive action on a tree T with
finite edge stabilisers and without globally fixed points. Moreover,
ex(G) =2 if T is a line, and ex(G) = oo otherwise.

In particular, e(G) = ex(G) is independent of the set X.



Definitions

Groups with infinitely many ends i Eameis

The action of G on T can be used to show:

Theorem 3.3 (Valiunas, 2016)

Let G be a finitely generated group with infinitely many ends, and
let X be any finite generating set. Then dcx(G) = 0.
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Groups with infinitely many ends i Eameis

The action of G on T can be used to show:

Theorem 3.3 (Valiunas, 2016)

Let G be a finitely generated group with infinitely many ends, and
let X be any finite generating set. Then dcx(G) = 0.

Let e € E(T) be an edge and let Hi, H» < G be the stabilisers of
its endpoints. Let £ := e Hf UUzeq HS C G be the set of
elliptic elements of G, i.e. elements that fix some vertex in T. The
proof of the Theorem relies on the following:

Lemma 3.4 (Valiunas, 2016; Yang, 2017)

: ible | - 1€ENBx(n)|
& is negligible in G, i.e. B 0 as n — oo.
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Similar argument works more generally — for non-elementary
relatively hyperbolic groups.
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Thank you!
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